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Abstract 
In our previous research, we hypothesize that the performance of a supervisory control 

operator that must process tasks recommended by a system task manager is analogous to the 
performance of a vacationing server, M/Er/1 queue. Thus, we assume that the arrival of tasks is 
Markovian and that service consists of r- stages of processing each of which is exponentially 
distributed.   In addition, we assume that when there are no tasks in the queue to process, the 
operator “takes a vacation,” i.e., goes off and performs other duties. The model assumed vacation 
time was exponentially distributed. We derived the queueing statistics for this system. These 
statistics include (1) the average number of customers (tasks) in the queue, (2) the average time a 
task spends in the queue, and (3) the average waiting time in the queue. We extended this model 
to a two-class priority M/Er/1 vacationing server system. The results of these predictions were 
compared to actual operator performance.   Our current research generalizes the arrival 
processes.  That is, instead of assuming that the arrival of tasks follows a Poisson process, we 
assume a Markov-Modulated Poisson Process (MMPP).  The MMPP allows for a change in the 
rate in which tasks arrive to the system.  Thus, “rush hour” effects and the ebb and flow of task 
arrivals may be taken into account by the new model. In the Command and Control environment, 
it is particularly important to estimate the “rush hour “ effect on time critical events.  A new set 
of queueing statistics was generated for a two-class MMPP/M/1 vacationing server system. This 
allowed us to compare the model to operator performance on the test scenario over extended 
periods of time.  
 

Approach 

The goal of our research program is to develop quantitative models of operator and system 
performance that will form the basis of a scientific design approach that can be utilized by Combat 
System Design Engineers. Our approach demonstrates how operator workload may be quantified so 
that manning requirements may be specified for future Naval Combat Systems.   

The increased automation of combat weapon systems is radically changing the role of the 
human operator from that of controller to supervisor. As a supervisor, the operator is responsible 
for monitoring and performing multiple tasks. To support the multitasking activity associated 
with supervisory control, a Task Manager (TM) display is being incorporated into future combat 
weapon systems such as the Multimodal Watchstation (MMWS) and the Land Attack Combat 
System (LACS) (see Osga et al., 2002). The TM display represents tasks, in the form of icons on 
a display screen, that the system has determined actionable given the current tactical information 
and Rules of Engagement (ROE).  The posting of tasks to the TM display for operators to 
perform is analogous to service calls arriving at a Help Desk or calls to any telephone system. 
Other examples include “jobs” arriving at a computer processing system and customers waiting 
in line for service, such as at a bank, a post office, or grocery checkout counter. In supervisory 
control, we are interested in the flow of tasks (work) through a system that is composed of both 
human servers and automated servers (computers). Quantitative models and methods that 
analyze dynamic systems of flow have been developed in the domain of queuing theory 
(Kleinrock 1975 & 1976; Takagi, 1991).  
 

We have demonstrated (DiVita, Morris & Osga, 2005; DiVita, Morris & Osga, 2004) that 
the performance of a supervisory control operator that must process tasks recommended by a 



system task manager is analogous to the performance of a vacationing server, M/Er/1 queue. 
Thus, we assumed that the input process was Markovian and that service consisted of r- stages of 
processing each of which was exponentially distributed (Erlangian r-stage, Er).   In addition, we 
assumed that when there were no tasks in the queue to process, the operator “took a vacation,” 
i.e., performed other duties. The model assumed vacation time was exponentially distributed. We 
derived the queueing statistics for this system. These statistics included (1) the average number 
of customers (tasks) in the queue- N, (2) the average time a task spent in the queue - T, and (3) 
the average waiting time in the queue -W. We extended this model to a two-class priority M/Er/1 
vacationing server system. The results of these predictions were compared to actual operator 
performance over the first 33 minutes of an air defense warfare (ADW) scenario entitled the Sea 
of Japan test scenario.  

 
Data from an air defense warfare (ADW) team consisting of four operators were 

collected from a one hour and forty-five minute ADW scenario entitled the Sea of Japan (SOJ).  
Data from this scenario were analyzed from the viewpoint of queueing theory.  In Table 1 we 
compare the queueing model predictions with actual data from the Team 1 Air Warfare 
Coordinator (AWC) over the first 33 minutes of the scenario. This time period was selected 
because the arrival rate of tasks did not change over this portion of the scenario. 
 
Table 1: M/Er/1 Priority Queueing model prediction compared to observed AWC data for first change 
point interval [0, 1995.1].  
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Predicted 0.096 0.867 0.964 32.077 42.198 40.906 15.362 25.406 24.124
Observed 0.098  0.787  0.884  32.467  39.602  

 

38.651 15.752  22.496  21.616  
% Error 1.22 9.28 8.23 1.22 6.15 5.51 2.54 11.45 10.39 

 
 The service time to perform tasks was modeled with a r-stage Erlangian distribution.   
The number of stages was varied to find the best fit between the second moment of the observed 
data and the expected second moment of the theorized distribution of service times.  This optimal 
value of r was discovered to be 6. 
 
 The vacation time was computed as follows: A vacation period is defined as starting 
when a task is completed and there are no more tasks in the queue to perform.  A vacation period 
ends when the operator returns from vacation and resumes performing tasks.  Vacation times are 
determined by subtracting the first arrival time of a task during each vacation period from the 
end time of that vacation period.  By assuming that the distribution of vacation times is 
exponentially distributed, the “memoryless” property of the exponential allows us to claim that 
the mean vacation time may be estimated by the average of the vacation times (V = 17.73 
seconds).   



  
Generalizing the Arrival Process  
 
 During the course of a scenario, the rate at which tasks appear on the TM display may 
vary.  In general, there are busy periods followed by relatively non-busy periods.  This arrival 
process creates a challenge for queueing theory predictions since, tasks “back-up” during periods 
of high task flow, but then are completed as the flow of tasks subsides. The impact on 
performance to time critical events in the context of periods of high and low workload is of 
particular interest in a command and control situation.  Evaluating the manning requirements of 
combat workstations must take into account the change in workflow.  During periods of low 
workload the system may be over-staffed, but during periods of high workload the system runs 
the risk of being under-staffed.  The Markov-modulated Poisson Process (MMPP) (see Hock, 
1996 Chapter 8) may capture the ebb and flow of the task arrivals and its impact on the 
performance of a queueing system.  The MMPP is a doubly stochastic process.  In our example, 
the length of the two periods, rush hour and non-rush hour, randomly varies.  This leads to a 2x2 
transition rate matrix, Q, where the entries ri represent the rates at which the underling stochastic 
process changes.  For example, r1 may represent the rate at which the arrival process changes 
from non-rush hour to rush hour. In general, qij represents the rate at which the process changes 
from state i, to j.  qii, represents the rate at which the process does not change and is set equal to 

 where m is the number of states of the process.  In our example, there are only 

two states, thus: 
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  For each state, there is associated a Poisson arrival process with arrival rates λi.  In our 
example there is a λ1 and λ2 associated with the rush hour arrival rate and the non-rush hour 
arrival rate.  From these λ’s the matrix Λ is created: 
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 Letting Xk equal the time between the (k-1) and kth  arrival and Jk the state of the Markov 
process at the time of the kth arrival, then it may be shown that the transition probability 
distribution matrix, F(x), is given by: 
 
   Λ−ΛΛ−−= −1))}()exp(({)( QxQIxF
 
where I is the identity matrix and Q and Λ are the matrices described above. The elements of the 
matrix Fij(x) represent the conditional probabilities: 
 



  )|,{)( 1 iJxXjJPxF kkkij =≤== −  
 
Thus Fij(x) represents the probability that the inter-arrival time between the k and k-1 arrival is 
less than or equal to x, given that that underlying process was in state i for the k-1 arrival and 
now is in state j for the kth arrival. The transition probability matrix may be derived by 
differentiating F(x).  Thus: 
 

   Λ== Λ− xQexF
dx
dxf ){)()(  

 
Taking the Laplace transform of f(x) we obtain: 
 
   ΛΛ+−= −1)()]([ QsIxfL
In matrix notation we have: 
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Where det A = (s+r1+λ1)(s+r2+λ2)-r1r2. 

 
Thus the Laplace transform of the unconditional inter-arrival times is: 
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It may be shown that the Laplacian transform for the probability density function (pdf) of inter-
arrival times for a generalized arrival function, A(x), must satisfy the equation: 
 

( )μσμσ mmA −= *  
 
Where, A*( ) is the Laplacian of the arrival function, A, evaluated at s = mμ-mμσ, m is the 
number of servers, and σ is the limit of the ratio of the number of times we find the system in 
state Ek+1 to the number of times we find the system in the state Ek.  The state Ek signifies a new 
arrival to the queue finding k customers in the queue.   Since in our case m =1, we set σ equal to 
L[X] and substitute μ-μσ for s in the right-hand-side of the equation for L[X] and then we solve 



for σ.  In the above 2 x 2 example, we are left with solving a cubic equation and must chose the 
value of σ that is less than 1.  The purpose of deriving this σ is that the waiting time, W, for a 
generalized arrival process may be expressed in terms of this σ, that is: 

   
)1( σμ

σ
−

=W  

From W, the average waiting time, T, may easily be determined.  In order to determine the 
average number of customers, N, in the queue, we apply Little’s Theorem, where λ is derived to 
be: 
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Thus a set of queueing statistics may be derived for the MMPP/M/1 queue. 
 
Results 
 
 In Figure 1, the running average of the arrival rate of tasks is presented.  A change point 
analysis (Chen & Gupta, 2000) was calculated on the inter-arrival times of tasks to determine 
changes in the arrival rate.  This analysis revealed 3 periods of relatively heavy task flow that 
lasted, 524.1 sec (8.73 min), 375.7 sec (6.26 min), 376.6 sec (6.28 min).  During these periods, 
the average inter-arrival time of tasks was 15.4 sec, 20.9 sec, and 16.4 sec.  Likewise, there were 
3 slow periods that lasted 1995.1 sec (33.25 min), 1381.3 sec (23.02 min), and 1656.9 sec (27.62 
min).  The average inter-arrival time for tasks during these periods was 42.4 sec, 125.6 sec and 
61.4 sec.   From the inter-arrival times, the average rate of task arrivals, λ1 and λ2, can be 
computed for the slow and busy periods.  We assumed that task arrival during these periods was 
Poisson (with different rates).  The average durations for these periods were also assumed to be 
exponentially distributed.  r1 and r2 represent the average time spent in low and high activity 
period, respectively.   

 

Figure 1: Change point analysis based on the inter-arrival time between AWC tasks for 
the entire scenario [0, 6309.4].  Asterisks represent the running average. 



 
 
 In Table 2, the results of the M/M/1 queueing predictions are compared to the actual data 
for the Team 1 AWC operator for the entire scenario.  The server was assumed to vacationing.  
The percent error runs in the 15% - 25% range for the three key statistics – mean number in the 
system -N, mean total time -T, and mean waiting time in the system -W.  Task prioritization was 
removed from this analysis.  The M/M/1 underestimates these statistics.  This is because the 
M/M/1 cannot handle the way in which the tasks pile-up during a burst of rush hour activity. 
 
 
 
 
      
 
 

 
 

 
 
In Table 3, the results of the MMPP/M/1 queueing predictions are compared to the actual 

data.  The server was assumed to be vacationing.  The percent error between observed and 
predicted data now drops down to the 4%- 8% range, and the effect on performance due to the 
ebb and flow task arrival rate is better predicted. 
 
 

22.5911 =λ  
01.1712 =λ  
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37.42512 =r  

Table 2: M/M/1 Queueing model prediction compared to observed AWC data for the 
entire scenario [0, 6309.4],  λ represents overall λ.  
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Predicted 1.247 49.190 31.690 
Observed 1.443 57.256 39.708 
% Error 15.67 16.40 25.30 
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Predicted 1.376 54.245 36.745
Observed 1.443 57.256 39.708
% Error 4.89 5.55 8.06 

 
 

 
The MMPP may also be used to handle correlated arrivals of tasks.  For example, in our 

test there were a total of 4 operators that made up the ADW team.  In the course of the scenario 

Table 3: Two state MMPP/M/1 Queueing model predictions compared to observed 
AWC data for the entire scenario [0, 6309.4].  



we observed correlations between tasks that appeared on the Task Manager display, that is, tasks 
arriving from “outside” the queueing network, and tasks passed between operators – task arriving 
from “inside” the network.  Unfortunately, the total number of tasks for the auxiliary operators 
was rather small.  (The AWC was the main “player” in this scenario).   In order to aid our 
modeling we simulated task arrival and the passing of tasks between operators.   Completion 
rates of tasks was also simulated.  In Table 4 we present the results of comparing the predictions 
for an M/M/1 queue to that of a Matlab simulation of 100,000 tasks presented to the Information 
Quality Control-1  
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Predicted Queueing 0.420 31.976 16.976 
Observed IQC1 0.455 34.464 19.430 
% Error 8.41 7.78 14.45 

Table 4: M/M/1 Queueing model predictions compared to observed IQC1 correlated arrival simulation. 

 
Operator (IQC1) in our queueing network.  As can be seen, the predictions are rather poor 
considering the large number of trials.  This is because, in addition to tasks presented on the TM 
display for the IQC1 (“outside tasks”), he is also passed tasks to do from the AWC (“inside 
tasks”).  There is correlation between the outside tasks appearing on the TM display and the 
inside passed tasks that causes the tasks to “pile-up” in a manner analogous to the rush hour 
effect demonstrated in Tables 2 and 3.  In order to handle this arrival process an MMPP was 
applied to the data and the results are listed in Table 5.   The MMPP model handles the 
correlation among the arriving task as is demonstrated by the models accurate predictions. 
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Mean waiting time for  a task

Predicted Queueing 0.455 34.478 19.478 
Observed IQC1 0.455 34.464 19.430 
% Error 0.03 0.04 0.25 

Table 5: MMPP/M/1 Queueing model predictions compared to observed IQC1 
correlated arrival simulation. 

 
Conclusion 
 
 The Markov-Modulated Poisson process (MMPP) generalizes the arrival process of tasks 
to the operator.  In this manner, the slow down in through put can be effectively measured when 



a burst of tasks arrive that require the operator to take action.    The MMPP/M/1 vacationing 
server predicts operator performance better than the simpler M/M/1 vacationing server under 
conditions where task flow varies.  This predictive capability is vital to predicting performance 
to time critical tasks in CIC workstations.  
 
 Future research will focus on the following topics: 1) the MMPP models can be extended 
to handle task priority.  2) the service process may be generalized to be Erlangian, thus 
predictions for a MMPP/Er/1 need to be generated, 3) the probability distribution of the time a 
critical task may spend in the system due to  a back-log of tasks awaiting service may be 
calculated.   These estimates may then be evaluated by system experts to see if they fall within 
an acceptable range.   
   
 

References 

Chen, J. & Gupta, A.K. (2000) Parametric Change Point Analysis. Birkhauser: Boston. 
 
DiVita, J.,  Osga, G., & Morris, R. (2004) Modeling Team Performance In the Air Defense 
Warfare (ADW) Domain.  Command and Control Research and Technology Symposium, San 
Diego, CA. 
 
DiVita, J & Morris, R. (2005).  The Vactioning Server: Queueing Models for Supervisory 
Control.  Space and Naval Warfare Report, San Diego Systems Center (In press). 
 
Hock, N.C. (1996). Queuing Modeling Fundamentals.  John Wiley and Sons. New York. 
 
KleinRock, L. (1975).  Queueing Systems, Volume I: Theory; Wiley-Interscience, New York.   
 
Osga, G., Van Orden, K., Campbell, N., Kellmeyer, D., & Lulu, D.  (2002)  Design and 
Evaluation of Warfighter Task Support Methods in a Multi-Modal Watchstation.  Space & Naval 
Warfare Center San Diego Tech Report 1874. 
 
Takagi, H. (1991).  Queueing Analysis.  A Foundation of Performance Evaluation, Volume 1: 
Vacation and Priority Systems, Part 1. Elsevier Science Publishing Company Inc., New York. 
 


	 References

