Computational Modeling & Analysis of Coalition Maritime Planning

CCRTS 2006 - C2 Concepts & Organizations CDR John Looney & Dr. Mark E. Nissen Naval Postgraduate School

Sponsored in part by OASD-NII, through its CCRP. Research coordinated through the Center for Edge Power.

Motivation

- Edge organization is fresh approach
- Question comparative & contingent performance
- Research problems with methods & ambiguity
- Computational experimentation as bridge method
- Center for Edge Power: MY, MD, MU R program
- 🕹 This study:
 - Phase 1 model specification & exp design
 - Phase 2 field research to model CFMCC process

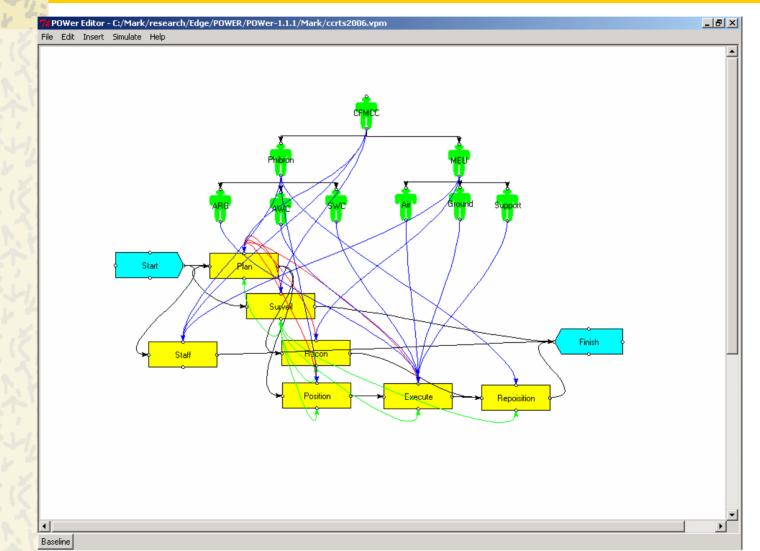
Prior Research Archetypal Classification

Classification* of Hierarchy & Edge Organizations

12.4	Hierarchy	Edge	
Design Factor			
Coordination	Work standards Mutual adjustment (Adhocracy)		
Specialization – H	High	Low (Simple Structure)	
Specialization – V	High	Low (Professional Bureaucracy)	
Training & indoc	High	High (Professional Bureaucracy)	
Formalization	High	Low (Simple Structure, Professional Bureaucracy, Adhocracy)	
Grouping	Function	Market & function (Adhocracy & Professional Bureaucracy)	
Unit size	Large	Small (Adhocracy)	
Planning & control	Action planning	Limited action planning (Adhocracy)	
Liaison	Few	Many throughout (Adhocracy)	
Decentralization	Centralized	Selective decentralization (Adhocracy)	
Archetype	Machine Bureaucracy	Professional Adhocracy	

* See Mintzberg (1979)

Research Design


Computational tools – POWer CFMCC field research Integration, synthesis & CFMCC analysis

Field Research Results

Observations confirmed CFMCC as a Hierarchy

- High degree of work standards, horizontal and vertical specialization, formal information flow information, action planning and control, and centralization
- Functional grouping, unit size and liaison are not clearly hierarchical
- **When the set of the s**
 - Refine the C2 model's baseline parameters
 - Validate and calibrate model performance "Observed" column

CFMCC Computational Model "Observed"

Alternative CFMCC Models

Communications – same structure and skill levels

- Common planning network, improved information processing
- Knowledge Network same structure and network
 - Better educated, experienced, and trained planners
- Power Flow same skill levels
 - 1-level meritocracy with interdependent tasks
- Combined best aspects from each of the three models

Computational Results

Measure	Observed	Communications	Knowledge-Net	Power Flow	Combined
Simulation Duration	9.5 days	8.8 days	6.9 days	8.6 days	5.3 days
Joint Planning Duration	3.5 days	3.3 days	1.5 days	3.4 days	1.6 days
Coalition Planning Duration	4.5 days	3.6 days	1.6 days	3.6 days	1.5 days
Mission Go	6 days	5 days	4 days	4 days	4 days
Direct work	2694 P-days	2694 P-days	2694 P-days	2726 P-days	2726 P-days
Rework	126 P-days	96 P-days	52 P-days	411 P-days	60 P-days
Coordination	136 P-days	48 P-days	114 P-days	668 P-days	407 P-days
Wait time	16 P-days	19 P-days	8 P-days	0 P-days	0 P-days
Meetings	42	0	31	0	0
Functional Risk Indicator	0.23	0.27	0.26	0.38	0.42
Project Risk Indicator	0.26	0.35	0.20	0.32	0.32
Maximum Backlog	2.0 days	1.4 days	1.6 days	1.8 days	1.3 days

Contributions

Calibration of POWer C2 model provides confidence in computational experimentation outputs

 Highlights advantage & disadvantages of alternate organizational forms, process changes, and technological improvements

Topologies of knowledge networks vary per task

 Make K-net explicit, incentivize its use, and monitor the balance between exploration (creation tasks) and exploitation (work tasks)

Limitations & Future Research

Timitations

- Bridge research method, interpretation & judgment
- C2 is relatively new domain for VDT; POWer in development
- CFMCC studied in experimental vs. operational mode

🕹 Future research

- Campaign of experiments compare CFMCC to other forms
- Complementary studies ongoing & planned
- Center for Edge Power welcomes input