
DETERMINING COURSE OF ACTION ALIGNMENT
WITH OPERATIONAL OBJECTIVES

Duane Gilmour
Information Directorate

Air Force Research Laboratory

Prof. Mark Zhang
SUNY Binghamton

Outline

• Background

• Problem statement

• Course of action analysis based on fuzzified
semantic inference

• Preliminary proof-of-concept testing

• Summary

• Future work

• Dynamic Course of Action (COA) analysis is manpower
intensive (blue / red teaming)

• Automated COA analysis technology
– Static, adversary is pre-scripted

– Attrition based, force-on-force

– Utilized to study scenarios well in advance of operations

• Approaches are too laborious and slow for current fast
paced operations
– Adversaries act / react / adapt too quickly

– Need an “always on” capability

Motivation
Current Course of Action Analysis Limitations

• Challenge: Efficient generation and analysis of a range of
COA alternatives to anticipate and shape the battlespace
– Prior to and during operations

• Technology development to support dynamic real-time
COA analysis
– In-house force structure simulation high performance computing

(HPC) R&D testbed

– Effects based / center of gravity modeling

– Automated scenario generation

– Modeling intelligent adversary behaviors

– HPC framework for rapid decision branch analysis

– COA simulation analysis

Real-Time COA Analysis

“Static” vs. “Dynamic”
Simulation

• “Static” simulation: traditional use of simulations
– Use simulations to study COAs well in advance

– Get general idea of what might happen if similar scenario
actually occurs

• “Dynamic” simulation: novel use of simulations
– Use simulations to assist decision makers while the scenario is

happening

– Quickly simulate ahead to glimpse possible futures

– Evaluate possible COAs and multiple decision points within
each COA

– Dynamic situational assessment during combat operations,
comparison against plans, alerts on new threats or opportunities

Challenge Problem

• COAs must be continuously developed and analyzed
to support operations

• Automated systems can generate (thousands) COAs

• Prior to COA development, analysis and execution,
need to determine which generated COAs are
aligned with the missions commander’s intent

• Objective: develop a representation scheme for COA
generation and assessment to rapidly compare
generated COAs to commander’s intent

Comparing Commander’s Intent
and COAs

• Commander’s intent may be represented in a
hierarchy; strategic to tactical

• COAs may be represented in a hierarchy at different
levels of execution; strategic to tactical

• Semantic uncertainty and fuzziness of commander’s
intent and COAs
– e.g., peace, control, ability significantly reduced

– Correctly understanding the natural language

– Classic symbolic reasoning does not work

• Semantic gap between the typical higher level
commander’s intent and the lower level COA

Assumptions

• Commander’s intent is given at the tactical level
– A restrictive syntax may be assumed

• COA is also given in a lower, more specific level
– A restrictive syntax may be assumed

• A domain ontology is given

Course of action Analysis based on
Fuzzified Semantic INference (CAFSIN)

• Model the determination of COA alignment with a
commander’s intent as a fuzzified language matching
problem

• A general approach to COA analysis and reasoning

• Take into account the fuzzy nature of COA and
commander’s intent uncertain and fuzzy reasoning

• Leave a user to define what is considered as
compliant COA or diverting COA

• Works even when the assumptions are relaxed, if
reliable information extraction tools are available

Ontology Construction

• Build an ontology in a given domain
– Synonymy: all the synonyms are hard-wired together in a

node
– Polysemy: words with different meanings in the ontology are

represented in different nodes

• Standard hashing function used to directly link to a
node in the ontology

• Special phrases are coined as single words (e.g., WMD
support system)

Ontology Example

Military Order

Conduct Demonstrate Lose Maintain Operate Deter Plan Secure Give

Develop Deploy Attack (deny, strike) Move Engage report

Disable (disrupt, disable)

Bomb Shoot

Air Bomb

Ontology Example, Cont’d

Enemy Systems

C2 Systems Support Systems

Control
Systems

Communication
Systems

TBM C2
Systems

WMD Support
Systems

B13

Fuzzified Word Similarity

• Given two words w1 and w2 and an ontology Ψ, the
similarity function f is defined as a Gaussian function:

• Given an ontology, the similarity between two words
depends on two things:
– The relative depth difference between the two words in the

ontology

– The depth from the nearest common ancestor in the ontology

22

2)1}2,1(max{

22
)|2,1(σ

πσ

−
−

=Ψ
wdwd

ewwf p

where dw1 and dw2 are the depths of w1 and w2 from a nearest common
ancestor in Ψ, if they do not share a common ancestor, they are set as ∞,
p is the normalization factor, σ is the standard deviation

Word Similarity Function

• Two words have strong similarity if they are:
– Synonyms
– Siblings sharing the common parents
– One is a parent of the other

• The similarity decreases if:
– The depth difference between the two words increases in the

same ontology tree; and/or
– Their nearest common ancestor moves away

• The similarity is 0 if the two words do not have a
common ancestor, i.e., they are located in different
ontology trees

Modeling the Tactical Objective
and COA

• The tactical objectives of a commander’s intent
typically have a well-defined syntax and may be
considered as a language with a grammar

T = <verb> <noun>*+

• A tactical COA typically has a well-defined syntax and
may be considered as a language with a well-defined
grammar

C = {<verb> <attribute value>*}+

CAFSIN Similarity Function

• t ∈ T, t = v n*

• c ∈ C, c = {u m*}+

• The CAFSIN similarity function is defined as:

where H(n*,m*) is a fuzzified maximum substring matching function
between word string n* and word string m* using the fuzzified word
similarity function f(n,m|Ψ), α is a normalization factor

),()|,()|,(mnHuvfcth u ΨΣ=Ψ α

Computation of H

• Substring matching is an NP-complete problem; an
optimal solution may be obtained from dynamic
programming

• Since t and c typically only have a very few words,
complexity is not an issue

• Assume there are N words for string n*; there are M
words for string m*

• Create a table of H[N+1,M+1]; initialize the table with
H[0,j] = 0 for j=1,…, M+1 and H[i,0] = 0 for i=1,…, N+1

• H is computed by:

⎩
⎨
⎧

−−
−−>

=
otherwisejiHjiH

jiHjiHjminfjminf
jiH

]),1,[],,1[max(
])1,[],,1[max(])[],[(]),[],[(

],[

A Simple Example

• Commander’s intent:
– Disrupt enemy’s WMD support system

• COA
– Engage FA-18 on target B13

Military Order

Conduct Demonstrate Lose Maintain Operate Deter Plan Secure Give

Develop Deploy Attack (deny, strike) Move Engage report

Disable (disrupt)

Bomb Shoot

Air Bomb

Enemy Systems

C2 Systems Support Systems

Control
Systems

Communication
Systems

TBM C2
Systems

WMD Support
Systems

B13

CAFSIN Representation

• After text processing:
– t = {<disrupt>,(<enemy>,<WMD support system>)}
– c ={<engage>,(<FA-18>,<target>,<B13>)}

• Word pairs:
– d<disrupt> = 2, d<engage> = 1
– d<enemy> = ∞, d<FA-18> = ∞
– d<enemy> = ∞, d<target> = ∞
– d<enemy> = ∞, d<B13> = ∞
– d<WMD support system> = ∞, d<FA-18> = ∞
– d<WMD support system> = ∞, d<target> = ∞
– d<WMD support system> = 0, d<B13> = 1

CAFSIN Representation, Cont’d

• Specified parameters:
– σ=1, p= , α=1

• Fuzzified similarity function values:
– f(<disrupt>, <engage>) = 1/ =0.607
– f(<enemy>, <FA-18>) = 0
– f(<enemy>, <target>) = 0
– f(<enemy>, <B13>) = 0
– f(<WMD support system>, <FA-18>) = 0
– f(<WMD support system>, <target>) = 0
– f(<WMD support system>, <B13>) = 1

π2

e

CAFSIN Solution

• Dynamic programming to compute H:

• Final fuzzified similary between t and c:

enemy WMD support system

0 0 0

FA-18 0 0 0

Target 0 0 0

B13 0 0 1

607.0/1 == eh

Another Example

• Commander’s intent:
– Disrupt enemy’s WMD support system

• COA
– Engage FA-18 on target B13; bomb target B13

• After text processing:
– t = {<disrupt>,(<enemy>,<WMD support system>)}
– c = {<engage>,(<FA18>,<target>,<B13>);

<bomb>,(<target>,<B13>)}

• 1st pair representation:
– t = {<disrupt>,(<enemy>,<WMD support system>)}
– c ={<engage>,(<FA-18>,<target>,<B13>)}

• 2nd pair representation:
– t = {<disrupt>,(<enemy>,<WMD support system>)}
– c ={<bomb>,(<target>,<B13>)}

CAFSIN Solution

• 1st pair fuzzified similarity between t and c:

• 2nd pair fuzzified similarity between t and c:

• Final fuzzified similarity between t and c:

607.0/1 == eh

1=h

607.1/11 =+= eh

Another Example

• Commander’s intent:
– Disrupt enemy’s WMD support system

• COA
– Lose target B13

• After text processing:
– t = {<disrupt>,(<enemy>,<WMD support system>)}

– c ={<lose>,(<target>,<B13>)}

• Final fuzzified similarity between t and c:

135.0/1 2 == eh

Summary

• Presented an approach to determining COA alignment
with commander’s intent based upon fuzzy logic
inferencing, which is:
– Independent of the ontology

– Independent of specific words; only dependent on the relative
locations of the words in an ontology

– Always relative (e.g., may be mapped to the range of [0,1])
allowing users interaction (e.g., to play with different
thresholds)

• Reasonable assumptions must be made

• Presented results CAFSIN approach on a hand-crafted
ontology with expected performance

Future Work

• Large scale evaluations of CAFSIN
– Requires a domain ontology

– Wordnet (e.g., how to tailor it to a specific domain?)

– How to define the evaluation metrics?

• Relax the assumptions to accommodate higher levels
commander’s intent and COAs
– Requires interface to information extraction tools

– Relax the syntax of COA to accommodate constraints

• Improve computation complexity of CAFSIN
– Add locality analysis to the ontology tree traversal search

– Add heuristic search into the dynamic programming string
matching

	DETERMINING COURSE OF ACTION ALIGNMENT WITH OPERATIONAL OBJECTIVES
	Outline
	Motivation�Current Course of Action Analysis Limitations
	Real-Time COA Analysis
	“Static” vs. “Dynamic” Simulation
	Challenge Problem
	Comparing Commander’s Intent and COAs
	Assumptions
	Course of action Analysis based on Fuzzified Semantic INference (CAFSIN)
	Ontology Construction
	Ontology Example
	Ontology Example, Cont’d
	Fuzzified Word Similarity
	Word Similarity Function
	Modeling the Tactical Objective�and COA
	CAFSIN Similarity Function
	Computation of H
	A Simple Example
	CAFSIN Representation
	CAFSIN Representation, Cont’d
	CAFSIN Solution
	Another Example
	CAFSIN Solution
	Another Example
	Summary
	Future Work

