
2006 CCRTS
THE STATE OF THE ART AND THE STATE OF PRACTICE

Title of Paper: A Flexible Distributed Scheduling Scheme

for Dynamic ESG Environments

Student Paper Submission
(Suggested Track: Modeling and Simulation)

Feili Yu*1

E-mail: yu02001@engr.uconn.edu

Sui Ruan*1

E-mail: sruan@aptima.com

Meirina Candra*1

E-mail: meirina@engr.uconn.edu

David Kleinman2

E-mail: kleinman@nps.navy.mil

Krishna R. Pattipati3

University of Connecticut,
Dept. Of Electrical and Computer Engineering

371 Fairfield Road, Unit 1157
Storrs, CT 06269-1157

Fax: 860-486-5585
Phone: 860-486-2890

E-mail: krishna@engr.uconn.edu

This work is supported by the Office of Naval Research under Contract #N00014-00-1-0101 and
#N00014-06-1-080

1. Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT
06269-2155, USA.

2. C4I Academic Group, Naval Post-graduate School, 589 Dyer Road, Monterey, CA
93943, USA.

3. Correspondence: krishna@engr.uconn.edu
*. Ph.D. Student

mailto:yu02001@engr.uconn.edu
mailto:sruan@aptima.com
mailto:meirina@engr.uconn.edu
mailto:kleinman@nps.navy.mil
mailto:krishna@engr.uconn.edu
mailto:krishna@engr.uconn.edu

1

A Flexible Distributed Scheduling Scheme for
Dynamic ESG Environments

Feili Yu, Sui Ruan, Meirina Candra, David Kleinman, and Krishna Pattipati

Abstract— Based on the holonic C2 organizational control
architecture (OCA) that models a C2 organization as an inte-
gration of multi-level, de-centralized decision making networks,
we present a holonic multi-objective evolutionary algorithm
(MOEA) that produces robust and flexible distributed schedules
within a dynamic ESG mission environment, such as asset
break down, appearance of new events, node failures, etc. The
lower level units generate multiple local schedules based on
local resources, constraints, and interests (objectives). These
local schedules correspond to a schedule pool, from which the
Operational Unit can assemble a set of ranked L−Neighboring
global schedules according to global objectives, and the actual
schedule can shift among different stages of alternative schedules
in order to adapt to environmental changes. Global feasibility
is ensured at the upper level operational unit, while local
autonomies are maintained among lower tactical level units due to
the characteristics of the proposed holonic organizational control
architecture (OCA). The advantage of this scheduling scheme
is that it generates multiple neighboring candidate schedules,
which avoids the costly replanning process and also minimizes
the adaptation cost.

Keywords: command and control (C2), decision
maker (DM), expeditionary strike group (ESG),
multi-objective evolutionary algorithm (MOEA),
operational level control (OLC), organizational con-
trol architecture (OCA), Pareto-optimal solution,
tactical level control (TLC), tactical level control
unit (TU), task completion accuracy (TCA).

I. INTRODUCTION

A. Motivation

An Expeditionary Strike Group (ESG) is a new
US Navy task force that integrates amphibious war-
ships and marines with a tomahawk missile-capable
cruiser and destroyer, a frigate and fast-attack sub-
marine. ESGs enhance naval expeditionary force
survivability by transforming a previously vulner-
able, yet highly valuable, asset into a more com-
bat credible force package [1]. The current plan-
ning/scheduling schemes may have worked well in
times when missions are deterministic, resources

are ample, and operations are conducted within
limited areas, i.e., a static environment. As we look
towards a dynamic environment of the future, plan-
ning/scheduling scheme should be robust and adap-
tive. The design of future ESG planning/scheduling
scheme need to consider the following issues:

1) Scarcity of Resources: In general, decision-
makers are provided with limited resources
with which to accomplish their objectives. The
capability of resources may degrade after each
operation (i. e., require maintenance) and some
assets may break down due to incidents. This
makes the distribution of resources among
ESG units and the assignment of these re-
sources that enables task processing an impor-
tant element of ESG planning/scheduling. For
example, instead of statically assigning assets
to a certain decision maker, one can establish
an agile planning/scheduling scheme so that
all entities in the ESG can share the limited
resources dynamically to meet the changing
mission needs. This is also one way to address
the ’revolving door’ problem associated with
assets.

2) Concurrent Operations: Conducting multiple
concurrent operations that span the entire spec-
trum of missions is an integral part of an ESG.
A complicating factor is that ESGs are being
tasked with many unanticipated operations that
are not planned for or scheduled a priori.
The requirement to perform these concurrent
operations is creating situations where com-

2

manders are performing novel tasks, using new
processes and, in some cases, using assets in
new ways. An extremely adaptive and dynamic
planning/scheduling scheme is needed to keep
track of all these concurrent operations.

3) Dispersed Operations: ESG’s assets are likely
to be dispersed geographically to some loca-
tion outside the immediate battle-space. The
planning/scheduling scheme of distributing in-
formation, resources, and activities among
ESG units must be set up to achieve timely
mission processing, while efficiently utilizing
the assets. At the same time, ESG is required
to detach assets to support other commanders,
and to assume control of additional assets from
coalition partners. This also requires an agile
planning/scheduling scheme.

4) Local Priorities versus Global Mission Ob-

jectives: The new planning/scheduling scheme
should be able to resolve conflicts among
local priorities and over-all mission objec-
tives. One abstract solution is to design a
planning/scheduling scheme such that global
control can be coupled with local priorities.
The satisfaction of global objectives can ei-
ther be achieved by exchange of meta-level
information, or by command via a higher level
decision maker.

B. Multi-Objective Optimization and Evolutionary Algorithms
(MOEAs)

In a single-objective optimization problem, the
primary focus is on finding a global optimum,
representing the best objective function value. How-
ever, real world optimization problems often involve
more than one objective, which may be conflicting
with each other, and, thus, no global optimum can
be found. Evolutionary algorithms are well-suited to
multi-objective optimization problems, because they

are based on biological processes that are inherently
multi-objective [7]. MOEAs have been extensively
studied during the past decade. These are catego-
rized into three distinct classes depending on fitness
functions and selection schemes. They are crite-

rion selection, aggregation selection, and Pareto

selection. Criterion selection approaches, such as
vector evaluated genetic algorithm (V EGA) [8],
produce the offsprings from the sub-populations that
are selected from a global population by focusing
on each objective. Aggregation selection methods,
represented by the work in [9], use a weighted sum
of fitness values from different objectives. Pareto
selection approaches are the most popular in the
field of MOEAs. They are represented by the fol-
lowing: Pareto Ranking [29], Niched Pareto Genetic
Algorithm (NPGA) [11], Non-dominated Sorting
Genetic Algorithm (NSGA) [10], NSGAII [12],
Strength Pareto Evolutionary Algorithm (SPEA)
[13], and Pareto Archive Evolutionary Strategy
(PAES) [14]. For a comprehensive survey of
MOEAs, the reader is referred to [15] and [16].

Pareto-based MOEAs focus on finding a set of
promising solutions (Pareto optima), from which
a solution can be chosen, if it satisfies certain
requirements. A solution, s̄1, is said to be a Pareto

optimum, if it is not dominated by any other feasible
solution, say s̄2, that is, the solution s̄1 is not worse
than s̄2 in all objectives and better than s̄2 in at least
one objective. In other words, solution s̄1 is Pareto

non-dominated by solution s̄2. However, searching
for Pareto optimum usually gives more than one
solution, which comprise a boundary that is called
Pareto front. The basic idea in MOEAs is to find
the set of chromosomes comprising a Pareto front in
the population that are Pareto non-dominated by the
rest of the population. A bi-objective minimization
problem, illustrated in Fig. 1, shows that individuals
1, 2, 3 are non-dominated points, which comprise

3

the Pareto front. The individual Sk (7) is dominated
by 2, 4, 5 and it dominates 9, 10. Several techniques,
widely applied in the field of MOEAs, that are
different from those in single objective optimization
algorithms, are the following:

• Fitness assignment is an important component
that guides multi-dimensional search toward
the Pareto front. Pareto ranking, domination
counting, and non-dominated sorting are widely
used in MOEAs. Although variations do ex-
ist, the common element of these methods is
that they are all based on domination or non-
domination counting, which introduces the issue
of computational efficiency. The work in [6]
proposed methodologies to reduce computa-
tional demands for some published MOEAs.

• Elitism is an archive of the Pareto optimal
solutions found so far during search. Zitzler et

al. [17] found that elitism is an important factor
in improving evolutionary multi-objective opti-
mization. However, how best to utilize elitism

(e. g., how elitism participates in selecting the
next generation) is still an open research topic.

• Niching and fitness sharing are the two mech-
anisms that ensure diversity in a population.
Between the two solutions with the same Pareto
rank, the one that resides in a sparsely popu-
lated search-space is preferred. This is called
niching. The fitness sharing usually involves a
sharing parameter σshare denoting the largest
distance metric, with which a user can decide
if any two solutions share each other’s fitness.
Although Niching and fitness sharing can main-
tain sustainable diversity in a population, they
introduce higher computational complexity to
those MOEAs that apply them. Some recent
algorithms, such as NSGA − II [12], have
partially alleviated the above problems.

1

3

2

6

5

4

9

8

7
(Sk)

10

Pareto Front

Dominated Individuals

Non-dominated Individuals

O1

O2Objective Values for O2

O
bjective V

alues for O
1

Fig. 1. Example of a bi-objective Pareto fitness domain

C. Flexible and Distributed Scheduling with EAs

In a military battle field, it is vital for commanders
to find the right task execution sequence (schedule),
and associate the schedule with the right set of
assets and decision makers. Furthermore, since the
task execution environment is dynamic and un-
certain, the proposed schedule should be able to
compensate for such changes or uncertainties, i. e.,
the schedule should be robust and/or adaptive. In
an uncertain environment, the objective functions
and the constraints of an optimization problem
may change over time. Consequently, the optimal
solutions may change as well.

One of the ways to react to an environmental
change is to restart the optimization process by
considering the changes to objective functions, con-
straints, or optimization parameters. However, this
approach is time consuming and a rapid response to
an emergent change is crucial in military operations.
A speedup re-optimization scheme needs to take
advantage of previous optimization information by
assuming that the new optimal solution is close
to the old one in the search space. For example,
in [18] and [19], corresponding genes are inserted
into the chromosome when a new task arrives.

4

Some other EAs use variable mutation rates to
shift search area to an area near the new optimal
solution after a change occurs, such as those in [20]
and [21]. Both of these two types of EAs have
a shortcoming, in that, if the amount of changes
is large, the EA may not converge due to the
frequent discontinuity in the optimization process.
Another alternative is the use of previously stored
information from past generations to match different
environments corresponding to various changes as
in [22] and [23]. In recent years, MOEAs are used
in solving dynamic Pareto optimization problems.
Yamasaki [27] proposed a dynamic GA to cope
with changing environments. Farina et.al [24] for-
mulated dynamic multi-objective optimization prob-
lems and proposed several test cases. An Artificial
Life (ALife) inspired MOEA is proposed in [25]
to ensure the approximation of Pareto-optimal front
in the presence of unpredictable parameter changes.
Bui et.al [26] solved single-objective optimization
problems using NSGA− II by adding an artificial
objective. These works reveal that there is a very
close relationship between MOEAs and uncertain
environments.

In our previous work in [2], we proposed a
holonic organizational control architecture, in which
resources and controls are distributed among sev-
eral agents, i.e., several tactical level control units
(TUs) and an operational unit. The consequence of
distribution is that each unit forms its own objec-
tives and schedules that might conflict with others
during the process of scheduling. In this paper, we
incorporate multi-objective optimization techniques
mentioned above to seek a set of feasible sched-
ules that adapt to environmental disturbances. The
lower level units generate multiple local schedules
based on local resources, constraints, and interests
(objectives). These local schedules correspond to a
schedule pool, from which the Operational Unit can

assemble a set of ranked L − Neighboring global
schedules according to global objectives, and the
actual schedule can shift among different stages of
alternative schedules in order to adapt to environ-
mental changes. Global feasibility is ensured at the
upper level operational unit, while local autonomies
are maintained among lower tactical level units
due to the characteristics of the proposed holonic
organizational control architecture (OCA).

D. Organization and Scope of the paper

The focus of this paper is to propose an agile
scheduling scheme to account for mission and or-
ganizational arising in dynamic ESG mission envi-
ronments. In section II, a multi-objective model for
flexible holonic scheduling is presented, where the
processes of multi-objective problem formulation,
co-operative mechanism, and dynamics of the model
are discussed. In section III, flexible scheduling
solution approaches, employing multi-objective op-
timization techniques at the operational and tactical
levels, are described. An illustrative example and
numerical simulation are given in section IV. Fi-
nally, the paper concludes with a summary and open
topics that need to be explored in the future.

II. MULTI-OBJECTIVE MODEL FOR DISTRIBUTED
HOLONIC SCHEDULING

The multi-objective model for the C2 OCA ap-
plication includes tasks, assets, task precedence
constraints, planning and scheduling parameters,
multi-level objectives, co-operative mechanism, and
dynamics of the model.

A. Tasks

A task, derived from mission decomposition, is
an activity that entails the use of relevant resources
(provided by assets), and is carried out by one
or more decision makers (DMs) to accomplish the
mission objectives. In our model, we characterize a

5

task Ti (i = 1, ..., I , where I is the number of tasks)
by specifying the following basic attributes:

• Task start time ts,i;
• Task processing time tp,i;
• Task finish time tf,i;
• Geographical location of task (xt,i, yt,i);
• Task resource requirement vector Rt,i =

[ri,1, . . . , ri,l, . . . , ri,L], where ri,l is the number
of units of resource l (l = 1, . . . , L, where L

is the number of resource types) required for
successful processing of task Ti.

B. Assets

An asset (or platform) is a physical entity with
specified resource capabilities, range of operation,
and velocity that is used to process tasks. For each
asset Pj(j = 1, ..., J , where J is the number of
assets), we define the basic attributes as follows:

• Initial geographical location of asset (xp,j, yp,j);
• Asset resource capability vector Rp,j =

[rj,1, . . . , rj,l, . . . , rj,L], where rj,l is the number
of units of resource l possessed by asset Pj;

• Asset’s maximum velocity vj .

C. Task Precedence Constraints

The Operational Decision maker (OPDM) in
the Operational Level Control (OLC) architecture
devises a plan for the mission that includes the
processing of tasks [2]. The task decomposition
knowledge is often held by the OPDM , but in
some cases, it might be necessary to negotiate with
other DMs before the criteria for decomposition
are established. We define the set of immediate
successor tasks of task Ti as Is

i . Then, the task
precedence constraints are given by

ts,i′ ≥ tf,i + ttimeout, withTi′ ∈ Is
i (1)

where ttimeout is the required ‘timeout’ between task
Ti and its succeeding tasks.

D. Planning and Scheduling Parameters

The planning DM (PLDM) in the OLC archi-
tecture is responsible for addressing the following
planning issues:

• The number of tactical level control units
(TUs), M ;

• Task to TU assignment, which is given by

gi,m =

1, if task Ti is assigned to TU m;
0, otherwise.

(2)
• Asset to TU allocation, which is given by

qj,m =

1, if asset Pj is allocated to TU m;
0, otherwise.

(3)

We define the design parameter, the optimal or
near optimal asset to task scheduling variable, as
follows:

hi,j(b, c) =

1, if asset Pj is allocated to task Ti

during time interval [b, c];
0, otherwise.

(4)

E. Multi-level Objectives, Co-operative Mechanism and Dy-
namics of the Model

The holonic agent network is a system composed
of a population of autonomous DM units, which
cooperate with each other to achieve common ob-
jectives, while, at the same time, each DM unit
pursues its own individual objectives. The objec-
tives can be specified at two levels: Tactical Level
Objectives and Operational Level Objectives.

1) Tactical Level Objectives: At the tactical level, each
tactical unit (TU) seeks to fulfil the tasks assigned
to it with the highest task completion accuracy
(TCA). In addition, each TU seeks to reduce its
task execution cost (TEC) as much as possible. The
expressions for TCA and for TEC are given below.

• Maximize Task Completion Accuracy (TCA)

at TLC

6

We adopt the concept of task accuracy from
[3]. When all resources required by task Ti

are available, the accuracy of task completion
equals 100%. However, in realistic applications,
where the resources are scarce, an organization
may wish to reduce the task execution accuracy
in order to achieve better timeliness. In order to
accommodate timeliness-accuracy trade-off, the
task accuracy for a task Ti executed by TU m

is defined as

Ai,m =

(
1

L̃

L∑

l=1

ai,l · gi,m

)
(5)

where L̃ is the number of resource requirements

of task Ti over all types, i.e., L̃ =
L∑

l=1
ri,l, ai,l

is the task accuracy for Ti in terms of each
resource type l, which identifies the percent-
age of satisfied resources for the corresponding
resource type and is evaluated via ai,l =

r̃i,l

ri,l
,

where r̃i,l is the number of resources of type l

actually used to process task Ti :

r̃i,l = min

ri,l,

∑

Pj∈P m

hi,j(b, c) · rj,l

 (6)

where Pm is the asset set allocated to TU m,
and we assume that the duration of Ti is from
time index b to time index c. We can see that the
task accuracy of a task Ti, Ai,m, is the average
task accuracy over all L̃ resource types.
The TCA maximization problem is formulated
as follows:

max
hi,j(b,c)

1

Im

Im∑

i=1

Ai,m (7)

subject to (1). where Im is the number of tasks
assigned to TUm.

• Minimize Task Execution Cost (TEC)

While scheduling the execution of one or more
tasks, TU would prefer to send minimum set
of assets, if a certain TCA criterion is satisfied.
This is due to the following two reasons in our

problem: firstly, the more assets are used to
execute tasks, the higher the travel and coor-
dination costs would be; secondly, if too many
assets are allocated to a task, there will not be
enough assets to execute other concurrent tasks.
We define the travel (transfer) time of assets
when executing task Ti as the Task Execution
Cost (TEC), which is given by

Ci,m =
∑

Pj∈P m

Tri,j · hi,j(b, c) (8)

where

Tri,j =

√
(xp,j − xt,i)2 + (yp,j − yt,i)2

vj

(9)

The TEC optimization problem can be formal-
ized as

min
hi,j(b,c)

Im∑

i=1

Ci,m (10)

subject to (1).

In our model, the two objectives are somewhat
conflicting. If task execution cost is reduced, it may
result in a decrease in task completion accuracy.
On the other hand, higher task completion accuracy
may increase the task execution cost. The multiple
objective optimization problem is to find a set of
trade-offs (Pareto front) between these two objec-
tives.

2) Co-operative Mechanism: Co-operative mechanism
provides a means to communicate and coordinate
among TUs when executing a task. Information
and commands are exchanged through negotiation
protocols. If a TU cannot complete a task assigned
to it using local resources/expertise with a certain
task completion accuracy (TCA), it may find other
willing TUs (coordinators) with the necessary re-
sources/expertise to coordinate on the task. The
schedule of certain assets executing a common
task can be negotiated among different TUs. The
co-operation is typically achieved via a constraint
satisfaction mechanism, that is, to find a set of

7

assets that satisfy the timing constraints of the task.
The procedures for this mechanism are (i) task an-

nouncement; (ii) contracting; and (iii) coordinated

processing.

• Task Announcement

The set of tasks assigned to TUm that have
not satisfied their TCA requirements after TLC

scheduling are given by

T̂m = {Ti|Ai,m < α, i ∈ Im} (11)

where α is a constant denoting the TCA thresh-
old. The TUm requires coordination with other
units for processing the tasks in T̂m.

• Contracting

The willing TUs are those TUs that (a) possess
the required resources/expertise; and (b) own
assets that satisfy the timing restrictions on
the coordinated tasks. For a task Ti ∈ T̂m,
the candidate set of assets that can satisfy the
requirement (a) is given by

P̂ = {Pj|rj,l · ri,l > 0; l = 1, . . . , L;

rj,l ∈ Rp,j; ri,l ∈ Rt,i}
(12)

The requirement (b) is introduced in (14) as
a constraint. The objective for contracting is
given by

max
hi,j(b,c)

1

|T̂m|
|T̂m|∑

i=1

A
′
i,m; Ti ∈ T̂m, Pj ∈ P̂ (13)

subject to

hj,i(b, c) = 0 Ti ∈ T̂m,

b = ts,i − Tri,j, Pj ∈ P̂ ,

c = tf,i + Tri,j,

(14)

where A
′
i,m is the TCA of Ti requiring more

than one TU , and Tri,j is the transfer time of
asset j assigned to task Ti, which is given by
(9).

• Coordinated Processing

Since some tasks require more than one TU to

process, we redefine the task accuracy for task
Ti as

Ai =

Ai,m, if Ti /∈ T̂m;

A
′
i,m, if Ti ∈ T̂m.

(15)

3) Operational Level Objectives: At the operational
level, the DMs need to integrate multiple dis-
tributed schedules (denoted as S) from each TU to
achieve the following two objectives: (a) complete
the mission as rapidly as possible; (b) complete the
mission with maximum degree of accomplishment.
The mission accomplishment is modeled by the
overall task completion accuracy, and the mission
duration is represented by the makespan of the mis-
sion, respectively. The two objectives are formalized
as follows:

• Maximize Task Completion Accuracy (TCA)

The overall task completion accuracy at the
operational level (TCA) is the mean value of
the task completion accuracies. The resulting
TCA optimization problem is given by

max
S

A = max
S

1

I

I∑

i=1

Ai (16)

subject to (1).
• Minimize the Makespan of Mission Execution

We assume that the mission start time (tStart) is
0 and mission end time is tEnd. Minimization
of the makespan is equivalent to minimizing the
tEnd. Since tasks are parallel and are distributed
among TUs, the makespan is calculated by
assembling the schedule from each TU . How-
ever, these distributed schedules may conflict
with each other and violate the task precedence
constraints. Therefore, a global de-confliction
procedure will be followed before the makespan
can be calculated. The problem is thus given by

min
S

tEnd (17)

subject to (1).

8

4) Dynamics of the model: To make this model more
realistic, we enhance it by adding two dynamic
components: (a) dynamic asset capability, and
(b) dynamic task processing time. The latter is a
function of task accuracy. We assume that the asset
resource capability can be restored after the asset
returns to its base after task execution; however,
it will not reach its full capability for the next
operation because of the weariness of crew and
“wear out” of equipment. Thus, for the renewed
resource type l, we have

rrenewed
j,l = rj,l · (1− pl · r̃j,l

rj,l

) (18)

where pl is the coefficient of weariness for resource
type l, rj,l is the full capability of resource type
l, and r̃j,l is the actual number of resource type
l used to process previous tasks. For example, if
the resource of type l is totally used up, then the
renewed resource capability of this resource type is
rj,l · (1− pl).

We define the dynamic task processing time for
task Ti as

tp,i =
1

nρ
i · cβ

p,i

· (eAγ
i − 1) (19)

where ni =
∑

j hi,j(b, c) is the number of assets
allocated to process task Ti during the time interval
[b, c]; cp,i is the asset capability for task Ti; ρ, β,
and γ are constants. The relationship among task
processing time, TCA, and the asset capability is
illustrated in Fig. 2, and the relationship among
task processing time, TCA, and the number of
coordinating assets is shown in Fig. 3.

III. SOLUTION METHODOLOGY FOR FLEXIBLE
DISTRIBUTED HOLONIC SCHEDULING

A holonic scheduling approach differs from a con-
ventional one primarily in terms of the distribution
of computation and decision making functions, and
the interactive (and largely co-operative) nature of
the communication between the DMs.The holonic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

T
as

k
P

ro
ce

ss
in

g
T

im
e

Task Completion Accuracy (TCA)

Asset Capacity 20%
Asset Capacity 50%
Asset Capacity 100%

Fig. 2. Task processing time as a function of TCA for assets with different
capabilities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
as

k
P

ro
ce

ss
in

g
T

im
e

Task Completion Accuracy (TCA)

Num. of Asset =1
Num. of Asset =2
Num. of Asset =3

Fig. 3. Task processing time as a function of TCA for different number of
coordinating assets

scheduling process involves interactive coordination
and communication among DMs from both the
OLC and the TLC levels, i.e. the COODM in
the OLC architecture and the SCDM in each TU

[2]. Accordingly, the holonic scheduling is com-
prised of five elements: central plan decomposition,

tactical level scheduling, co-operative negotiation,

operational level schedule building, and interactive

scheduling.

9

Algorithm for calculating task priority

While i 6= number of total tasks, do
Ti → Priority = 1
If Ti has precedent tasks {Tk}

Ti → Priority = max{Tk → Priority}+ 1
i = i + 1

Else
i = i + 1

end if
end do;

Fig. 4. Algorithm for calculating task priority

A. Central Plan Decomposition (Step 1)

Central plan decomposition is carried out by the
COODM in the OLC architecture. The COODM

first decomposes the central plan and the task prece-
dence graph, and then distributes them among the
TUs. The task precedence graph is decomposed
based on task priority, that is, firstly, it calculates the
priority value of each task (the algorithm is shown
in Fig. 7); secondly, it orders the tasks according
to their priority values (shown in Fig. 11); finally,
it distributes the tasks and task priority information
among the TUs.

B. Tactical level scheduling (Step 2)

Tactical level scheduling is a distributed process,
in which each TU makes the scheduling deci-
sions based on local information, local objectives,
and constraints. As mentioned before, the multiple
objectives for each TU are: (a) minimizing task
execution cost; and (b) maximizing task comple-
tion accuracy (TCA). A multi-objective solution
approach based on NSGA− II [12] is proposed to
solve the scheduling problem. Our improvements to
the NSGA− II include a fast sorting scheme, and
a Pareto-based scale-independent fitness function.
This fitness function is also used in [28]. The
procedures are described as follows.

1) Chromosome Representation: The key problem is
to find an appropriate assignment of assets to tasks
within each TU during a certain time interval, i.e.,

hi,j(b, c). This is a combinatorial optimization prob-
lem. Different assignments may result in different
task completion accuracy (TCA) and task execution
cost (TEC). Each task is allocated a certain number
(may be zero) of candidate assets after a pre-
selection of candidate assets is performed. Based on
that, a binary chromosome contains Qt = Im · Jm

genes, where Im and Jm are the number of tasks
and the number of assets controlled by TU m,
respectively. Each gene represents the assignment
status of each asset to each task. If its value is ’1’,
it indicates that the asset has been allocated to this
task. For example, for a three-task and three-asset
problem, a chromosome taking the form [(1 0 0),
(1 0 1), (0 1 0)] indicates that P1 is allocated to
T1; T2 will be processed by P1 and P3; and P2 will
execute T3.

2) Fitness Function: For a solution si, we define

• pk, the number of solutions that can be domi-
nated by sk;

• qk, the number of solutions that can dominate
sk;

• ck, the number of total solutions.

The generalized Pareto-based scale-independent fit-
ness function (GPSIFF) is given by

FITNESS(sk) = pk − qk + ck (20)

The GPSIFF takes advantage of information of
both dominated and non-dominated individuals of
solution sk, which are obtained from all participant
individuals in the search space [28]. A bi-objective
example, illustrated earlier in Fig. 1, shows that the
individual sk dominates solution 9 and 10 (pk = 2),
and sk is dominated by solution 2, 4, and 5 (qk = 3).
Therefore, the fitness value for individual sk is 2-
3+10=9.

3) Fast Non-dominated Sorting: Different from the
non-dominated sorting in NSGA − II [12], we
apply a pre-sorting scheme, which is tailored for

10

Algorithm for non-dominated sorting

Step 1: Sort the solutions in ascending order w.r.t one
objective, O1,k, where k = 1, . . . , K. Denote
the sorted set as ℵ;

Step 2: For an individual solution sk ∈ ℵ, set
pk = |{si|sj(o2) < sk(o2), si ∈ ℵ, i =
1, . . . , k − 1}|;
qk = |{sj |sj(o2) > sk(o2), sj ∈ ℵ, j =
k + 1, . . . , K}|

Step 3: Repeat Step 2 until k == K

Fig. 5. Algorithm for non-dominated sorting

the bi-objective problem, to accelerate the sorting
process. The population of size K is sorted in
ascending order with respect to one of the values of
the two objectives, i.e., O1,k, where k = 1, . . . , K.
Within this pre-sorted set, the Pareto front is found
by sweeping the individual solution one by one with
respect to the second objective values, i.e., O2,k. It
guarantees that if an individual solution s

′
k is swept

after sk, then sk dominates s
′
k. The pseudo code

of this algorithm, shown in Fig. 8, illustrates how
the number of domination pk and the number of
non-domination qk of an individual solution sk are
obtained.

4) Elitism and Nitching: Similar to NSGA− II , the
new population is produced in such a way that
40% of it is from the old population with the
highest fitness values, and the remaining 60% is
from the offsprings with the highest fitness values.
By doing this, we can maintain both the elitism
and diversity in the new population. Another way
of maintaining diversity is to use nitching, where
a crowding distance assignment is calculated for
each individual solution by averaging the distances
to its neighboring individuals. If several individual
solutions share one fitness value, the ones in less
crowded area will be picked as new population.

5) Feasibility: The feasibility of the global schedule
is ensured if each local schedule is feasible. Due
to the different asset to task assignments, some of
them may be infeasible, i.e., the completion time

of previous task is beyond the start time of the
next task. The reason for infeasibility is that the
assigned assets to a previous task cannot achieve
certain task completion accuracy, so they take more
time than the time slot assigned to the task, or, it
maybe because a low speed asset is assigned to a
task, which is far away from it; the long transfer
time causes the delay in task execution. For such
infeasible solutions, we assign a very low fitness
value (high penalty), so that they will not be selected
as part of the new population.

The MOEA running in TUm produces Ns,m

(Ns,m ≥ 1) local schedules. Ns,m does not have to
be the same for different TUs. Some TUm produce
fewer schedules because there may not be enough
feasible solutions due to task start time constraints.
In this case, the planning DM (PLDM) at OLC

may need to adjust the initial start time of each task
(loosen the time constraints) in order to generate
additional local schedules.

C. Co-operative Resource Re-deployment (Step 3)

After Task Announcement, tasks whose TCA have
not reached certain accuracy are identified (given
by (11)) and the candidate assets that can execute
the task are also selected (given by (12)). The
objective is to maximize the mean task completion
accuracy given by (13). This is a single-objective
optimization problem, and we employ a GA to find
the best task-to-asset assignment.

1) Chromosome encoding: Similar to the chromo-
some representation in TLC scheduling, a binary
chromosome contains Qc = |T̂m| · |P̂ | genes, where
|T̂m| and |P̂ | are the number of the unfinished tasks
and the number of candidate assets, respectively.

2) GA Parameters:

• Fitness function: The mean task completion
accuracy is used as the fitness function, which
is given by (13);

11

• Operators: The GA uses Arithmetic and
Multi-point crossover operators and Multi-non-

uniform mutations. For details on these opera-
tors, please refer to our previous work in [4];

• Selection Strategy: The new population is com-
prised of the following three parts: (a) 50% of
the new population is from the best 50% of
the previous population; (b) 20% of the new
population is from crossover; and (c) 30% new
population comes from mutations. By doing
this, we can keep both elitism and the diversity
of the population;

• Size of initial population and the number of

iterations: The size of initial population is set
at N = 100, which is sufficient to cover the
problem of any size. The number of iterations
is set to 50 based on our experimental obser-
vation that the GA usually converges within 50
iterations.

The outcome of the co-operative resource re-
deployment is a coordinating pattern among TUs.
The Coordinating DM (COODM) at OLC may
or may not intervene in this process, depending on
whether the global objectives are affected or not.

D. Operational Level Global Schedule Building (Step 4)

Unlike the scheduling process at TLC, the sched-
ule building at OLC would be a multiple schedule
selection process to (a) minimize (or maximize)
OLC objectives; (b) assemble local schedules into a
global schedule; and (c) resolve the conflicts among
local schedules and ensure the feasibility of the
global schedule.

The COODM at OLC is responsible for build-
ing a global schedule by selecting one schedule
from each TU to achieve the global objectives: (a)
minimize makespan of mission execution; and (b)
maximize the overall task completion accuracy. The
algorithm finds a set of ranked L − Neighboring

schedules. The flexibility is achieved by shifting
from one schedule to the other that best fits the cur-
rent situation. Since the L−Neighboring schedules
are neighbors of each other, the cost of adaptivity is
small. The MOEA proposed for solving the Global

Schedule Building problem, except for the encoding
and global schedule building process, is similar to
the one we used in TLC scheduling. The different
parts that are designed for Global Schedule Building

are described as follows.
1) Chromosome Representation: The index of one of

the local schedules in each TU is encoded in the
corresponding gene in a chromosome with M genes,
where M is the number of TUs. For example, a
chromosome [1 3 2 5] indicates that the the first
schedule of TU1, the third schedule of TU2, the
second schedule of TU3, and the fifth schedule of
TU4 are selected to assemble a global schedule. The
MOEA will enumerate the combinations of these
indices until a set of L − Neighboring schedules
are found.

2) Global Schedule Building Process: Two issues are
involved in building a global schedule: (a) to main-
tain the feasibility of the global schedule; and (b) to
converge to a stable schedule state in terms of start
time of each task. We use right-shifting to build
the global schedule and maintain its feasibility, that
is, local TLC schedules are reassembled according
to the task graph. The start times of tasks that
have precedence constraints will be shifted to a
time when all its preceding tasks have been accom-
plished. This introduces the second issue: how to
achieve the stability of the schedule? We employ the
following iterative scheme: once the right-shifting
is complete, a set of new start times is obtained.
We start the entire process with the set of new
start times. This iteration is repeated till the task
start times do not change. At this stage, the global
schedule reaches its stable state. This process is

12

Initial Task
Start Time

TLC
Scheduling

Global
Schedule
Building

Start Time
Converge?

Output L-Best
Global

Schedules

New Task
Start Time

Yes

No

Fig. 6. The global schedule stabilization procedure

depicted in Fig. 6.

E. Interactive scheduling (Step 5)

The global schedule can interact with the envi-
ronment in the following way: each of the L −
Neighboring schedules is divided into several
stages. At the beginning of each stage, the planning
DM (PLDM) at OLC evaluates the feasibility
of the current schedule based on the reports and
data collected by the intelligence DM (INDM).
Once infeasibility is detected, the PLDM searches
among the alternative neighboring schedules at the
same stage until a feasible schedule is found.
The PLDM then instructs the coordination DM
(COODM) to issue commands of schedule changes
to the lower level TUs. The interactive scheduling
procedure is illustrated by Fig. 7.

IV. ILLUSTRATIVE SIMULATIONS

A. Mission

A joint group of Navy and Marine Forces is as-
signed to complete a military mission that includes
capturing a seaport and an airport to allow for
the introduction of follow-on forces. There are two
suitable landing beaches designated “North” and

= aggregated defend task, showing possible subtasks

= aggregated encounters task, with possible subtasks

= mission tasks (that must be done); known in advance

START

5. Encounters

• SMine
• Sea(Pb)*

6.TAKE
HILL

7.TAKE
N. BCH

8.TAKE
S. BCH

11.Encounters
on S/P road

Clear:
• GMINE
• TANK

12.Encounters
on A/P road

9.Defend N. BCH

• ARTY
• FROG
• Helos

13.CLEAR
SAMs*

14.CLEAR
SAMs*

15.TAKE
PORT

16.TAKE
A/P

1. CVBG

• Silk*
• Air(S)*
• Sea(Pb)*
• Sea(Sub)

3. Resupply
PORT No.

• Sea(Pb)*

2. ARG

4. Resupply
PORT So.

10.Defend S. BCH

17. Encounters

• GTL*
18.BLOW
BRIDGE

END

• ARTY
• FROG
• Helos

• Sea(Pb)*

• Silk*
• Air(S)*
• Sea(Pb)*
• Sea(Sub)

Clear:
• GMINE
• TANK

Fig. 8. Task graph for the decomposed mission from the OPDM

“South”, with a road from the North Beach to the
seaport, and another road leading from the South
Beach to the airport. From intelligence sources, the
approximate concentration of the hostile forces is
known, and counter-strikes are anticipated.

B. Mission Decomposition and Task Graph

The task graph (shown in Fig. 8) describes
the task procedure, the constraints, and the pref-
erences. While the task procedure comprises the
task execution logic, the constraints represent task-
dependencies, and the preferences specify the task
authority structure. In Fig. 9, the asset-resource
capability and task-resource requirement matrices
are given.

C. Deliberate Planning and Central Plan Decomposition

In the work presented in [4], a nested genetic
algorithm was developed to solve the planning
problem with the objective of minimizing both the
internal and the external workloads of the system.
The resulting plan is shown in Fig. 10. The mission
plan provides the following information: (a) the
optimal number of the TUs for this mission is four
(M = 4); (b) the task assignment to each TU ,

13

Schedule 1 Stage 1 Stage 5Stage 2 Stage 3 Stage 4

Stage 1 Stage 5Stage 2 Stage 3 Stage 4

Stage 1 Stage 5Stage 2 Stage 3 Stage 4

Stage 1 Stage 5Stage 2 Stage 3 Stage 4

Schedule 3

Schedule 2

Schedule 4

End
Start

Fig. 7. The interactive scheduling procedure

Tasks Resource Requirement VectorLocations Processing Time

1 5 3 10 0 0 8 0 6 3070 15

2 5 3 10 0 0 8 0 6 3064 75

3 0 3 0 0 0 0 0 0 1015 40

4 0 3 0 0 0 0 0 0 1030 95

5 0 3 0 0 0 0 10 0 1028 73

6 0 0 0 1014 12 0 0 1024 60

7 0 0 0 1014 12 0 0 1028 73

8 0 0 0 1014 12 0 0 1028 83

9 5 0 0 0 0 5 0 0 1028 73

10 5 0 0 0 0 5 0 0 1028 83

11 0 0 0 0 0 10 5 0 1025 45

12 0 0 0 0 0 10 5 0 105 95

13 0 0 0 0 0 8 0 6 2025 45

14 0 0 0 0 0 8 0 6 205 95

15 0 0 0 2010 4 0 0 1525 45

16 0 0 0 2010 4 0 0 155 95

17 0 0 0 0 0 8 0 4 105 60

18 0 0 0 8 6 0 4 10 205 60

CVBG

ARG

Resupply Port N

Resupply Port S

Encounters N&S

HILL

NORTH BEACH

SOUTH BEACH

Defend N. Beach

Defend S. Beach

S/P Road

A/P Road

SAM SeaPort

SAM AirPort

SEAPORT

AIRPORT

GTL

Blow Bridge

(A) (B)

Assets Resource Capability Vector Velocity

1 1010 1 0 9 5 0 0 2

2 1 4 10 0 4 3 0 0 2

3 1010 1 0 9 2 0 0 2

4 0 0 0 2 0 0 5 0 4

5 1 0 0 10 2 2 1 0 1.35

6 5 0 0 0 0 0 0 0 4

7 3 4 0 0 6 10 1 0 4

8 1 3 0 0 10 8 1 0 4

9 1 3 0 0 10 8 1 0 4

10 1 3 0 0 10 8 1 0 4

11 6 1 0 0 1 1 0 0 4.5

12 6 1 0 0 1 1 0 0 4.5

13 6 1 0 0 1 1 0 0 4.5

14 0 0 0 0 0 0 10 0 2

15 0 0 0 0 0 0 0 6 5

16 0 0 0 0 0 0 0 6 7

17 0 0 0 6 6 0 1 10 2.5

18 1 0 0 10 2 2 1 0 1.35

DDG

FFG

CG

ENG

INFA

SD

AH1

CAS1

CAS2

CAS3

VF1

VF2

VF3

SMC

TARP

SAT

SOF

INF (AAAV – 1)

19 1 0 0 10 2 2 1 0 1.35INF (AAAV – 2)

20 1 0 0 10 2 2 1 0 1.35INF (MV22 – 1)

Fig. 9. (A) Task-Resource matrix; (B) Asset-Resource capability matrix

14

3 151618 6 111213 14 17 1 2 4 5 7 8 9 10
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
17 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0
20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Tasks

 P

la
tf

o
rm

s

Fig. 10. The central plan created by the PLDM in OLC architecture

1. CVBG

2. ARG

6. Hill

3. Re-supply

Port N

5. Encounters

N&S

4. Re-supply

Port S

7. Take N.

Beach

17. GTL

18. Blow

bridge

8. Take S.
Beach

9. Defend
N. Beach

10. Defend S.
Beach

11. S/P
Road

12. A/P
Road

13. SAM
seaport

14. SAM
airport

15.Seaport

16.Airport

Priority=1 Priority=3Priority=2 Priority=4 Priority=6Priority=5

Fig. 11. The task priorities

{gi,m}; (c) the asset allocation to each TU , {qj,m};
and (d) the tentative mapping of assets to each task.

The planning DM (PLDM) in the OLC archi-
tecture decomposes the central plan and the task
precedence graph into several sub-plans and sub-
task precedence graphs based on the algorithm
proposed in Fig. 7, and then distributes them among
the TUs. The decomposed task priorities are shown
in Fig. 11. The task execution sequence for each
TU is illustrated in Fig. 12.

T3 T15 T16

T5

T6

T11

T12

T17

T18 T14T13

TU 1

TU 2

T2

T1

T4 T7 T8

T9

T10

TU 3

TU 4

T5

T18

Fig. 12. The distributed task execution sequence for each TU

10 15 20 25
-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

Task Execution Cost

T
as

k
C

om
pl

et
io

n
A

cc
ur

ac
y

10 15 20
-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

Task Execution Cost

T
as

k
C

om
pl

et
io

n
A

cc
ur

ac
y

12 13 14 15
-2

-1.5

-1

-0.5

0

0.5

Task Execution Cost

T
as

k
C

om
pl

et
io

n
A

cc
ur

ac
y

2.4 2.6 2.8 3 3.2
-0.86

-0.84

-0.82

-0.8

-0.78

-0.76

Task Execution Cost

T
as

k
C

om
pl

et
io

n
A

cc
ur

ac
y

Fig. 13. The Pareto Front found for each TU

D. Tactical Level Scheduling

The MOEA proposed in the previous section
is employed to develop tactical level schedules.
After it is finished, each TU produces Ns,m(m =

1, . . . , M) Pareto optima. Ns,m is different for each
TU , which mainly depends on the local asset and
the task assignment and also partially on the di-
versity of the local population. The Pareto front
for each TU is shown in Fig. 13. We note that
the Ns,m for each TU is 7, 9, 1, 7, respectively.
Each local Pareto optimum corresponds to a task-
asset allocation matrix, therefore, a local Pareto
optimal schedule. So, the tactical level scheduling
provides a local schedule information pool, from
which the operational level global schedule building
process can construct global schedules with multiple
alternatives.

15

120 120.2 120.4 120.6 120.8 121 121.2 121.4 121.6 121.8 122
-0.91

-0.9

-0.89

-0.88

-0.87

-0.86

-0.85

Mission Make-span (Time units)

O
ve

ra
ll

T
as

k
C

om
pl

et
io

n
A

cc
ur

ac
y

Fig. 14. The L−Neighboring scheduling solutions

E. Operational Level Schedule Building Process

The operational level schedule building process
is responsible for assembling local schedules to
form ranked L − Neighboring global schedules,
resolving conflicts and achieving OLC objectives.
Fig. 14 illustrates the Pareto optima generated by
the operational level MOEA, which shows that
there are 14 Pareto optima present. The objective
function values, i.e., the overall TCA, makespan,
and GPSIFF for the 14 Pareto optima are listed
in Table I. We notice that the range of the TCA is
from 88.27% to 90.81%, and the makespan ranges
from 120 to 122. This information tells us that
even if the mission shifts from the best schedule
to the lowest ranked schedule, the performance of
the organization will not deteriorate much.

The best schedule is shown in Fig. 15. The Y axis
represents the ‘Asset ID’ and the X axis represents
the ‘time units’. Each asset is assigned one or more
tasks at certain time interval. The length of the gray
bar indicates the duration of each task. The schedule
can be divided into 5 time stages: 0-29, 30-49,
50-66, 67-88, and 89-122. Between two sequential
stages, there are no, or very few interleaving tasks
so that the boundary can be identified.

The 14 Pareto optima indicate that there are 14

TABLE I
THE OBJECTIVE FUNCTION VALUES FOR PARETO OPTIMA

Rank TCA Makespan GPSIFF
1 90.81% 120 106
2 90.32% 121 86
3 90.25% 121 86
4 89.61% 121 83
5 88.86% 120 81
6 88.51% 120 80
7 88.27% 120 78
8 86.37% 120 66
9 88.79% 121 63
10 88.30% 121 61
11 90.03% 122 61
12 89.95% 122 61
13 89.60% 122 60
14 89.50% 122 60

alternative global schedules that a COODM at
the OLC can choose from in order to adapt to a
changing environment. The first 10 schedules are
plotted in Fig. 16. We notice that the pattern of
these schedules is very similar to each other, which
means that variations of these schedules are small.
This indicates that the cost of adaptivity is small,
because the schedules are neighbors of each other.
This minimizes the effect of disturbances to the
mission operations when the current schedule needs
adjustment.

F. Rescheduling under disturbances

The mission commences with the best schedule
and shifts to other schedules when disturbances
occur because of asset break down or appearance
of emergent events. At the beginning of each stage,
the planning DM (PLDM) at OLC evaluates the
status of each asset and decides if a schedule shift is
needed. The following two examples illustrate how
this process works.

1) Case 1: Asset 10 breaks down: We assume that the
mission is proceeding initially according to the best
schedule. Asset 10, one of the close air support
(CAS) units, encounters strong enemy forces when
trying to defend the carrier group (task 1) and
suffers heavy casualties during mission stage one.
Due to massive loss of its capabilities, this CAS

16

1

2

4

5

6

7

8

12
11

10

9

13

14

15

16

17

18

19

20

3

0 10 20 30 40 50 60 70 80 90 100 110 120 t

A ID

Time Units

A
ss

et
 ID

Task Duration

Task ID

Fig. 15. The best schedule

has to be withdrawn from the battle field. However,
according to the first schedule, at time intervals
51-58, 68-76, and 111-120, this CAS unit will
execute task 7 (take north beach), task 12 (patrol
north part road area) and task 16 (take airport),
respectively. At the beginning of the second stage,
a schedule shifting decision has to be made due to
the absence of asset 10. After a search through the
neighboring schedules, an alternative schedule, the
third schedule, is chosen. Thus, during the rest of
the mission execution, the mission can be executed
without asset 10 (see Fig. 17).

2) Case 2: Emerging event: We assume that the cur-
rent schedule is the first schedule. At time 51, an
enemy force unit launches a ground assault toward
an airport defended by an allied army. Either an en-
forcement infantry unit or a special operation force
needs to be sent to the airport. This task has the
similar resource requirements to task 17. By looking
back to stage one, where a similar task has been
accomplished, the planning DM (PLDM) finds that
asset 6, 15, 17, 18 and 19 have been coordinated on
a similar task. However, at the current time, asset 6
is going to execute a new task (task 8); therefore, it
may not be appropriate to apply this asset. However,

the PLDM finds from alternative schedules 4 and
5 that either special operation force (asset 17) or a
combination of asset 17 and infantry unit 2 (asset
19) can do the task. The final decision is made to
send both assets 17 and 19 to the airport, because
this will shorten the task execution time, and has
less impact on asset 17’s next task execution (task
13). The adjusted schedule is shown in Fig. 18.

V. CONCLUSIONS

In this paper, an efficient flexible holonic schedul-
ing scheme applying Multi-Objective Evolutionary
Algorithms (MOEA) is proposed. Each TU pro-
vides multiple Pareto optimal local schedules that
satisfy local objectives, while decision makers at
the operational level assemble these local schedules,
resolve conflicts, and generate a set of ranked L−
Neighboring global schedules. When facing envi-
ronmental disturbances, the upper level DMs can
either shift to different stages of alternative sched-
ules or adjust current schedule by learning from
the history of the current or alternative schedules.
The advantage of this scheduling scheme is that it
generates multiple neighboring candidate schedules
in one run, which avoids the costly replanning
process and also minimizes the adaptation cost.

17

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

[1] [2]

[3]

[8][7]

[6][5]

[4]

[10][9]

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

1
2

4
5
6
7
8

12
11
10
9

13
14
15
16
17
18
19
20

3

t

A ID

0 10 20 30 40 50 60 70 80 90 100 110 120

Fig. 16. The ranked L−Neighboring schedules produced by Operational Schedule Building Process

18

1

2

4

5

6

7

8

12
11

10

9

13

14

15

16

17

18

19

20

3

0 10 20 30 40 50 60 70 80 90 100 110 120 t

A ID

Time Units

A
ss

et
 ID

Task Duration

Task ID

Fig. 17. The shifted schedule

1

2

4

5

6

7

8

12
11

10

9

13

14

15

16

17

18

19

20

3

0 10 20 30 40 50 60 70 80 90 100 110 120 t

A ID

Time Units

A
ss

et
 ID

NE

NE

NE New Event

Task Duration

Task ID

Fig. 18. The adjusted schedule

After illustrating the holonic scheduling process via
a realistic mission example, it is concluded that the
C2 holonic reference architecture and the flexible
scheduling scheme are an integration of centrality
and autonomy; rigidity and flexibility; doctrine and
adaptability, which enable a C2 organization to
possess the capability of handling mission changes,
while keeping “unity of command” during mission
execution.

However, we do realize that the flexibility of any

scheduling scheme is limited by resource availabil-
ity. As more redundant resources are available, a
scheduling scheme can achieve more flexibility. We
also note that, given a certain amount of resources,
the higher the variety of schedules generated, higher
is the degree of flexibility. However, the cost of
adaptivity will be high potentially. A good schedul-
ing scheme has to achieve a balance between per-
formance and cost.

Future work needs to focus on (a) establishing

19

organizational synthesis models for hierarchy, het-
erarchy, and holarchy, for a (set of) mission en-
vironment(s); (b) exploring performance measures
for different structures based on structural and mis-
sion environment models; and (c) application of
the theory to existing and future systems (e.g.,
FORCENET, Expeditionary Strike Group).

ACKNOWLEDGMENT

This work was supported by the Office of Naval
Research (ONR) under the contracts # N00014-00-
1-0101 and # N00014-06-1-080.

REFERENCES

[1] “Expeditionary Warfare Staff Planning Brief presented at CWC
Commander’s Conference”, Tactical Training Group Pacific, San
Diego, CA.

[2] F. Yu, C. Meirina, S. Ruan, F. Tu, and K. Pattipati, “Integration
of Holarchy and Holonic Scheduling Concepts for C2 Organi-
zational Design”, Proceedings of the 2005 CCRTS, Washington
DC, June, 2005.

[3] G.M. Levchuk, Y. N. Levchuk, C. Meirina, K. R. Pattipati, and
D.L. Kleinman, “Normative Design of Organizations - Part III:
Modeling Congruent, Robust, and Adaptive Organizations”, IEEE
Trans. on SMC:Part A : Systems and Humans, Vol. 34, No. 3, pp.
337-350, 2003.

[4] F. Yu, F. Tu, and K. R. Pattipati, “Congruent Organizational
Design Methodology Using Group Technology and a Nested
Genetic Algorithm”, IEEE Transactions on Systems, Man, and
Cybernetics, Part A, vol. 36, no. 1, pp. 5-18, January, 2006.

[5] U. Aickelin and K. Dowsland, “An Indirect Genetic Algorithm
for a Nurse Scheduling Problem,” Computers and Operational
Research, vol. 31, no. 5, pp 761-778, 2003.

[6] M. T. Jenson, “Reducing the Run-Time Complexity of Mul-
tiobjective EAs: The NSGA-II and Other Algorithms”, IEEE
Transactions on Evolutionary Computation, vol. 7, no.5, pp. 503-
515, Ocotber 2003.

[7] I. F. Sbalzarini, S. Muller, and P. Koumoutsakos, “Multiobjective
optimization using evolutionary algorithms”, Center for Turbu-
lence Research Proceedings of the Summer Program, pp. 63-76,
2000.

[8] J. D. schaffer, “Multiple objective optimization with vector evalu-
ated genetic algorithms”, In Grefenstette, J. J., editor, Proceedings
of an International Conference on Genetic Algorithms and Their
Applications, pp. 93-100, 1985.

[9] P. Hajela and C. Y. Lin, “Genetic search strategies in multicrite-
rion optimal design”, Structural Optimization, vol. 4, pp. 99-107,
1992.

[10] N. Srinivas and K. Deb, “Multiobjective optimization using
nondominated sorting in genetic algorithms”, Evolutionary Com-
putation, vol. 2, no. 3, pp. 221-248, 1994.

[11] J. Horn and N. Nafpliotis, “Multiobjective optimization using
the niched Pareto genetic algorithm”, IlliGAL Technical Report
93005, Illinois Genetic Algorithms Laboratory, University of
Illinois, Urbana, Illinois, 1993.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective Genetic Algorithms NSGA II”, IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-
196, April, 2002.

[13] E. Zitzler, “Evolutionary algorithms for multiobjective optimiza-
tion: methods and applications”, Ph.D. thesis, Swiss Federal
Institute of Technology (ETH) Zurich, Switzerland, Shaker Verlag,
Aachen, Germany, ISBN 3-8265-6831-1, 1999.

[14] J. D. Knowles and D. W. Corne, “Approximating the non-
dominated front using the Pareto archived evolution strategy”,
Evolutionary Computation, vol. 8, pp. 149-172, 2000.

[15] C. A. Coello Coello, “A comprehensive survey of evolutionary-
based multiobjective optimization techniques”, Knowledge and
Information systems, vol. 1, no. 3, pp. 269-308, August 1999..

[16] C. A. Coello Coello, V. Veldhuizen and G. B. Lamont, Evolu-
tonary Algorithm for solving multi-objective problems, Kluwer
Acadamic publishers, New York, March 2002.

[17] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results”, Evolutionary Com-
putation, vol. 8, no. 2, pp. 173-195, 2000.

[18] S.-C. Lin, E. D. Goodman, and W. F. Punch, “A genetic algorithm
approach to dynamic job shop scheduling problems”,Proceeding
of International Conference on Genetic Algorithms, T. Back, Ed.,
pp. 481-488, 1997.

[19] C. Bierwirth and D. C. Mattfeld, “Production scheduling and
rescheduling with genetic algorithms”, Evol. Comput., vol. 7, no.
1, pp. 1-18, 1999.

[20] H. G. Cobb, “An investigation into the use of hypermutation as an
adaptive operator in genetic algorithms having continuous, time-
dependent nonstationary environments”, Naval Res. Lab. Tech.
Rep. AIC-90-001, Washington, DC , 1990.

[21] F. Vavak, K. Jukes, and T. C. Fogarty, “Adaptive combustion
balancing in multiple burner boiler using a genetic algorithm
with variable range of local search”, Proc. Int. Conf. Genetic
Algorithms, T. Back, Ed., pp. 719-726, 1997.

[22] C. L. Ramsey and J. J. Grefenstette, “Case-based initialization
of genetic algorithms”, Proc. Int. Conf. Genetic Algorithms, S.
Forrest, Ed., pp. 84-91, 1993.

[23] S. Yang, “Non-stationary problems optimization using the primal-
dual genetic algorithm”, Proc. Congr. Evol. Comput., vol. 3, pp.
2246-2253, 2003.

[24] M. Farina, K. Deb and P. Amato, “Dynamic Multiobjective
Optimization Problems: Test Cases, Approximations, and Appli-
cations”, IEEE Transactions on evolutionary computation, vol. 8,
no. 5, pp. 425-442, October 2004.

[25] P. Amato and M. Farina, “An ALife-Inspired Evolutionary Algo-
rithm for Dynamic Multiobjective Optimization Problems”, 8th
on-line World Conference on Soft Computing in Industrial Appli-
cations WSC8, http://wsc8.e-technik.uni-dortmund.de.CP, 2003.

[26] L. T. Bui, J. Branke, and H. Abbass, “Multi-objective opti-
mization for dynamic environments”, The Artificial Life and
Adaptive Robotics Laboratory ALAR Technical Report Series TR-
ALAR-200504007, Northcott Drive, Campbell, Canberra, Aus-
tralia, 2005.

[27] K. Yamasaki, “Dynamic Pareto optimum GA against the changing
environments”, Proc. Genetic Evolutionary Computation Conf.
Workshop Program, pp. 47-50, San Francisco, CA, July 2001.

[28] S. Y. Ho, L. S. Shu, and J. H. Chen, “Intelligent Evolutionary
Algorithms for Large Parameter Optimization Problems”, IEEE
Transactions on Evolutionary Computation, vol. 8, no. 6, pp. 522-
541, December 2004.

[29] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiob-
jective optimization: Formulation, discussion and generalization”,
Forrest, S., editor, Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, pp. 416-423, Morgan Kaufmann, San
Mateo, California, 1993.

