
1

New Directions in C2
Software Quality Assurance

Automation

M. Auguston, J.B. Michael and M.T. Shing

Naval Postgraduate School

2

Acknowledgement and Disclaimer

The research was funded in part by a
grant from the U.S. Missile Defense
Agency.

The views and conclusions in this talk
are those of the authors and should
not be interpreted as necessarily
representing the official policies or
endorsements, either expressed or
implied, of the U.S. Government.

3

Outline
Challenges to C4ISR system software testing
Automated test generation based on
environment models
Software safety assessment
Conclusion

4

C4ISR Net-centric System-of-
Systems (SoS) Characteristics

Typically Large, heterogeneous, distributed
Contains time-critical, safety-critical, reactive
component systems

Evolving
Includes legacy systems as well as systems
under development
Integrate component systems work together to
provide greater capability than that of
component systems

5

Net-centric SoS Software
Testing Challenges

Emergent behaviors (both desirable and
undesirable) can only be observed from the
interactions between the SoS and its
operating environment and the interactions
between its component systems

Good environment models are essential
for testing SoS software

6

Black Box Testing
Environment

System
Under Test

(SUT)

Outputs = Expected Outputs?Inputs

The SUT may be a complex reactive
real-time C4ISR system

sensors actuators

7

Black Box Testing (cont’d)

The main problems:
How to create test cases
How to run a test case
How to verify the results of a test run

8

Testing methodology
(How to create test cases)

Three possible approaches:
Test cases should be carefully designed
using “white box” (e.g., branch coverage)
or “black box” (e.g., equivalence partition,
boundary conditions) methods. This is like
“sharp-shooting” for bugs…
Test cases may be generated at random.
This is like a “machine gun” approach…

9

Testing methodology (cont’d)

We suggest an “intelligent” random
generation based on the environment
models.

It is best suited for a very special class of
programs: reactive and real-time.

10

The Model of Environment
An event is any detectable action that is

executed in the “black box” environment
An event is a time interval
An event has attributes; e.g., type, timing
attributes, etc.
There are two basic relations for events:

precedence and inclusion
The behavior of environment can be
represented as a set of events (event trace)

11

The Model of Environment (cont’d)

Event traces are essentially use case
scenarios

Examples of event traces can be useful for
requirements engineering, prototyping, and
system documentation

Usually event traces have a certain
structure (or constraints) in a given
environment

Example: driving_a_car is an event that
may be represented as a sequence of zero
or more events of types
go_straight, turn_left, turn_right, or stop

12

The Model of Environment (cont’d)

The structure of possible event traces for a
given environment can be specified using
event grammar

Example:
driving_a_car ::=

go_straight
(go_straight | turn_left | turn_right) *
stop

go_straight ::=
(accelerate | decelerate | cruise)

13

Sequential and Parallel Events
The precedence relation defines the partial
order of events

Two events are not necessary ordered; i.e., they
can happen concurrently

Example:
Shooting_Competition ::= {* Shooting *}
Shooting ::= (* Single_shot *)
Single_shot ::= Fire (Hit | Miss)

This is a
sequence

Those events
may be parallel

14

Visual Representation of
Event Trace

Shooting_Competition

Shooting

Shooting

Single_shot

Single_shot

Fire Hit

Fire Miss

IN relation

PRECEDES relation

Fire Miss
(not all events and
relations are shown…)

15

Event attributes
Shooting_Competition ::= /num = 0;/
{* /Shooting .id = num++; Shooting .ammo =10;/

Shooting *} (Rand[2..100])
Shooting ::= /Shooting .points = 0; /
(* Single_shot /Shooting .ammo -=1;/ *)

While (Shooting .ammo > 0)
Single_shot ::= Fire (

P(0.3) Hit /Single_shot. points = Rand[1..10];
ENCLOSING Shooting .points

+= Single_shot .points; /
| P(0.7) Miss /Single_shot. points = 0;/)

16

Attribute Event Grammar
(AEG)

Intended to be used as a vehicle for
automated random event trace generation

The AEG is traversed top-down and left-to-
right and only once to produce a particular
event trace
Randomized decisions about what alternative
to take and how many times to perform the
iteration should be made during the trace
generation
Attribute values are evaluated during this
traversal

17

Sending Input to
System-Under-Test (SUT)

Single_shot ::= Fire (
Hit /Single_shot. points = Rand[1..10];

ENCLOSING Shooting .points
+= Single_shot .points;

SUT.shooting_score(
ENCLOSING Shooting .id, Hit .time);/

| Miss /Single_shot. points = 0;/)

AEG generated
Environment

Model

Shooting
Competition Scoring

System (SUT)

SUT.shooting_score(…)

18

Catching outputs from SUT

Attack ::= {* Missile_launch *} (<=N)
Missile_launch ::=

boost_stage / middle_stage.completed = true;/
middle_stage When(middle_stage.completed)
boom

AEG generated
Environment

Model

Missile Defense
System (SUT)

SUT.input(…)

intercept_launched(…)

19

Catching outputs from SUT
(cont’d)

middle_stage ::=
(* CATCH intercept_launched (hit_coordinates)

-- this external event intercepts SUT output
When (hit_coordinates == middle_stage .coordinates)

[P(p1) hard_hit
/ middle_stage.completed= false;
SUT.input(middle_stage .coordinates);
-- this simulates SUT sensor input /

Break; -- breaks the iteration]
OTHERWISE move *)

20

Catching outputs from SUT
(cont’d)

move ::=
/adjust (ENCLOSING middle_stage .coordinates) ;
SUT.input(

ENCLOSING middle_stage .coordinates);
-- this simulates SUT sensor input

DELAY(50 msec); /

21

Software Safety Assessment

The environment model can contain
description of hazardous states in which
system could arrive, and which can not be
easily retrieved from SUT requirements
specifications

For example, the boom event will occur in
certain scenarios depending on the SUT outputs
received by the test driver and random choices
determined by the given probabilities

22

Software Safety Assessment
(cont’d)

If we run large enough number of
(automatically generated) tests, the statistics
gathered gives some approximation for the
risk of getting to the hazardous state.
By varying the probabilities in the
environment model, or changing some
parameters in the SUT and repeating the
whole set of tests in a systematic way, it is
possible to answer questions, such as “what
has contributed to this outcome?”

23

Software Safety Assessment
(cont’d)

This becomes a very constructive process
of performing experiments with SUT
behavior within the given environment
model
The process is supported by automated
test case generation and runtime
monitoring of test output

24

How it works

Environment
model

represented as
an event
grammar

Generator

Test driver
(in C or assembly

language)

SUT

Run time
monitor

How to create
test cases

How to run test
case

How to monitor
the results

25

Conclusion
The main advantage of the proposed
approach

Whole testing process can be automated
The AEG formalism provides powerful
high-level abstractions for environment
modeling
AEG is well structured, hierarchical, and
scalable

26

Conclusion (cont’d)

It is possible to run many more test cases
with better chances to succeed in exposing
an error
It addresses the regression testing
problem – generated test drivers can be
saved and reused.
The environment model itself is an asset
and could be reused

	New Directions in C2 Software Quality Assurance Automation
	Acknowledgement and Disclaimer
	Outline
	C4ISR Net-centric System-of-Systems (SoS) Characteristics
	Net-centric SoS Software�Testing Challenges
	Black Box Testing
	Black Box Testing (cont’d)
	Testing methodology �(How to create test cases)
	Testing methodology (cont’d)
	The Model of Environment
	The Model of Environment (cont’d)
	The Model of Environment (cont’d)
	Sequential and Parallel Events
	Visual Representation of �Event Trace
	Event attributes
	Attribute Event Grammar�(AEG)
	Sending Input to �System-Under-Test (SUT)
	Catching outputs from SUT
	Catching outputs from SUT�(cont’d)
	Catching outputs from SUT�(cont’d)
	Software Safety Assessment
	Software Safety Assessment�(cont’d)
	Software Safety Assessment�(cont’d)
	How it works
	Conclusion
	Conclusion (cont’d)

