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Abstract 
 
This paper adopts a cognitive theory of analogy and applies it to the design of decision 
support systems. The approach, called structure mapping, captures the conceptual 
structure of a C2 problem in the graphical features of a visual display. The result is a 
visualization that supports decision making better than standard mappings of geospatial 
information. As an example we present a system designed to support weapon-target 
pairing for time-sensitive targeting. This C2 system in particular, and structure mapping 
in general, are useful because solving a problem like weapon-target pairing requires 
reasoning about probabilities, priorities and other parameters that are not shown in 
standard mappings. Thus the contribution of this paper is threefold in: (1) reviewing the 
theory behind our structure mapping approach; (2) presenting a system designed in 
accordance with this approach; (3) discussing how the same approach can be used to 
design intuitively informative displays for other C2 systems. 
 

 
 
 

1. Introduction 
 
The practice of systems engineering often focuses on the technology by which 
visualizations and other machine interfaces are made, rather than the psychology by 
which decisions and other human inferences are made. The result is that users may not 
use the systems – or worse, that performance may actually be degraded by the systems 
that were intended to support decisions (Cummings & Mitchell 2005).  
 
The problem, we think, is that computerized systems are designed without adequate 
attention to cognitive theories. In short, a systems engineer must have a thorough 
understanding of what needs to be supported and where it needs to be supported and why 
it needs to be supported in order to design a decision support system (Burns 2004). In this 
paper we propose a cognitive theory-based approach that can be used to improve support 
systems in command and control applications. We also present a visual system designed 
by this approach to support targeteers in weapon-target pairing for time-sensitive 
targeting. 
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2. Structure Mapping 
 
Our approach to designing decision support systems is founded on a cognitive theory of 
analogy called structure mapping. In structure mapping (Gentner 1983; Gentner & 
Markman 1997), a body of knowledge in one domain (D1) is mapped to another body of 
knowledge in another domain (D2), D1→D2, based on common structure(s) shared by the 
two domains. A simple example is the statement, “an electric battery (D1) is like a 
reservoir (D2)”, which allows a person who understands reservoirs (D2) to apply this 
knowledge to batteries (D1). Notice that D2 is not necessarily visual, as in metaphorical 
analogies like the above simile where both D1 and D2 are verbal statements. However, D2 
can be a visual display and D1 can be a complex problem (in C2) – and in that case, 
which is our focus here, the structure mapping can be seen as drawing a visual analogy. 
 
The notion of structure mapping is implicit in standard mapping where geospatial 
features of a land, like roads and forests, are mapped to corresponding features of a map, 
like lines and shading. Such maps are useful because they allow decision makers to 
reason about complicated situations using simplified representations. But many C2 
decisions require reasoning about attributes and relations that cannot be represented by 
the features of standard mappings. The problem of weapon-target pairing in time-
sensitive targeting is a case in point. Although standard mappings can show locations, 
distances and other geospatial information, they cannot easily show priorities, 
probabilities and other parameters of the problem or its solution. 
 
The theory of structure mapping (Gentner 1983) was developed to explain how people 
form abstract analogies between things when there appear to be no surface similarities 
between those things. For example, electric batteries are typically small and cylindrical 
while hydraulic reservoirs are typically large and complexly shaped, so there is little 
similarity on the surface. But at a deeper level the two share a common function, which 
entails a storage capacity and release mechanism to accomplish controlled flow of 
current. From a practical perspective, the advantage of analogies is that they allow people 
to solve problems in domains that they do not understand well (like the electric domain of 
batteries) by relating them to domains that they do understand well (like the hydraulic 
domain of reservoirs). 
 
In this paper we are concerned with structure mapping of C2 problems and solutions to 
visual displays in support systems. The basic issue is that, while standard mappings can 
provide analogical representations of C2 domains, the attributes and relations depicted in 
such maps are often not well suited to solving the C2 problem at hand. In these cases a 
better mapping would be a structured mapping that does depict the attributes and 
relations of the problem and its solution. In short our approach is to map a C2 problem to 
a visual display that makes the problem easier for a human to solve and easier for a 
human to see how a system solves it – thereby allowing the human to better understand a 
system’s solution and develop his own solutions for cases where the system’s solution 
may fall short. 
 
Below we discuss a prototypical example in the domain of time-sensitive targeting. 
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3. Weapon-Target Pairing 
 
3.1 Time-Sensitive Operations 
 
The challenge of time-sensitive targeting arises in combat situations where the locations 
and priorities of targets are changing with time. In fact this is the case in all targeting, 
although sometimes the changes in targets are slow with respect to the speed of orders 
and assets, and in such cases strike operations can be planned as if the targets were fixed. 
Here we are concerned with situations where pre-planned targets are essentially fixed but 
where emergent targets (with high priority and time-constrained threat or vulnerability) 
may arise during the mission. One example is the case of scud missile Transporter 
Erector Launchers (TELs) in the Gulf War. These were time-sensitive targets because 
they were important to destroy and because they had a window of vulnerability of around 
an hour, which is much shorter than the day(s)-long planning cycle of Air Tasking 
Orders. 
 
The basic problem in time-sensitive targeting, once targets have been identified, is one of 
asset allocation via weapon-target pairing. That is, given a constrained set of assets, the 
question is: Which weapons (assets) should be diverted from their originally scheduled 
targets to attack time-sensitive targets in order to optimize the overall effectiveness of the 
mission? In fact this problem entails two problems. The first problem, which is called the 
priority problem, is to establish numerical priorities for all targets and assets. This 
problem is difficult because priorities may change with time as targets are killed and/or 
assets are lost. The second problem, which is called the pairing problem, is to optimize 
the assignment of assets to targets, given an assumed set of assets and targets along with 
priorities and other parameters like target kill probabilities and asset loss probabilities. 
 
The priority problem is actually the harder of the two, especially in joint operations 
where allies may not be in complete agreement, e.g., I may think that my assets and 
targets are more important than yours. Plus, even if allies agree, the priorities and other 
parameters such as probabilities of target kill and asset loss are subject to many 
ambiguities and assumptions. Nevertheless, previous designs for support systems 
(Pedersen et al. 1999) have assumed that the priority problem has been solved, and here 
we will assume the same in our system – leaving this problem for future research. 
However, unlike previous systems, our proposed system for solving the pairing problem 
recognizes current limits in solving the priority problem – and our design includes 
visualization capabilities that can help targeteers deal with the fact that they must often 
solve pairing problems without solid answers to priority problems. 
 
Focusing on the pairing problem, support systems can be divided into two types. One 
type is an optimization system that finds overall-optimal solutions for weapon-target 
pairings, given a set of input data. The other type is an organizational system that tracks 
orders and approvals in the chain-of-command for target identification and prosecution. 
Here we are concerned with optimization systems, which solve computational problems, 
as opposed to organizational systems, which solve communication problems. 
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However, our proposed system for solving optimization (computational) problems can 
also help in solving organizational (communication) problems since the system provides 
a visual display of what assets should be assigned to what targets as well as the 
underlying rationale for why these pairings should be made. This dual display of what 
and why facilitates communications by illustrating solutions to the pairing problem, 
including parameters relevant to the priority problem, in a display that can be understood 
at a glance by all levels of command. 
 
3.2 Trade-Off Calculations 
 
Focusing on the need for an optimization system to support users in solving pairing 
problems, the C2 challenge is to assign assets (weapons) to targets in a way that 
optimizes the overall effectiveness of an operation – given input numbers for the various 
parameters that affect the output answer. Here we consider the case of N assets and N 
targets, where each asset can attack only one target. This one-on-one context often 
applies to time-sensitive targeting where the window of vulnerability for each target is 
small. The NxN analysis is easily extended to NxM cases (N≠M) since these cases can be 
cast in the form of NxN problems by creating fictional assets and targets (with zero-
valued priorities) to make M=N. In that case, if a fictional asset or target is part of the 
optimal solution, then the associated target (paired with a fictional asset) is not 
prosecuted or the associated asset (paired with a fictional target) is not diverted. 
 
The complexity of the pairing problem can be characterized by the number of possible 
solutions, which is N-factorial (N!). For example, with N=10 there over three million 
solutions, which makes a targeteer’s dilemma of finding the optimal solution seem like 
searching for a needle in a haystack. Therefore engineers have implemented sophisticated 
procedures like an auction algorithm (Bertsekas 1992) in designs for decision support 
systems (Pedersen et al. 1999). As input, these systems take a listing of targets and assets 
along with numbers for priorities, probabilities and other parameters. As output, the 
systems give the optimal solution, i.e., the needle in the haystack. 
 
More formally, the pairing problem is concerned with maximizing a value function over 
all possible (N!) sets of N one-on-one (asset-to-target) pairings. For each individual asset-
target pair, the value function can be written as follows: 
 
 G = (UT * PT) – (UO * PO) – (UA * PA) 
 
where UT is the utility (priority) of a time-sensitive target (T) to which an asset (A) can 
be paired and PT is the probability that asset A will be effective in destroying target T. 
Thus UT * PT is the expected utility (score) of pairing asset A to target T. Similarly, UO * 
PO is the expected utility (cost) of diverting asset A from its originally scheduled mission, 
hence this term is subtracted in the equation. Finally, UA * PA  is the expected utility 
(risk) of losing asset A due to threats at or along the way to/from target T, which is also 
subtracted from the score. Then, using this value function along with input numbers for 
all the U’s and the P’s, the auction algorithm finds the one-on-one set of N pairings (N 
A’s to N T’s) that maximizes the overall gain G. 
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3.3 Previous Visualizations 
 
Here we do not attempt an exhaustive review of all visualizations that have been designed 
to support solving the pairing problem or other problems like it in command and control. 
Rather, we refer to others (Pederesen et al. 1999) that have summarized the state of the 
art and note that the two main types of visual displays are geospatial mappings and 
numerical tables. Our main point here (discussed below) is that neither of these visual 
devices is very effective for solving the problem of weapon-target pairing. 
 
Geospatial mappings are ubiquitous in command and control, and for good reason since 
commanders must often reason about movements along and above terrain. In the case of 
time-sensitive targeting, such maps can be very useful for planning routes of assets to 
targets. But for the specific challenge of the pairing problem, as discussed above, such 
maps are almost useless because they do not represent the basic structure of the pairing 
problem – which is an NxN matrix where the goodness of any set of N pairings depends 
on probabilities and utilities. 
 
Similarly, numerical tables are also ubiquitous in C2 because they are easy to construct 
and efficient in organizing large volumes of data. But the numbers in such tables are 
usually harder for people to read than graphics by which the numbers might be displayed. 
Moreover, in the case of weapon-target pairing, the numerical tables in previous systems 
did not capture the matrix structure of the pairing problem as discussed above. Instead, 
numerical tables have been used mostly to display data for drill down purposes, i.e., to 
allow commanders to get more details about data associated with the objects that they see 
on their geospatial mappings. 
 
As such, the geospatial mappings and numerical tables used in previous system designs 
are not the best ways to display data in accordance with a structure mapping approach – 
at least not for the specific structure of the pairing problem. Below we present our 
design, which is different because it is based on structure mapping. 
 
4. Pairing Pictures 
 
4.1 Structure-Mapping Visualization 
 
Mathematically speaking, the problem of finding the needle in the haystack is quite hard 
(see Section 3.2) since it scales with N!. Psychologically speaking, the problem is that 
system users have been reluctant to accept the needle that a system finds (Pedersen et al. 
1999), for two reasons. First, targeteers realize that there are many assumptions and 
uncertainties that go into the system’s calculations, yet the system has not shown or told 
them these. Second, targeteers realize that in fact the problem is not one of a single 
needle and a bunch of hay, i.e., there may be many sub-optimal solutions that are almost 
as good as the so-called optimal solution that the system finds. Moreover, putting these 
two concerns together, targeteers realize that the system’s so-called optimal solution may 
in fact be sub-optimal if all of the system’s assumptions and input numbers are not just 
right – and in reality the system’s assumptions and inputs are often far from right. 
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In light of these concerns, targeteers are reasonable in not trusting the system’s needle 
when it is given to them blindly, or when it is given to them in the context of geospatial 
mappings and numerical tables that say nothing about how the needle was found by the 
system or why it is considered optimal by the system. And that is why we developed a 
decision support system using structure mapping as the guiding approach. 
 
In structure mapping, the design challenge is to map the computational structure of the 
pairing problem to the graphical structure of a visual display, so a targeteer can 
understand what the system recommends as well as why the system recommends it. And 
from this perspective, the structure of interest is an NxN matrix of assets and targets – 
which forms the foundation of our design (Figure 1). 
 
Besides this matrix, the other structure that is central to the pairing problem is given by 
the three terms on the right hand side of the value function (Section 3.2) – as well as the 
fourth term, which is the gain (G) of pairing a particular asset to a particular target. This 
structure exists in each asset-target cell of the pairing matrix (Figure 1), and it can be 
represented by a mapping of values to colors. Our scheme uses the convention of Red for 
enemy (target) and Blue for friendly (asset) along with Gold to denote the cost of 
diverting an asset from its originally scheduled target. Thus the value function can be 
written as follows: 
  
   Black (Pairing Gain) = Red (Target score) – Gold (Divert Cost) – Blue (Asset Risk) 
 
Then in a colored matrix, the mapping we call Pairing Pictures (Figure 1) simply shows 
the value function using colored bars inside matrix cells. 
 
In this form the problem is readily seen as one of assigning each target (row) to an asset 
(column), one-on-one such that each target and each asset is paired only once. The 
overall-optimal solution is the one that achieves the highest sum of N black bars (pairing 
gains), as illustrated in a Solution Summary (Figure 2). Here possible solutions are 
numbered in order of the total pairing gain, for example solution 1 is the optimal solution 
that includes the three asset-target cells labeled 1 in the matrix (Figure 1). This allows the 
targeteer to see how the optimal solution compares to other possible solutions, and to 
exercise judgments in order to overcome system limitations, as discussed below.  
 
4.2 Example Situations 
 
For example, referring the Solution Summary in Figure 2, a commander’s guidance may 
include the desire to minimize Divert Cost (Gold). Since the system does not know this, 
its optimum solution 1 is actually sub-optimal compared to solution 3, which is the 
solution that the targeteer would choose in order to best reflect his commander’s 
guidance. Of course the same result could be obtained if the system were given 
appropriate weighting factors to reflect the commander’s guidance, but that is the basic 
problem – i.e., that that the commander’s guidance and appropriate weighting factors 
often cannot be established a priori.  
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In short, the user’s main job is one of exercising judgment over a simplified system, and 
to do so a targeteer must know both the results (what) and reasons (why) behind the 
system’s solution. Our visual displays in Figure 1 and Figure 2 are intended to give the 
targeteer a better feel for this what and why. A demo version is available online at: 
http://mentalmodels.mitre.org. 
 
Similarly, referring to the Pairing Picture in Figure 1, a targeteer may know that asset C’s  
effectiveness against target α is sensitive to weather conditions, which are not reflected in 
the system’s input numbers for the probability that the asset will destroy the target. Here 
again the targeteer needs to exercise his expert judgment in order to overcome system 
limitations. In this case the targeteer may choose to avoid a solution that includes the cell 
α-C, e.g., he may select solution 2 as being the best because he can see from the Solution 
Summary (Figure 2) that solution 2 is just as good as solution 1 in the system’s eyes – 
and it is better in his own eyes since it avoids the weather concern. 
 
In the same example, the targeteer may also “think outside the box” as a result of his 
being able to “see inside the box” of the system (matrix). For example, even if the 
targeteer accepts solution 1 as being the best, he could see at a glance that almost all of 
the gain comes from two of the three pairings in solution 1, i.e., asset C against target α 
and asset B against target γ. In the cell for asset A against target β, which is part of 
solution 1, the tradeoff between positive factors (Target Score in Red) and negative 
factors (Divert Cost in Gold and Asset Risk in Blue) is almost balanced such that the net 
Pairing Gain in Black (for pairing asset A to target β) is almost zero. Thus, even though 
the action to send asset A to target β is part of the so-called optimal solution developed 
by the system, the targeteer might reasonably choose not take this action and instead only 
send assets C and B to targets α and γ, respectively. 
 
Besides this Pairing Picture that focuses on mission gains (Figure 1), our system design 
includes another Pairing Picture that focuses on mission time (Figure 3). This picture is 
an animated display in the same matrix format as Figure 1 but instead shows how each 
asset’s Time on Target (TOT, in Blue) compares to each target’s Window of 
Vulnerability (WOV, in Red), for every possible asset-target pair. 
 
This display allows a targeteer to overcome another system limitation, namely an 
assumption associated with the probability that an asset will arrive in time to destroy a 
target. In current systems this probability is assumed to be either one (if TOT is inside 
WOV) or zero (if TOT is outside WOV), which is obviously an oversimplification. In 
light of expert knowledge about this limitation in system calculations, and given the 
Pairing Pictures in Figures 1-3, a targeteer would note that solutions 1 and 3 both involve 
pairing asset C to target α for which the TOT is very close to being outside the WOV. 
Since this is a “fragile” pairing, which is sensitive to system assumptions, the targeteer 
may prefer solution 2, which is more “robust” in that the three cells of solution 2 all have 
TOT well within WOV. [Like the case of commander’s guidance for Divert Cost 
discussed above, more complicated calculations could be developed in more advanced 
systems to obtain a more realistic probability distribution. But these calculations could 
also be illustrated in a similar TOT/WOV matrix display that would also aid users.] 
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Also, besides the output that is graphically illustrated in these Pairing Pictures, our design 
provides for graphical illustration of key input – namely the numerical priorities for 
assets and targets. Recall that these numbers, which are input to the pairing problem, are 
output from the priority problem, which is often not well solved. While further research 
may improve efforts to solve the priority problem, the fact is that numerical priorities for 
targets and assets will always be uncertain so a key task for the targeteer is (and will 
remain) to judge the sensitivity of pairings to uncertainties in priorities. 
 
To address this need our system provides two things. First, we provide a graphical 
illustration of Adjustable Assumptions (Figure 4) so the user can see what priorities the 
system is assuming in its calculations. Here, previous system designs (Pedersen et al. 
1999) did not allow the user to see the system’s assumed priorities at all, let alone in a 
graphic format. Second, our system allows the user to adjust these assumptions via a 
graphical interface (sliding the bars) and then recalculate solutions in Pairing Pictures – 
which can then be compared in Solution Summaries. 
 
This allows the targeteer to perform sensitivity studies in order to find and choose 
solutions that are robust with respect to uncertainties in the inputs. For example, if the 
priority for target α is known to be particularly uncertain then the targeteer can try two 
cases with bounding numbers (high and low) for the priority of target α and compare the 
solutions for these two cases. In this way the user can see what system solutions are most 
robust with respect to the underlying uncertainty – and select a solution accordingly.  
 
Finally, an additional feature of our system is that the level of automation is completely 
adjustable by the user, from fully manual to fully automatic. That is, besides computing 
and displaying optimal and near optimal solutions, the system also allows the user to 
develop partial or fully manual solutions by selecting X individual cells (where X ≤ N) 
while the system grays out the cells that are excluded by the user’s selections.  
 
4.3 Human-System Validation 
 
Ideally, a system design would be tested to ensure that it provides benefits. But this is 
much easier said than done because testing must balance rigor and relevance. On the one 
hand, rigorous testing must be accomplished under controlled conditions – which usually 
requires scenario simplification in the lab. On the other hand, relevant testing must assess 
system and user performance with respect to the complex conditions in the field. The 
upshot is that system testing is often one or the other: either rigorously performed in the 
lab but lacking in relevance; or relevantly performed in the field but lacking in rigor.  
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In the case of our system, field tests could be done to measure if the system improves 
decision making. But it is not clear how performance could or should be measured, since 
the system was designed to help targeteers deal with ambiguities and uncertainties that 
cannot be captured and controlled in testing. In short, the system was intended to help 
users deal with situations that cannot be anticipated in experiments and hence cannot be 
assessed in experiments. This Catch-22 limits the conclusions that can be drawn from 
field testing to informal observations like “users seem to like it” and “combat seems to 
improve”. Thus, while such testing is possible and may be performed for our system, we 
have not done it yet and we are pessimistic about what it could prove one way or the 
other. 
 
A more rigorous testing of our system is possible in the lab, but here too we cannot test 
the main point – which is how well the system allows targeteers to solve realistic 
problems. The best we can do is to create artificial problems in a fixed problem space and 
then generalize the findings to more realistic cases of interest. In this light our validation 
has thus far been limited to answering two questions: (i) How hard is the pairing 
problem, i.e., to find reasonable solutions in a fixed problem space? (ii) How well do our 
Pairing Pictures help users, i.e., to find reasonable solutions in a fixed problem space? 
  
To answer these questions we created a lab game called TicTac Tank, which can be found 
and played online here: http://mentalmodels.mitre.org. This game ignores the colored 
components of the value function (see above) and focuses on the net gain (black bar) in 
Pairing Pictures. To start, the player is dealt a distribution of black bars in an NxN 
matrix. The object of the game is to find the best solution (highest sum of N bars) as fast 
as possible. 
 
To answer the question of (i) How hard, we generated various distributions for the bars 
among the cells and computed solutions in two ways. One way was via the auction 
algorithm that gives only one solution, i.e., the optimal solution, and the other way was 
via exhaustive enumeration of all N! possible solutions. The latter allowed us to assess 
How hard it was to find a solution that was optimal or near optimal. What we found was 
that there were often many solutions that were equally optimal or nearly optimal and 
hence that solving the pairing problem was not really one of finding a “needle in the 
haystack”. It was more like finding a “good patch of hay”.  
 
To answer the question of (ii) How well our Pairing Pictures help people solve the pairing 
problem, we had players develop manual solutions using the matrix display (like Pairing 
Pictures) and we compared their manual solutions to the optimal solutions. The results 
showed that players developed a manual solution in about N seconds for a given NxN 
problem, and that their manual solution was within about 10% of the optimal solution in 
the hundreds of cases tested. Further details are not reported here because interested 
readers can try the game and see for themselves – that finding a “good patch of hay” is as 
easy as this: just pick a high bar (cell) in the matrix; then of the remaining cells (some of 
which are excluded by the first pick) just pick a high bar; and continue like this until a 
complete set of N bars has been picked. 
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The result of this “greedy grabbing” approach is almost always close to the optimal 
solution obtained by the “auction algorithm” simply because: if the matrix only contains 
a few big bars then the greedy grabber will find them; and if the matrix contains a lot of 
big bars then it does not matter much what bars are picked.  
 
In short, our analysis and experiment showed that: (i) the pairing problem was not as hard 
as engineers had previously thought, i.e., it was not like finding a needle in a haystack of 
N! possible solutions, and (ii) a greedy grabbing algorithm, like the one that people 
employ when the problem is illustrated in the matrix structure of Pairing Pictures, is 
effective for finding near-optimal solutions in a way that scales with N rather than N!. 
 
These insights are important because they suggest that the basic problem of weapon-
target pairing is not that hard when it is cast in the form of our Pairing Pictures. Moreover 
we would argue that what makes the problem hard is the need for exercising expert 
judgments in order to overcome the limits of system assumptions and input numbers. As 
such, we think that previous designers missed the mark in focusing on support systems 
that compute optimal solutions without giving users graphical illustrations of the system 
solutions or graphical interfaces for developing manual solutions.  
 
In short, while we have performed only economical and informal lab tests using a toy 
game, we believe that our analyses and experiments provide reasons to believe that our 
Pairing Pictures can be effective as a support system for weapon-target pairing in time-
sensitive targeting. This is because the system gives users an informative and interactive 
display of system results (what) as well as reasons (why), as discussed elsewhere (Burns 
2004). We also believe that the underlying approach of structure mapping can be 
effectively extended to other command and control problems, as discussed below. 
 
5. Other Systems 
 
As discussed above, the basic approach of structure mapping starts by analyzing the 
computational structure of a problem – and ends by representing this conceptual structure 
in the graphical structure of a visual display. The design process is still as much art as 
science because a given problem structure may be mapped to different visual displays. 
But a formal focus on problem structure does offer some science to guide designs – and 
this is the main value of a structure mapping approach. 
 
In a nutshell, the idea is to identify conceptual attributes and relations in the structure of 
C2 problem, and then to illustrate them with graphical attributes and relations in the 
structure of a visual display. For the case of weapon-target pairing, the conceptual 
attributes are assets and targets, and the conceptual relations are the value function and 
pairing possibilities. The graphical attributes in our system design are colors and sizes 
(of bars), and the graphical relations are the matrix and the bar heights inside the cells. 
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As one guideline, the mapping should be both conventional and consistent. By 
conventional we mean that the graphics should exploit existing conventions, like the 
military convention for Red and Blue. By consistent, we mean that graphical features 
should be used to distinguish between conceptual features. For example, our Pairing 
Picture (Figure 1) uses vertical bars to represent expected utilities, where vertical is a 
graphical feature. Then to represent priorities, which are distinctly different from 
expected utilities, we use horizontal lines in our display of Adjustable Assumptions 
(Figure 4). The point is that the two sorts of bars lie in conceptually different dimensions 
and so they should be mapped to graphically different dimensions, like vertical versus 
horizontal. The structure that is common to both priorities and expected utilities, which is 
represented by the colors (Red and Blue), applies to both the horizontal and vertical bars. 
 
As another guideline for system design, the display should be both informative and 
interactive (Burns 2004). A display is informative if its graphical structure is analogous 
to the conceptual structure of the problem and solution, as discussed above. However it is 
also helpful if the display is interactive because this allows the user to explore and digest 
the structure in an active manner, for example by developing manual solutions that can be 
compared to system solutions. Other interactive features of our design include the graphic 
display of Adjustable Assumptions and ability to perform sensitivity studies that can then 
be compared in Solution Summaries.  
 
Another example of a system designed with structure mapping is a colored calculator to 
assist users in Bayesian inference (Burns, in press) – which is a key task in data fusion for 
target identification and other combat/intel problems, as discussed elsewhere (Burns 
2004). Our support system for this probability problem, called Bayesian Boxes, was 
developed along the same guidelines as Pairing Pictures (discussed above) – by mapping 
the conceptual structure of the probability problem and its solution to the graphical 
structure of an informative and interactive display (Burns 2006). The system was shown 
in experiments to improve human judgments in Bayesian inference (Burns in press), and 
this lends further credence to structure mapping as a useful approach for designing 
decision support systems. 
 
6. Conclusion 
 
In this paper we proposed a formal approach to system design based on the cognitive-
scientific theory of structure mapping. We applied this approach to the C2 problem of 
weapon-target pairing in time-sensitive targeting, and designed a system of Pairing 
Pictures that gives targeteers visual advice on what they should do, as well as visual 
reasons why they should do it. This design was shown to have advantages over previous 
designs that did not use structure mapping or any other cognitive theory to guide their 
development. We believe that our structure mapping approach is applicable to other C2 
problems, and we briefly discussed another system called Bayesian Boxes that has been 
successfully designed and tested by the same approach. In current work we are extending 
the approach to additional problems, in order to further refine and apply structure 
mapping to the design of decision support systems in command and control applications.  
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Figure 1: A support system called Pairing Pictures. 
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Figure 2: A Solution Summary 
for the Pairing Picture 

 shown in Figure 1. 
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 Figure 3: A comparison of timing windows for two solutions, 

number 1 (on left) and number 2 (on right). 
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Figure 4: An illustration of Adjustable Assumptions for asset 
(Blue) and target (Red) priorities, showing the relative 

magnitude of High (H), Medium (M) and Low (L). 

 14


