A Paper submitted to the
2006 Command and Control Research and Technology Symposium
"The State of the Art and the State of the Practice"

Executable Architectures for Modeling

Command and Control Processes
(C2 Modeling and Simulation Track)

Jason E. Lich* and Yun-Tung Lau, Ph.D
Science Applications International Corporation (SAIC)
5113 Leesburg Pike, Suite 200
McLean, VA 22041

* POC: Phone: (703) 575-4138
Fax: (703) 824-5836
E-mail: Jason.E.Lich@SAIC.COM

Abstract

This paper presents a high-level modeling and simulation (M&S) approach that is intended to be
used early in the systems engineering lifecycle. The approach leverages behavior modeling
techniques for designing executable function flows (i.e. functional simulation). It is built on
system architecture products (such as DoD Architecture Framework (DoDAF) products) and is
referred to as Executable Architecture (EA).

EA is designed to provide a higher-level view or abstraction of certain definable processes.
Besides being an effective way of disseminating architecture visions to a wide range of
stakeholders, EA provides the following benefits:

o Validation of the system architecture based on operational processes

¢ Insight into the military usefulness of the system

e Generation of first order, end-to-end performance metrics

e Discovery of hidden or overlooked requirements

e A way to document, validate, refine and communicate strategic objectives
e An early construct for trade analyses in the systems engineering space

The design and implementation of EAs was a supplemental technique incorporated into the Net-
Centric Enterprise Services (NCES) systems engineering effort. We have used NCES mission
threads and early capability specifications to design ‘As Is” and ‘To Be’ behavior models.

The primary intent of providing high-level ‘To Be’ models is to incorporate new system
(functionality) into existing processes. Once this is done, the “To Be’ models can be compared to a
validated ‘As Is’ models. This EA approach was applied to command and control mission threads
including Joint Air Tasking Order (JATO) and Time Sensitive Targeting (TST). We present
results from modeling the *As Is’ and ‘To Be’ Joint Close Air Support (JCAS) planning process
within the JCAS mission thread. The results demonstrated the effectiveness of introducing new
NCES capabilities (such as the Federated Search) to the ‘To Be” model.

Table of Contents

1 INTRODUGCTIONttt ettt sttt et et e et e en e e s beenbeeneesreenbeaneennens 5

2 DEFINING AND REFINING OPERATIONAL PROCESS........cccooiiiiiieie e 6
2.1 EXECULADIE ATCNITECTUIES.ttt bbbttt bbbttt sb e eneas 6
N N o] o] (0ol RN OPRPRRIN 6
2.3 EXAMPIE SUMMAIYooieiiiece ettt e st e e te e st e steeneeneesnaeaenneeneeas 7

3 APPROACH AND APPLIED EXAMPLE ... 7
3.1 Capturing “As IS” Operational ACHVITIES.ccieiiiieiieie e nreas 7
3.1.1 JCAS Example: Capturing the “AS 187 ... o ettt sttt e st s e seeseeenee e 7
3.1.2 JCAS Example: Process DECOMPOSITIONcviiieiiiieiecie st ste st te sttt ste e saesreenaesre s 8
3.2 Validate the *AS IS” AICNITECIUIE.ccieieiieie ettt e e sae e sre e e nes 10
3.3 ENngineering the “To Be’ DESIGN.......ccviiiiieieiie ettt te e sneens 11
3.3.1 Architecting New or MOdified ACLIVITIEScoiriiiieiii i 11
3.3.2 JCAS Example: DeSigning the “TO Be’ccui oottt st nne e 11
3.3.3 JCAS Example: Abstraction of MOGENccoeoiiii e 13
3.4 Refine the EXecutable ArChitECIUIE..........ooiii i e 13
3.5 ANalySiS and EVAIUALIONccoiiiiiiiiee e bbb e 14
3.5.1 JCAS Example: Simulation and Dat............cccccvveiuiiiiiiiieiie ettt 14
3.5.2 JCAS EXAMPIE: EVAIUALION ...ttt 15

A SUMMARY ittt et et e st et e e s e et e te e R ee s Rt e teaR e e Rt e teen e e eReenteeneeaReenneeneenren 16

5 REFERENCES AND ACRONYMS ... oottt 17

List of Figures

Figure 3.2 - JCAS Process (LEVEI 0)ccuiiiiiieieeieiieeee ettt 8
Figure 3.b - JCAS Process (Level 1), showing the details of activity JCAS.1in Level 0........... 9
Figure 3.c - JCAS Process (Level 2), showing the details of activity JCAS.1.3 in Level 1......... 9
Figure 3.d - JCAS Process (Level 3), showing the details of activity JCAS.1.3.6 in Level 2...10

Figure 3.e -*To Be’ Process for “Prepare COA Statements and Battle Graphics™.................. 12
Figure 3.f - Enlarged View of Part of The “To Be’” ProCeSS........cccccvverviieiieenesieseese e e 13
Figure 3.9 - Graphical Representation of SImulation............cccccooviiiniii e 15
Figure 3.h - Simulation OUtPUL (SAMPIE) ...cveeiieee e 15

Figure 3.i - Simulation Results of the completion times for the ‘Prepare COA Statements and
Battle Graphics’ fUNCLIONcooiiie e 16

1 Introduction

The Global Information Grid (GIG) is the globally interconnected, secured end-to-end set of
information capabilities, associated processes, and personnel for collecting, processing, storing,
disseminating, and managing information on demand to warfighters, policy makers, and support
personnel [1].

The GIG as a transformational vision aims at achieving information superiority in a network-
centric environment. It enables various systems to interoperate with each other. For the
warfighters, it brings “power to the edge” through a Task, Post, Process, Use (TPPU) process [2].
For the business and intelligence communities, it provides the infrastructure for effective
information gathering and collaborative operation.

Net-Centric Enterprise Services provides a set of Core Enterprise Services (CES) on the GIG to
support operational missions conducted by various communities of interest (Col) in the
warfighting, business, and intelligence domains. NCES is built on a service-oriented architecture
(SOA), which enables distributed, parallel information sharing, and dynamic collaboration on a
ubiquitous network [3]. This architecture defines a broad set of loosely coupled services with
well-defined interface definitions (such as those based on Web Service Definition Language, or
WSDL). These services provide end-user functionality over the network.

As part of the NCES architecture development, a number of operational mission threads were
analyzed. The analyses show the end-to-end traceability from operational activities, to system
functions and CES. They ensure that the NCES architecture does fulfill the needs of the domain
and Col users and provide value to them.

This paper presents a modeling approach for extending the NCES architecture through the use of
executable architectures (EAs). The approach uses detailed operational documentation such as
Tactics, Techniques and Procedure (TTP) publications, mission thread documents and a systems
engineering tool to collect, refine and execute process diagrams.

In the following sections, we first give an overview of steps in our behavior modeling
methodology, which uses Enhanced Function Flow Block Diagrams (EFFBDs) to capture
operational processes. We then give a step-by-step description of the approach, along with an
operational example (Joint Close Air Support), showing how the approach is applied.

2 Defining and Refining Operational Process

It can be argued that the accurate capture of operational activities and processes is the most
important step in the systems development process. Practically all requirements and system
functionality are gleaned from them.

Prior to the refinement of operational concepts into requirements and clearly definable system
functionality, organizations and the operational boundary must be defined. These two
characteristics provide the scope for the overall effort and offer the context for activity analysis
and architectural synthesis.

Once the scope of the operational architecture has been defined, the task to discover and document
more discrete, detailed operational activities can begin. This effort will provide the raw materials
needed for designing ‘As Is’ and ‘To Be’ processes which, in turn, make up the operational
architecture. Executable architectures — the focus of this paper — are operational architecture
models designed with executable simulation constructs.

2.1 Executable Architectures

Activity diagrams defined by methodologies such as the Unified Modeling Language (UML) or
activity models in DoDAF v.1 [4] are not executable. That is, they cannot be run in a simulation.
However, these methodologies can be extended through behavior modeling, which is a first-order
form of modeling and simulation. In particular, executable architectures extend the system
architecture using discrete event simulation techniques. Executable architectures provide an
effective means for validating functional designs and generating simulated metrics for the system.
The following sections describe our approach for developing such executable architectures.

2.2 Approach

Here we describe an overall approach for activity analysis and architectural synthesis that can be
used to derive operational behavior and develop executable architectures. The goal of this
approach is to extend the architectural process in order to promote the discovery of key activities
for fulfilling an operational mission. It is within these key activities that process improvement will
likely take place. Executable architectures allow us to perform a high level evaluation of such
improvements.

The steps used in this paper to develop executable architectures for command and control systems
are as follows:

1. Capture and refine the “‘As Is’ operational activities and nodes
2. Validate the “As Is’ operational architecture

3. Engineer the “To Be’ design

4. Model the desired behavior
5. Refine the executable architecture

6. Evaluate and analyze the results
2.3 Example Summary

This paper incorporates an example to demonstrate how our approach is applied. The example is
derived from the overall Joint Close Air Support (JCAS) mission thread and will specifically focus
on the planning phase of that mission thread. The intent of the example is to identify a JCAS
operational process area suitable for applying NCES capabilities. The following sections describe
each step of the approach, along with the JCAS example.

3 Approach and Applied Example

Our methodology adheres to two overarching concepts: functional decomposition (top-down
evaluation) and comparative analysis (*As Is” vs. “To Be’). Although this is by no means the only
approach to capturing, designing, and evaluating operational activities, it does provide a high level
context for the steps described below.

3.1 Capturing ‘As Is’ Operational Activities

Operational activities identified in documents such as mission threads and Tactics, Techniques and
Procedures (TTPs) provide a rich source of information for identifying discrete operational
activities. The activities captured in these documents are typically composite in nature and usually
require some level of derivation and/or refinement. Operational activities are performed by
operational nodes, which also need to be identified and refined.

It is important that each level of detail be captured during refinement so that top-down or bottom-
up traceability is preserved. From the architectural standpoint, this traceability is important in
order to ensure that requirements are satisfied, gaps are identified, and alternative solutions can be
analyzed at the earliest possible point in the systems engineering lifecycle. By adhering to this
goal, project risks can be mitigated, costs minimized and expectations managed.

3.1.1 JCAS Example: Capturing the ‘As Is’

The example below is representative of a top-down approach to identifying and documenting
JCAS operational activities. Using mission-centric documents such as TTPs and mission threads,
we develop several decompositions of the JCAS process [5, 6, 7, 8, 9 and 10]. Shown in Figure
3.a is the highest level process diagram (Level 0). This diagram is the root ‘As Is” JCAS process
documented and decomposed into more specific operational activities.

ficAs.1 Ficas.2 FicAs.3

JCAS

Prepare for JCAS Execute JCAS
Mission Mission

Plan JCAS Mission

Higher Level Evaluation of
Mission or Org—’g@ APD JCAS EO Objective
c.21 Cc.2.2
c2 .
Issue JCAS Issue Execution
Guidance Order

Figure 3.a - JCAS Process (Level 0)

Note: The above process notation uses that of an Enhanced Function Flow Block (EFFBD)
diagram. This diagram captures functions and processes such as operational activities. Unlike
many other forms of process diagrams, EFFBDs provide an executable construct for simulation.
Here boxes denote activities or functions, whereas ovals represent data. Double arrows denote
triggers; an activity or process cannot start until a trigger has been received. These diagrams are
the building blocks for executable architectures.

3.1.2 JCAS Example: Process Decomposition

The following diagrams are decompositions of the JCAS.1 activity block (Plan JCAS Mission) in
Figure 3.a. It should be stated that in documenting *As Is’ operational construct and nodes,
various levels of granularity can be attained, depending on the needs, the project constraints and/or
the level of effort. For the example here, the level of granularity is somewhat coarse. However,
our methodology and the EFFBDs can model granularity at any detailed level.

Figure 3.b shows activities in the JCAS planning phase. At this level the activities are not detailed
enough to begin our incorporation of NCES capabilities. Hence we continue to decompose them,
as shown in Figure 3.c and Figure 3.d.

Ficas.1.1 Ficas.1.2 Ficas.1.3 Ficas.1.4 Ficas.1.5 JCAS.2
Higher Level Receive > —P Develop Course P Analyze Course [—» Prepare for JCAS

Mission or Order Appol\;?sos?orgent/ Analyze Mission of Action of Action Produce Orders Mission

Figure 3.b - JCAS Process (Level 1), showing the details of activity JCAS.1 in
Level 0

Figure 3.c documents the typical steps involved in developing courses of action (JCAS.1.3 in
Figure 3.b) for a generalized JCAS mission. One observation here is the linear/serial
characteristic of these process diagrams. This is somewhat typical with higher level views that
define doctrinal philosophy and/or legacy operations. As process decomposition continues, many
more discrete activities and dynamic interactions are discovered.

JCAS.1.2 Ficas.1.3.1 JCAS.1.3.2 JCAS.1.3.3 JCAS.1.3.4 JCAS.1.3.5 FicAs.1.3.6 JCAS.1.4
Array Initial .
. > . > > Develop CAS > Develop Critical > Prepare COA >
Analyze Mission Analyze Relative Develop Options Forcgs to Scheme of CAS-related Statements and Analyze Course
Combat Power for Possible COAs Determine CAS

Maneuver Plans and Info Battle Graphics of Action

Requirements

Figure 3.c - JCAS Process (Level 2), showing the details of activity JCAS.1.3 in
Level 1

Figure 3.d depicts the decomposed activity “Prepare COA Statements and Battle Graphics”
(JCAS.1.3.6 in Figure 3.c). With activities at this level of detail, we will start to consider a ‘To
Be’ design. Prior to constructing the “To Be’ notional model, validation of the ‘As Is” should take
place. Optimally, this effort runs in parallel with the development of each level of details. The
next section describes the objectives and benefits of validation.

Figure 3.d - JCAS Process (Level 3), showing the details of activity JCAS.1.3.6
in Level 2

3.2 Validate the ‘As Is’ Architecture

One of the most overlooked activities in developing any type of process diagram, behavior model
and/or process representation such as Figure 3.d is that of validation. Validation of events,
activities, timing and other key characteristics is crucial for an accurate depiction of the operational
architecture. It also provides other benefits because it:

e Facilitates stakeholder buy-in

10

e Legitimizes the effort through Subject Matter Expert (SME) involvement
e Promotes stakeholder involvement, information flow and project goal dissemination
e Incorporates necessary detail that enhances high level design and decision making

The process of validation can be very time intensive but its importance should not be
underestimated.

3.3 Engineering the ‘To Be’ Design

Once the “As Is’ operational activities have been designed and validated, the elements of a “To Be’
operational architecture can be incorporated. The goal here is to evaluate different and/or new
means of performing an operational activity.

3.3.1 Architecting New or Modified Activities

Executable architectures provide a visually powerful method for incorporating change and
demonstrating utility. Not only do EAs provide a visual depiction of new or modified operational
activities, they also provide functional validation and raw data that can be captured and analyzed.
Tools that allow for this type of architectural development provide a means for disseminating
objectives, reflecting changes, managing expectations and involving stakeholders at varying levels
of expertise or authority. All of these benefits are extremely valuable in the overall engineering of
any system.

3.3.2 JCAS Example: Designing the ‘To Be’

Our example shows possible enhancements to the ‘As Is’ process in Figure 3.d with new
conceptual operational activities. These new activities improve the JCAS Planners’ ability to
perform his/her duties and expedite the planning process.

Figure 3.e shows the ‘To Be’ Process for “Prepare COA Statements and Battle Graphics”,
whereas Figure 3.f is an enlarged view of part of the ‘“To Be’ process with new operational
activities. The new activities appear inside the dotted ellipses.

11

nnnnnnnnnn

Figure 3.e -“To Be’ Process for “Prepare COA Statements and Battle
Graphics”

Figure 3.e incorporates three new operational activities, which utilize the following NCES
capabilities:

e Presence and Awareness — this capability provides online access to status information for
users in a global directory.

e Alert/Notification — this capability provides an alert service (messaging capability) that
can send alerts/notifications to a variety of applications such as email, instant messaging,
web browser, etc.

e Federated Search — this capability provides a way to search enterprise contents across
various search-enabled data sources and aggregate the results for the users.

Our goal is to determine if the “To Be’ process is meaningful and the NCES solution feasible. This
is where executable architectures become a valuable analytical and demonstrative tool.

12

4
7 [ToBe XAS.54 \
VA Ermpioy
— I

Fader stmd
Sagrch for \
/ Chirelaad Info
/ \
! \
! \
! \
! \
! 1
\TERETA : T ERETNE] | O3
- \ LI T P!
£ Flannee e e T) e e T e R
o 1 Coe vt SE e ot for Flars - I Priceiies of Fre
7N 1T F
[1
/ I |
(Rt N 1 |
for 7ar, Y 1 1
Sl
a 1 ——,
= i ()
(2= | I W=
) NEXTP I| g YT !
— f /) e s -
[treere [L0 B /
g o | [FEmng Y e /7
TR A AN ,
" N | ,
| 7 S0 -
| Il ~ T -
! I
! |
]
| s
{ 1% Do)
| "
|
|

Supported Commander

i
T
!
i
i
|
f
TaBe JOAS.2 /
N '] f
Ensye AT) F P
sz (ToBe) e / f
/ |
] i bl
! I

Figure 3.f - Enlarged View of Part of the ‘To Be’ Process

3.3.3 JCAS Example: Abstraction of Model
Common to all modeling techniques is a layer of abstraction that hides details from the users. The

executable architecture relies on abstraction to simplify models and identify the key issues (e.g.
utility and feasibility) that need to be resolved early in the systems engineering process. Resolving
such key issues related to operational concepts will help meet or exceed user expectations.

In our example, our goal is to determine the utility and feasibility of the new ‘To Be’ functions
(Presence and Awareness, Federated Search, and Alert/Notification) within the planning phase of
JCAS. For this purpose we model those three functions as ‘black boxes’, which are abstractions

that hide system specifics.
3.4 Refine the Executable Architecture

After the EFFBDs have been designed and validated, we can refine them before performing
simulation on the “‘As Is’ and “To Be’ models. This refinement process enhances the executable

architectures by incorporating:
e Timing information
e Network characteristics, if applicable

e Data characterizations

13

e Assigned probabilities
e Additional activity decomposition
e Scripts for control and dynamic behavior

The above attributes provide an additional level of detail to the behavior models and allows for a
more robust extension of the overall operational architecture. For simplicity, the example in this
paper will focus only on accurate process decomposition, timing and assigned probabilities.

3.5 Analysis and Evaluation

Eventually, behavior models are combined and refined to form executable architectures. They not
only show military utility at high levels, but also allow for a first look at characteristics such as
performance and trades.

Also, the impact of new functionalities/activities or the redesign of an operational node can impact
the overall operational architecture. It is not enough to simply identify this architectural change.
The change itself must be analyzed and evaluated in order to evaluate its impact on other activities,
manage risks, and evaluate trade offs and alternatives.

3.5.1 JCAS Example: Simulation and Data

The following example within the JCAS mission analyzes and evaluates the high level impact on
planning process timing as a result of adding new functionality to an existing process. This is a
very basic form of comparative analysis that can be done at the early stages of system design.

Figure 3.g graphically depicts the simulation of the JCAS ‘Prepare COA Statements and Battle
Graphics’ To Be activity, whereas Figure 3.h shows a sample output from the simulation. In
Figure 3.g the horizontal bars represent the time spans of active functions on the left. The
horizontal axis is time in minutes.

In our example (as in other modeling and simulation tools), discrete data items such as activity
start time, time of completion, wait time and data flow can be captured for analysis. Multiple runs
or executions can be performed in order to obtain statistical results.

14

—_
JCAS.1.3.6.1 Reaffirm Commanders Intent D
ToBe.JCAS.3.1 Use Presence and Awareness to Find SMEs ﬂ
ToBe.JCAS.3.2 Send Alert and/or Request |
JCAS.1.3.6.6 Establish Contact and Com with SMEs D
ToBe.JCAS.3.4 Employ Federated Search for CAS-related Info D

JCAS.1.3.6.13 Gather TACP Input for Plans l:l
JCAS.1.3.6.15 Accumulate ISR Data l:l

JCAS.1.3.6.16 Confirm Priorities of Fire D
JCAS.1.3.6.17 Decide if Battlefield Information can be Collected l:l
JCAS.1.3.6.19 Design Relay Structure of Battlefield Info l:l
JCAS.1.3.6.20 Communicate to Staff D

JCAS.1.3.6.21 Develop COA Statement and Sketches ‘ ‘

JCAS.1.3.6.26 Share CAS Overlays with BOS Elements D
JCAS.1.3.6.2 Feedback Loop: Evaluate COA against Objectives an... ﬂ

Deduce CCIRs for CAS Assets l:l

JCAS.1.3.6.7 Evaluate TACP Capabilities and Limitations l:l:l

JCAS.1.3.6.22 Disseminate Priorities of Fire to Commander and Staff
JCAS.1.3.6.23 Provide Initial Risk Assessment

JCAS.1.3.6.24 Provide Current Geospatial Products and Overlays
JCAS.1.3.6.25 Provide Initial JTARs

JCAS.1.3.6.8 Gather Relevant ISR Data

I

JCAS.1.3.6.9 Forward Relevant ISR Data

Figure 3.9 - Graphical Representation of Simulation

Construct
Tirne Ewert ID Process|D |Evert Name 1] Structure | Nurber MName Evert Execution Data
A0.37E225 1001 FROC{1.2) start 1.12.3.1 JCAS. 1265 |Locate Assigned TACF
2655021064 1D 12) FROC{12) finish 1.12.3.1 JCAS. 1265 |Locate Assigned TACF
20.44272495 || D 1E) FROC{1 1) finish 1.12.1.1 JCAS. 1262 Locate/Contact Intelligenc e Officer
20,7133 10017 FROC{12) finish 1.122.1 JCAS. 1264 Locate EW Spacialist
20.7132322 10015 FROC{1.3) finkh 1.1.2 Farallel
307133358 (auw) FROC{1) &nabled 1.13 JCAS.1.36.6 Establish Contact and Com with SMEs
307133358 (auw) FROC{1) waitingF orResources 1.1.3 JCAS.1.36.6 Establish Contact and Com with SMEs
20.7132322 1001 FROC{T) start 1.12 JCAS 366 Establish Contact and Com with SMEs
452811651 (awd) FROC{) quened 1132 JCAS.1.26.6 Establizh Contact and Com with SME=z Request ISR Data to Request ISR Data
452811651 (aw) FROC() quened 1.12 JCAS.1.26.6 Establizh Contact and Com with SMEz Request for TACP Input to Request for TACP Input
5. 2811661 | 1020 FROC{T) finish 1.12 JCAS 266 Establish Contact and Comwith SMEs
452811651 (aw) FROC(Z) wattingF orResources 1.3 JCAS.1.2.6.7 |Evaluate TACP Capabilities and Limitations
452811651 (awd) FROCZ) de queued 1.31 JCAS.1.2.6.7 |Evaluate TACP Capabilities and Limitations Request for TACP Input from | Request for TACFP Input
452811661 1D(G) FROC(3) start 1.21 JCAS 26T Evaluate TACF Capabilities and Limitations
452811651 (aw) FROCH wattingF orResources |1.41 JCAS.1.26.8 |Gather Relewant ISR Data
45.2811661 (aw) FROCH dequeued 1.41 JCAS. 1368 Gather Relewant ISR Data Request ISR Data from Request ISR Data
452811661 10(5) FROC(H start 1.41 JCAS.1.36.8 |Gather Relewant ISR Data
452511651 | 1D(21) FROC{T) start 1.14 Farallel
452511651 (aw) FROC(1.4) enabled 1.141.1 JCAS.1.5.6.10 | @ ather Objective Areas Datum
452511651 (aw) FROC(14) waitingF orResources 11,1411 JCAS.1.5.6.10 | @ ather Objective Areas Datum
45,281 1661 10020 PROC{14) start 1.1.4.1.1 JCAS.1.3.6.10 |3 ather Objective Areas Datum

Figure 3.h - Simulation Output (sample)

3.5.2 JCAS Example: Evaluation

Once a large enough set of sample data is collected, a more intensive evaluation of the new
functionality can begin. In our example, the completion times of the ‘Prepare COA Statements
and Battle Graphics’ function (JCAS.1.3.6 from Figure 3.c) are examined.

The results are shown in Figure 3.i. Here based on the average completion time computed from a
set of 15 simulations, the “To Be’ operational process (which utilizes NCES capabilities) on

15

average achieves a nearly four hour improvement over the 12-hour *As Is’ process. Note that
individual completion time varies because of the inherent randomness in the simulation model.
Thus a specific run (such as Run #1) of the “To Be’ model should not be compared with another
specific run (e.g. Run #3) of the*As Is” model.

Joint Close Air Support
Functional Simulation: Prepare COA Statements and Battle Graphics
‘As Is' Totals (sample size = 15) "To Be' Totals (sample size = 15)
total time (minutes) total time (minutes)
RUN

1 673.92 605.94
2 791.74 563.81
3 463.30 575.62
4 933.79 298.66
5 364.93 434.66
6 715.84 628.30
7 660.93 385.47
8 414.01 270.56
9 1068.69 640.92
10 680.23 830.90
11 843.52 486.15
12 827.18 317.18
13 685.76 765.22
14 882.17 363.89
15 1085.49 483.10
Averaged Total Elapsed Time for ~ Averaged Total Elapsed Time for

Function (minutes): Function (minutes):
739.43 510.02

Figure 3.i - Simulation Results of the completion times for the ‘Prepare COA
Statements and Battle Graphics’ function

The improvement in completion clearly shows the effectiveness of utilizing NCES capabilities in
these operational activities.

4 Summary

We have presented an end-to-end approach for developing executable architectures. The approach
involves functional decomposition and enables quantitative and comparative analysis of the ‘As Is’
and ‘To Be’ operational processes.

We have applied executable architectures to the JCAS mission planning phase to show the
feasibility and military utility of new functionality provided by Net-Centric Enterprise Services.

16

For the specific example of the ‘Prepare COA Statements and Battle Graphics’ activity, we have
shown that the ‘As Is” process can be shortened by 33% on average.

As part of a requirement definition process, executable architectures help solidify an accurate and
complete representation of operational needs and show viability and utility of new functionality.
Executable architectures and the associated high-level evaluation is useful in identifying potential
issues, disseminating visions and project goals, capturing first-order data, involving subject matter
experts and stakeholders, and collecting vital information on mission operations.

Because of these benefits, we view executable architectures as a useful effort especially in the
early phase of a systems engineering process. The sooner such efforts occur in the system
engineering lifecycle, the greater the chance a solution is developed that fully satisfies the needs of
the user community.

5 References and Acronyms

1. Global Information Grid Capstone Requirements Document, JROCM 134-01, August 2001
<https://jdl.jwfc.jfcom.mil>.

2. Net-Centric Operations and Warfare (NCOW) Reference Model, Draft version 1.1, October,
2004.

3. Capability Development Document (CDD) for Net-Centric Enterprise Services (NCES),

Draft version 0.9.2, November 2005.

DoD Architecture Framework (DoDAF) Version 1.0 < http://www.defenselink.mil/nii/doc/>.

Joint Close Air Support Joint Mission Thread (Draft), OASD(NII), October 2004 (FOUO).

Joint Publication 3-30, Command and Control for Joint Air Operations, 5 June 2003.

Joint Publication 3-09.3, Joint Tactics, Techniques and Procedures for Close Air Support, 3
September 2003.

Capstone Requirements Document for Close Air Support, JROCM 067-02, 6 May 2002.

9. Beyond Close Air Support, Forging a New Air-Ground Partnership, RAND Research Brief,
March 2005, <www.rand.org/publications/MG/MG301>.

10. Joint Staff Officers Guide AFSC Pub 1, Crisis Action Planning, January 1997,

<http://www.fas.org/man/dod-101/dod/docs/publ_97/Chap7.html>

N o gk

oo

The acronyms used in this paper are listed below.

APD Air Planning Document

BOS Battlefield Operating Systems

C2 Command and Control

CCIR Commander’s Critical Information Requirements
CES Core Enterprise Services

COA Course of Action

Col Community of Interest

17

DoD Department of Defense

DoDAF DoD Architecture Framework

EA Executable Architecture

EAM Executable Architecture Model
EFFBD Enhanced Function Flow Block Diagram
GIG Global Information Grid

GIG ES GIG Enterprise Service

IRA Initial Risk Assessment

ISR Intelligence, Surveillance and Reconnaissance
JATO Joint Air Tasking Order

JCAS Joint Close Air Support

JFC Joint Force Command

JTAR Joint Tactical Air strike Request
M&S Modeling and Simulation

NCES Net-Centric Enterprise Services
NCOW Net-Centric Operations and Warfare
SOA Service-Oriented Architecture
TACP Tactical Air Control Party

TAI Target Areas of Interest

TPPU Task, Post, Process, Use

TST Time-Sensitive Targeting

TTP Tactics, Techniques and Procedures
UML Unified Modeling Language

18

	Introduction
	Defining and Refining Operational Process
	Executable Architectures
	Approach
	Example Summary

	Approach and Applied Example
	Capturing ‘As Is’ Operational Activities
	JCAS Example: Capturing the ‘As Is’
	JCAS Example: Process Decomposition

	Validate the ‘As Is’ Architecture
	Engineering the ‘To Be’ Design
	Architecting New or Modified Activities
	JCAS Example: Designing the ‘To Be’
	JCAS Example: Abstraction of Model

	Refine the Executable Architecture
	Analysis and Evaluation
	JCAS Example: Simulation and Data
	JCAS Example: Evaluation

	Summary
	References and Acronyms

