
2006 CCRTS
The State of the Art and the State of the Practice

1. Title: On Applying Point-Interval Logic to Criminal Forensics•

2. Topic Area: C2 Modeling and Simulation

3. Authors: Mashhood Ishaque Abbas K. Zaidi Alexander H. Levis

4. Point of Contact: Mashhood Ishaque

5. Organization: System Architectures Lab, George Mason University

6. Address: System Architectures Laboratory

MSN 4B5
George Mason University
Fairfax, VA - 22030
703.993.1725 (v)
703.993.1706 (f)

7. Email: mishaque@acm.org

Student Paper

• The work was carried out with support provided by the Air Force Office of Scientific Research
under contract numbers FA9550-05-1-0106.

On Applying Point-Interval Logic to Criminal Forensics

Mashhood Ishaque
Abbas K. Zaidi

Alexander H. Levis
System Architectures Lab
George Mason University

Fairfax, VA – 22030
mishaque@acm.org, {szaidi2, alevis}@gmu.edu

Abstract
Application of a temporal logic to forensic analysis, especially in answering certain investigative
questions relating to time-sensitive information, is presented. A set of temporal facts is taken from
the London bombing incident that took place on July 7, 2005, to illustrate the approach. The
information used in the illustration is gathered through the online news sites. A hypothetical
investigation on the information is carried out to identify certain time intervals of potential interest
to crime investigators. A software tool called Temper that implements temporal logic is used.

1 Introduction

The growing need for a formal logic of time for modeling and analyzing temporal information has
led to the emergence of various types of representations and reasoning schemes. Point-Interval
Logic (PIL) is one such formalism. It has been implemented in the form of a software tool called
Temper. The expressive language of PIL, combined with a powerful verification, inference, and
revision mechanism, make Temper a useful tool for forensics, especially for analyzing the time-
sensitive information involved. It can be used to make sense of, or identify, contradictions and
inconsistencies in the temporal information available about a particular incident. The verification
mechanism of PIL can be used to check the consistency of the available temporal information. The
inference mechanism can be used to query the relationships between various temporal events. The
efficient revision mechanism of PIL enables what-if analysis. Thus, investigators can test their
theories about how some particular incident might have unfolded on a timeline using Temper. In
this paper we demonstrate how Temper can be used for criminal forensics by using the scenario of
the London bombing incident of July 7, 2005.

Point-Interval Logic (PIL) is a specialization of Pointisable Algebra (Ladkin and Maddux
1988). It originated from an earlier work on temporal knowledge representation and reasoning by
Zaidi (1999). The earlier version of PIL was an extension of Hamblin’s time primitives (1972) and
Allen’s Interval logic (1983). This extension allowed the inclusion of points (i.e., intervals with zero
lengths) in Allen’s ontology. The formalism presented an axiomatic system for the logic. A Petri net
(Peterson, 1981; Reisig, 1991) model was shown to represent this axiomatic system by transforming
the system’s specifications (i.e. qualitative temporal relations between system entities) given by
statements of Point-Interval Logic into Petri net structures. The Petri net structure, with some of its
analytical tools was subsequently renamed Point Graph (PG). An inference engine based on this
Point Graph representation infers new temporal relations among system intervals, identifies

temporal ambiguities and errors (if present) in the system’s specifications, and finally identifies the
intervals of interest defined by the user. Zaidi and Levis (2001) further extended the point-interval
approach by adding provisions for “dates/clock” times and time “distances” for points and intervals.
This extension allowed the assignment of actual lengths to intervals, time distances between points,
and time stamps to points representing the actual time of occurrences, whenever such information is
available. A temporal model may change during and/or after the system specification phase.
Support for an on-the-fly revision (add, delete, modify) was added to Point Graph formalism in
Rauf and Zaidi (2002). Zaidi and Wagenhals (2006) consolidated the results of the previous work
on the logic and its application to the modeling and planning time-sensitive aspects of a mission and
extended the approach further. The extension allows for a larger class of temporal systems to be
handled by incorporating an enhanced input lexicon, allowing increased flexibility in temporal
specifications, providing an improved verification and inference mechanism, and adding a suite of
analysis tools.

The paper is organized as follows: In Section 2, we present a brief discussion on Point-
Interval Logic (PIL). In Section 3, we briefly describe the user interface of Temper (software
implementation of PIL). We illustrate modeling situations arising in forensics in Section 4 using the
London bombing incident as the scenario. In Section 5, we comment on the contribution of this
paper.

2 Point-Interval Logic
The lexicon of the Point Interval Logic (PIL) consists of the following primitive symbols:

Points: A point X is represented as [pX, pX] or simply [pX].

Intervals: An interval X is represented as [sX, eX], where ‘sX’ and ‘eX’ are the two end points of
the interval, denoting the ‘start’ and ‘end’ of the interval, such that sX < eX.

Point Relations: These are the relations that can exist between two points. The set of relations RP is
given as:

 RP = {<, =, ≤} or RP = {less than, equal, less-than-or-equal}

Interval Relations: These are the atomic relations that can exist between two intervals. The set of
relations RI is given as:

 RI = {<, m, o, s, d, f, =} or

RI = {less than, meet, overlap, start, during, finish, equal}

Point-Interval Relations: These are the atomic relations that can exist between a point and an
interval. The set of relations RPI is given as:

 RPI = {<, s, d, f} or RPI = {less than, start, during, finish}

The symbol ‘?’ can be used to represent an unknown relationship

Functions: The following two functions are used to represent quantitative information associated
with intervals.

 The Interval length function assigns a non-zero positive real number to a system interval.

Length X = d, where X = [sX, eX], d ∈ ℜ +

A recent extension to PIL enables specification of lower and upper bounds on an interval
length. The two bounds can also be represented with the help of the at least and at most temporal
relations.

Length X ≥ d, where X = [sX, eX], d ∈ ℜ +  (d is a lower bound on length)

Length X ≤ d, where X = [sX, eX], d ∈ ℜ +  (d is an upper bound on length)

The stamp function assigns a non-negative real number to a point. Recent extensions to PIL
enable specification of lower and upper bounds on a point stamp.

Stamp p = t, where t ∈ℜ + ∪{0}

Stamp p ≤ t, t ∈ℜ + ∪{0}

Stamp p ≥ t, t ∈ℜ + ∪{0}

In Table 2.1 we show the syntactic and semantic structure of PIL expressions. Note that each
relationship between intervals or an interval and a point can be constructed with the help of
inequalities between their start and end points.

Table 2.1 PIL Expressions and Their Semantics

CASE I— X and Y both intervals with non-zero lengths:
X = [sx, ex], Y = [sy, ey] with sx < ex and sy < ey

1. X < Y ex < sy
 X Y sx ex sy ey

 X Y
 2. X m Y ex = sy

3. X o Y sx < sy, sy < ex, ex < ey
 X

Y
4. X s Y sx = sy, ex < ey

 X
Y

5. X d Y sx > sy, ex < ey
 X

Y

6. X f Y sx > sy, ey = ex
 X

Y

7. X = Y sx = sy, ex = ey
 X

Y

CASE II—X and Y both points: X = [px] and Y = [py]

1. X < Y px < py
 X
px

Y
py

• •
2. X = Y px = py [X;Y]

•
CASE III— X is a point and Y is an interval: X = [px] and Y = [sy, ey]

1. X < Y px < sy
 YX
•

2. X s Y px = sy
 YX
•

3. X d Y sy < px < ey
 YX

•

4. X f Y px = ey
 Y X

•

5. Y < X ey < px

Y X
•

A graph construct called Point Graphs (PG) is used as an underlying structure to represent
statements in PIL. In a PG, a node represents a point (or a composite point) and an edge between

two points represents one of the two temporal relations, less than and less-than-or-equal, between
the two. Two or more points pi, pj, …, pn are represented as a composite point [pi; pj; …; pn], or a
single node in a PG, if all are mapped to a single point on the timeline. The statements in PIL can be
converted to an equivalent PG representation with the help of the corresponding analytic
inequalities shown in Table 2.1. In addition, the quantitative temporal information, modeled using
the length and the stamp function, is represented as node and arc inscriptions on the PG. All the
verification, revision and inference algorithms work by manipulating this Point Graph
representation of the set of PIL statements. We show in Figure 2.1 how a set of PIL statements can
be converted into a Point Graph.

Figure 2.1: Point graph representation of a set of PIL statements

In this paper we explore an application of PIL and its associated algorithms to criminal

forensic analysis. A detailed description of Point-Interval Logic and Point Graphs can be found in
Zaidi (1999); Zaidi and Levis (2001); and Zaidi and Wagenhals (2006).
3 Temper: The Software Tool

A software tool called Temper (Temporal Programmer) implements the inference
mechanism of Point-Interval Logic along with its verification and revision mechanisms. Temper
provides a language editor to input PIL statements and a query editor to run various queries on the
constructed Point Graph. It has a graphical interface to display the Point Graph and also a text I/O
interface to display information and results of the analyses. Figure 3.1 shows the user interface of
Temper. In the PGs shown, each point is represented as a node, and each interval is represented by
two nodes connected by a less than (<) or LT arc. Each LT arc is represented by a solid arc and the
length, if available, appears adjacent to the arc. Each less-than-or-equal (≤) or LE edge is
represented by a dotted arc. The stamp on each point appears inside the node representing the point.
A special type of node, called virtual node, is used to represent at least, at most, no later than, or no
earlier than temporal relations. Figure 3.2 shows how the various elements of a Point Graph are
displayed in Temper.

4 Illustrative Example: London Bombing Investigation
On July 7, 2005, there were four explosions in London at Travistock Square, Edgware Road,

Algate, and Russell Square. Three of these explosions, Edgware Road, Algate, and Russell Square,
took place in trains that departed from King-Cross station. Images from close-circuit cameras
installed at London’s various railway stations were an important source of information for

Point p1, p2, p3
p1 < p2
p2 ≤ p3
Stamp p1 = 4500
Length [p1, p2] = 100

p1 p3 p2

LT Edge LE Edge Time
Stamp

4500

100

Interval
Length

investigators. There were hours of images available from these cameras and the task of investigators
was to analyze these images to identify possible suspects. The large number of such images,
although desirable, can make an investigation that requires searching through them in a timely
manner very time consuming.

Figure 3.1. Temper User Interface

Graphical
Interface

Language
Editor

Query
Editor

Text I/O-
Report

Interface

Point Graph Virtual Node

LE Arc

Interval
Length

LT Arc

Time
Stamp

Figure 3.2. Point Graph Visualization in Temper

In this section, we will demonstrate how Temper can be used to restrict the size of a
potential interval for which to analyze images (by making sense of the available temporal
information.) and thus speeding up the investigation. Since Temper has the ability to handle both
qualitative and quantitative constraints, both types of information regarding the incident and/or the
surrounding events can be input to it. Temper also offers the additional advantage of the
verification mechanism that can be invoked to check the consistency of the available temporal
information. This can be very useful when temporal information may originate from multiple (and
possibly unreliable) sources. In this example, we will demonstrate the capabilities of Temper by
modeling a set of temporal information items related to the incident and by trying to identify the
exact time or the shortest possible interval during which one of the ill-fated trains left from King-
Cross station for Edgware.

The journey of the three trains from King-Cross station can be represented as PIL intervals.
The journey of these trains ended in explosions. We also know the lower bounds on the travel times
of these trains after their departures from King-Cross station, based on the distances of the sites of
the explosions from King-Cross station. The train from King-Cross to Edgware must have traveled
for at least 5 time units. Similarly trains to Algate and Russell Square must have traveled for 4 and 5
time units, respectively. The time units are defined by a mapping from actual clock times to an
equivalent representation on a real number line. Table 4.1 shows how this information can be
represented as PIL statements. These PIL statements are input to Temper using its language editor.
Figure 4.1 shows the corresponding Point Graph in Temper.

Table 4.1: PIL Statements for London Bombing Scenario

Temporal Information PIL Statements

Train traveling from King-Cross to Edgware interval Train_KingX_Edgware
Train traveling from King-Cross to Algate interval Train_KingX_Algate
Train traveling from King-Cross to Russell
Square

interval Train_KingX_Russell_Sq

Explosion at Edgware point Explosion_Edgware
Explosion at Algate point Explosion_Algate
Explosion at Russell Square point Explosion_Russell_Sq
Explosion at Edgware ended the journey of
train from King-Cross to Edgware

Explosion_Edgware f Train_KingX_Edgware

Explosion at Algate ended the journey of train
from King-Cross to Algate

Explosion_Algate f Train_KingX_Algate

Explosion at Edgware ended the journey of
train from King-Cross to Russell Square

Explosion_Russell_Sq f Train_KingX_Russell_Sq

Train from King-Cross to Edgware traveled at
least for 5 time units

Length [Train_KingX_Edgware] ≥ 5

Train from King-Cross to Algate traveled at
least for 4 time units

Length [Train_KingX_Algate] ≥ 4

Train from King-Cross to Russell Square
traveled at least for 5 time units

Length [Train_KingX_Russell_Sq] ≥ 5

Once the temporal information has been input, Temper can be used to draw inferences about

the point of interest, i.e., the instant when one of the trains left King-Cross station for Edgware. We
run a query, using the query editor of Temper, for the time stamp of the point
“sTrain_KingX_Edgware” which represent the departure of the train from King-Cross station to
Edgware. Figure 4.2 shows the query in Temper and Figure 4.3 shows the result of the query.

Figure 4.1. Point Graph for London Bombing Scenario

Figure 4.2. Running a Query in Temper

Figure 4.3. Result of the Query

For the illustrated case, Temper cannot infer anything about the stamp of the event based on

the information provided so far (Figure 4.3). Suppose, further investigation reveals that the
explosion near Edgware took place between time units 840 and 845 (the explosion is considered to
be an instantaneous event so the range 840 to 845 does not represent duration but the uncertainty in
determining the actual occurrence time). Similarly the explosions near Algate and Russell Square
occurred between 845 and 850, and between 840 and 850 respectively. These times are not actual
clock times, rather their equivalent representation obtained by mapping the clock times on a real
number line. Table 4.2 shows how this information can be represented as PIL statements. These PIL
statements are added to the initial temporal model to get the Point Graph of Figure 4.4.

Once again, the query for the time stamp of the point “sTrain_KingX_Edgware” is executed.
As can be seen in Figure 4.5, Temper was able to determine an upper bound for the stamp of the
event, i.e., the train from King-Cross to Edgware must have left no later than 847.

Table 4.2: Additional PIL Statements for London Bombing Scenario

Temporal Information PIL Statements

Explosion at Edgware happened no earlier
than 840

Stamp [Explosion_Edgware] ≥ 840

Explosion at Edgware happened no later
than 852

Stamp [Explosion_ Edgware] ≤ 852

Explosion at Algate happened no earlier
than 845

Stamp [Explosion_Algate] ≥ 845

Explosion at Algate happened no later than
850

Stamp [Explosion_Algate] ≤ 850

Explosion at Russell Sq. happened no earlier
than 840

Stamp [Explosion_Russell_Sq] ≥ 840

Explosion at Russell Sq. happened no later
than 850

Stamp [Explosion_Russell_Sq] ≤ 850

Figure 4.4. Revised Point Graph for London Bombing Scenario

Figure 4.5. Result of the Query

As indicated earlier, the verification mechanism of Temper can detect the inconsistencies in
the available temporal information. The ability to detect inconsistency can be very useful, when the

information from different sources is combined into a single model of the situation. Suppose, we
input to Temper the information that the train from King-Cross to Edgware left at time instant 848
(represented by the PIL statement: Stamp[sTrain_KingX_Edgware] = 848). Clearly, this statement
is in conflict with the previously added PIL statements. Temper detects this inconsistency
(manifested in the form of inconsistent paths in the Point Graph, shown with an extra boundary
around each node in the path), and identifies the portion of the Point Graph that contains the
contradiction, as shown in Figure 4.6. Note the two inconsistent paths (from node with stamp 840 to
node with stamp 852): one path with length exactly equal to 12 units and the other path having a
length of at least 13 units. We fix this inconsistency by deleting the statement “Stamp
[sTrain_KingX_Edgware] = 848”.

Figure 4.7. Inconsistency in the Point Graph

Suppose that the investigators have also identified four suspects who were spotted entering
the Luton railway station at time instant 720. The investigators believe that these suspects took a
train from Luton to King-Cross station, and at King-Cross station they boarded the trains in which
the explosions took place. The next train from Luton to King-Cross departed at 748 and reached
King-Cross at time instant 842. Obviously, if these suspects were in fact the bombers, the train from
Luton should have reached King-Cross before any train in which there was an explosion left King-
Cross station. This information can be represented by PIL statements as given in Table 4.3 and the
resulting PG is shown in Figure 4.8. Note that Table 4.3 contains both qualitative and quantitative
PIL statements.

The query for the time stamp of the point “sTrain_KingX_Edgware” is executed one more
time. Figure 4.9 presents the result of the query; Temper was able to determine both an upper bound
and a lower bound for the stamp of the event, i.e., the train must have left King-Cross station after
time instant 842 and no later than 847. Note that the lower bound is strict. Thus by applying the
Point-Interval Logic to the analysis of available temporal information, we have identified the
bounds of the interval that we were interested in. The images need be analyzed for this interval
only; this improves the timeliness of the labor intensive image analysis process.

Table 4.3: Additional PIL Statements for London Bombing Scenario

Temporal Information PIL Statements

Train traveling from Luton to King-Cross
station

interval Train_Luton_KingX

Suspected spotted entering the Luton
station

point Suspects_Spotted_at_Luton

Suspected spotted at Luton at time instant
720

Stamp [Suspects_Spotted_at_Luton] = 720

Train from Luton to King-Cross left at
748

Stamp [sTrain_Luton_KingX] = 748

Train from Luton to King-Cross arrived
at 842

Stamp [eTrain_Luton_KingX] = 842

Train to Edgware left after the train from
Luton

eTrain_Luton_KingX < Train_KingX_Edgware

Train to Algate left after the train from
Luton

eTrain_Luton_KingX < Train_KingX_Algate

Train to Russell Sq. left after the train
from Luton

eTrain_Luton_KingX < Train_KingX_Russell_Sq

Figure 4.8. Revised Point Graph for London Bombing Scenario

Figure 4.9. Result of the Query

5 Conclusion

This paper presented an illustration of how the Point-Interval Logic (PIL) can be used to
create temporal models of situations arising in forensics and help investigators answer interesting
questions. The approach was demonstrated using Temper, which is a software implementation PIL,
and the London bombing incident as the scenario. We showed how Temper could be used to answer
meaningful questions during an investigation, in this case identifying a small interval for which the
images from close-circuit cameras should be analyzed. The reader may argue that the problem could
have been solved manually as well; that is true in the case of a small example like this one but in
general situations the set of temporal statement may be too large for a human to handle. This calls
for a computer-aided approach to such an analysis. In addition, Temper can combine temporal
information from multiple sources, detect inconsistencies and identify the specific source(s) with
inconsistent information. Temper can, therefore, be used to compare witness accounts of several
individuals on the same incident for overlaps and inconsistencies—another useful application for
forensics.

References

Allen, J. F. 1983. Maintaining Knowledge About Temporal Intervals. Communications of ACM
26:832-843.
Hamblin, C. L. (1972). Instants and Intervals. In F. Haber J. Fraser & G. Muller (eds.), The Study of
Time. New York: Springer Verlag, 324–328.
Ladkin, P. B., and Maddux, R. 1988. On binary constraint networks, Technical Report, KES.U.88.8,
Kestrel Institute, Palo Alto, Calif.
Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice-Hall.
Rauf, I., and Zaidi, A. K. (2002). A Temporal Programmer for Revising Temporal Models of
Discrete-Event Systems, in: Proc. of 2002 IEEE International Conference on Systems, Man, and
Cybernetics, Hemmamat, Tunisia.
Reisig, W. (1991). Petri Nets and Algebraic Specifications. Theoretical Computer Science 80(1): 1-
34 .
Zaidi, A. K. 1999. On Temporal Logic Programming Using Petri Nets. IEEE Transactions on
Systems, Man and Cybernetics, Part A, 29(3): 245-254.
Zaidi, A. K., and Levis, A. H. 2001. TEMPER: A Temporal Programmer for Time-sensitive Control
of Discrete-event Systems. IEEE Transaction on Systems, Man, and Cybernetic, 31(6):485-496.
Zaidi, A. K., and Wagenhals, L. W. 2006. Planning Temporal Events Using Point-Interval Logic.
Special Issue of Mathematical and Computer Modeling. Forthcoming.

