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Abstract  
 
Exploiting data from a network of sensors (netted sensors) is an Enterprise System Engineering 
challenge.  Successfully meeting this challenge will contribute significantly to improving the 
agility of today's Command and Control (C2) Enterprise by achieving its goal of decision 
superiority through better situational awareness.  There is a pressing need to design fusion 
algorithms that combine data from heterogeneous sensors, with the goal of identifying well-
defined Force Protection and Border Security threats.  Data fusion for netted sensors requires 
sensor-to-sensor communication, as well as communication tipping points between the netted 
sensors and the C2 Enterprise.  Solutions are needed that fluidly respond to this multi-scale 
challenge.  Quorum sensing or cell-to-cell “communication” in microbial populations has shown 
that bacteria can indeed act as a collective rather than only as individuals (Taga and Bassler, 
2003).  Analogously, an Enterprise has both individual and collective behavior.  Decisions that 
are made at the collective scale (e.g. force) rely on information that is obtained at the individual 
scale (e.g. unit); this information must be communicated effectively.  In this paper, insight 
gained from the mechanism used in a robust, adaptable biological system is applied to the 
technical challenge of data fusion for netted sensors. 
 
Introduction 
 
The integration and use of data from large networks of interoperable (netted) sensors can be 
characterized as a complex system engineering problem, which is defined here as a discrete or 
continuous system composed of many parts that interact in a nonlinear fashion.  An Enterprise 
view of netted sensors is explored through a detailed study of one biologically inspired 
distributed control algorithm.  Such algorithms are hypothesized to inform individual behavior to 
population response dynamics for important netted sensor applications.  Distributed control 
algorithms that yield a desired global response without global control is vital for Force Protection 
and Border Security, using a variety of technologies including, acoustic, chemical, and biological 
sensors—on the ground, on soldiers, on equipment, etc.  Similar issues also arise in Homeland 
Defense and Security, Distributed Operations, and Disease Transmission.  In addition, this 
technology can be used for “always on sensors” that are carried on individuals to monitor local 
conditions.  
 
Complex Biological Systems 
 
In the area of complex biological systems, there are two approaches or themes that could benefit 
Command and Control Enterprises.  The first theme (1) is using biological mechanisms for 
physical system or hardware design.  Bogatyreva et al. (2005) has developed a ‘biological 
patents’ database called the TRIZ frame work, which is an attempt to catalog various biological 
mechanisms in a searchable database.  The database catalogs and classifies the effects of a given 
action (mechanisms of function) from the molecular to ecosystem scale.  The database primarily 
focuses on system design; for example, an individual jellyfish swims by partitioning its energy 
into three components: one generates pressure within a cavity, the second overcomes the inertia 
of the jellyfish’s movement, and the third deforms the tissue (database search—swimming).  
Theme 1, although productive, does not help in understanding the complexity of the C2 
Enterprise. 
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The second theme (2) accounts for the complexity of the C2 Enterprise by using natural 
biological behavior to design Enterprise capability and functionality, such as data fusion.  
Natural systems evolve and often exhibit emergent behavior that has agility and robustness.  This 
is exemplified well by the use of swarming behavior to design sophisticated algorithms; for 
example, swarming can be used for generating optimal search patterns for Unmanned Aerial 
Vehicles (UAVs).  Reverse engineering of complex biological systems is hypothesized to 
provide novel approaches in netted sensor data fusion system design.   
 
Strategies from the autonomic nervous system, namely, reflex reaction and health signs have 
been examined for use in Autonomic and Grid Computing (Sterritt, 2003; Bapty et al., 2003).  
Furthermore, Anthony (2004) used the pheromone-exchange communication system of ants to 
design communications protocols such as election algorithms.  Traditionally, election algorithms 
are deterministic; however, the non-deterministic biologically inspired algorithm was shown to 
have robustness, stability, and scalability.  Apoptosis or cell self-destruction has two control 
loops, one that promotes cell growth and self-destruction at the same time and one that provides 
an override for the self-destruction signal (Sterritt and Hinchey, 2005).  Such biologically 
inspired algorithms are hypothesized to extend to other domains.  Theme 2 addresses the 
complexity of the Enterprise by attempting to include the people, the processes, and the 
technology. 
 
In summary, theme 1 applies to system design and theme 2 applies to Enterprise functionality.  
Our ongoing research program maps biological algorithms to netted sensor design challenges, 
using standard mathematical approaches to establish the properties and robustness of the 
emergent system behavior.  One example, quorum sensing or cell-to-cell “communication” in 
bacteria is discussed in detail here.  In the past 10 years, the biological sciences have become 
increasingly mathematical as engineers, mathematicians, and physicists have tackled biological 
problems.  This synergy has led to an increasing number of research papers that mathematically 
describe biological mechanisms.  In order to evaluate if biological mechanisms can provide 
insights for individual behavior to population responses in C2 Enterprises, we must understand 
the biological dynamics as well as the netted sensor challenges.  This will allow advantageous 
features to be adapted and disadvantageous features to be identified. 
 
Individual Behavior to Population Response Dynamics - Biological Example 
 
Modeling of the transmission of infectious disease is a good example of individual behavior to 
population response dynamics, which has also been modeled using various mathematical 
techniques.  The various modeling approaches are reviewed here and their limitations are 
explored for use in the development of the quorum sensing algorithm.   
 
Often, different disease transmission models give different results, as illustrated by the studies of 
Kaplan et al. (2002) and Halloran et al. (2002), in which assumptions on the homogeneity of the 
population led to opposite results for the effectiveness of mass vaccination for an outbreak of 
smallpox (Eubank et al., 2004).  Figure 1 shows the studies reviewed included deterministic and 
stochastic models with various methods of assigning social and spatial structure. 
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Figure 1:  Recent modeling and simulation studies for disease transmission.  

 
 

Population, intermediate, and individual (e.g. agent-based) scale dynamic models are used to 
model disease spread (Figure 1).  In the dynamic population models, such as SEIR (susceptible-
exposed-infectious-removed), differential equations provide a refined analysis of the path of the 
disease through a population.  These standard tools also provide some robustness, provided 
dynamic parameters can be estimated.  The standard SEIR model has homogeneous mixing—an 
individual has an equal chance of contacting any individual in the population (Ferguson et al., 
2003).  At the intermediate scale, models are often developed for populations stratified by age, 
socio-economic factors, geographical location, etc.  In these models there is heterogeneous 
mixing—individuals have different probabilities of contacting specified population subgroups 
(Ferguson et al., 2003).  There is a trend towards modeling techniques that predict non-linear 
population behavior from individual responses (e.g. homogeneous to heterogeneous models).  
 
In the dynamic individual or agent-based models, disease is studied in a simulated society 
through interacting individuals or agents.  The contact patterns and disease transmission on the 
scale of individuals has been used in the model EpiSim (Eubank et al., 2004), which provides an 
excellent tool to study emergent population-scale consequences.  However, these models tend to 
be computationally and data intensive for adequate validation and parameter estimation 
(Ferguson et al., 2003).  Theoretical viewpoints, such as small-world graph theory, continue to 
evolve in ways that have substantial impact on our understanding of disease consequence.  Since 
individuals form stable networks, such as family, friends, and colleagues, this greatly determines 
transmission dynamics (Ferguson et al., 2003).  
 
Lessons learned suggest that the degree of model detail should be as small as possible to capture 
the underlying dynamic of interest, yet must be balanced with the ability to validate the model.  
Historical data is often the most reliable data and is the only means of estimating certain 
parameters.  Model detail, in this case, can include disease biology, human contact patterns or 
socio-spatial structure, cost-benefit analysis, risk assessment, disruption to civic society, level of 
vaccine use, overall resource requirements, and ability to implement policy (Ferguson et al., 
2003).  For example, if the disease spreads from person-to-person then it is necessary to include 
spatial structure in the model.  Determining how infectious the disease is during its different 
phases can also have a large effect on model behavior. 
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An Initial Case Study – Netted Sensors 
 
Netted sensors are a good candidate for individual behavior (e.g. sensor) to population response 
(e.g. situational awareness) dynamics.  The initial case study of netted sensors for Force 
Protection and Border Security presents the following challenges: data processing, 
communication between nodes, network resource management, data fusion, and security. 
Biological systems are robustly adaptive and often rapidly converge to the most efficient energy 
state—a behavior desirable for data fusion algorithms.  Bacteria can act as individuals or a 
population, as illustrated in Figure 2.  In this example, an individual bacterium self-regulates its 
gene transcription to produce light or bioluminescence when a "quorum" of bacteria are present.  
The local population illustrates quorum sensing or cell-to-cell “communication” at a 20 μm 
spatial scale and the global population depicts a 250 km x 50 km area over the Indian Ocean that 
is bioluminescent (Miller et al., 2005).  Though the three examples occur on different spatial and 
temporal scales, a common mechanism is shared—the diffusion of a quorum sensing molecule 
(QSM) that triggers gene transcription. 
 
Similarly, Tier 1 consists of lower capability sensors (also referred to as motes) that are 
analogous to the bacterium.  Tier 2 consists of higher capability sensor nodes that are shown 
spatially distributed in the southwest and northeast United States.  Command and Control 
integrates information from Tier 2 nodes, in this diagram, with the overall goal of responding to 
a particular global situation by operating each sensor in a particular mode while minimizing 
inefficiencies.  Therefore, we hypothesize that netted sensors can exhibit individual behavior to 
population response dynamics (Figure 2).  
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Figure 2: Similarities between bacterial quorum sensing or cell-to-cell “communication”  
(global bioluminescence image from Miller et al., 2005) and netted sensors.  
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We further hypothesize that biologically-inspired distributed control algorithms may provide 
novel solutions to address the data fusion challenge.  Data fusion refers to collecting, processing, 
and combining information from different sensor and knowledge sources to increase the 
understanding of a situation.  Analysis at both local and global data fusion scales is hypothesized 
to lead to decisions that results in an improved situational response.  Sensor sources may include 
a variety of radars, passive and active electro-optic detection/imaging systems, as well as satellite 
imagery.  In contrast, knowledge sources may include information streams supplied by 
experienced personnel on site or from remote locations.  Additional fusion challenges arise 
because the statistics used to describe data supplied by sensor sources can vary dramatically from 
data supplied by knowledge sources (e.g. natural language descriptions). 
 
Consider the two following data fusion challenges.  First, a real-time operational data fusion 
system needs to assemble facts from both sensor and knowledge sources and generating 
hypotheses that best reflect the ground truth.  Unfortunately, the amount of data produced by 
sensor sources often overwhelms human analysts; therefore, much effort in data fusion research 
has been focused on automating the processing of data from complete or incomplete data sets 
(Goodman, 1997).  Second, a lack of standards in the data fusion field has been a major setback 
for automatic processing, integration, and re-use of available data fusion technologies. Several 
papers that suggest refinement to the widely used Joint Directors of Laboratories (JDL) Data 
Fusion model have been proposed (Linas, 2004).   
 
Communication between motes can involve sending as little as a bit (2 levels such as active or 
passive) of data.  Radio Data Standard (RDS) is a protocol currently used to communicate very 
small (~25 bits) packets of data (Nguyen et al., 2004; Ruffieux et al., 2004).  TinyOS uses a 
protocol to communicate that has 29 bit data packets (Levis et al., 2004).  Such a protocol 
together with a quorum sensing-based algorithm may promote the implementation of low power, 
low data rate, low bandwidth, short-range communications.  Currently research on motes 
includes dynamically reconfiguring the mote fields.  Data fusion for the lowest capacity 
operating systems or "mote fields" closely resembles a bacterial complex biological system.  The 
quorum sensing mechanism in the bacterial population is very low level—it is not “intelligent” 
but genetically programmed in each bacteria.  This contrasts with swarm intelligence where the 
agents or nodes are more sophisticated.  We therefore explore quorum sensing and netted sensors 
in detail in the following section. 
 
Applying Quorum Sensing Algorithm to Data Fusion 
 
One candidate biological system, quorum sensing or cell-to-cell “communication,” is shown in 
Figure 3 (Ward et al., 2001).  The quorum sensing molecule (QSM) and the quorum sensing 
protein (QSP) form a complex that binds to the chromosome.  When the complex is bound to the 
chromosome, the production of the QSM is up-regulated (white) and when it is not, the gene-
production rate is down-regulated (gray).  Bioluminescence is produced when a threshold value 
of the QSM is reached. 
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Figure 3: The mechanism for bacterial bioluminescence from Ward et al., 2001.  The up-
regulated state is shown in white and the down-regulated state is shown in gray. 

 
 
The up-regulated state (Nu) is defined in Equation 1 and is a function of cell division (γ) where 
the doubling rate is ln(2)/r, growth rate (F), complex formation (G(A)) where A is the QSM 
concentration.  The α refers to formation rate of the up-regulated state while β refers to the 
breakdown rate—in other words, the dissociation of the QSM-QSP complex while it is bound to 
the chromosome. 
 

ududu
u NNAGNNFNr

dt
dN

βαγ −++−= )()()1(    (1) 

 
Similarly, the down-regulated state (Nd) is defined in Equation 2. 
 

ududud
d NNAGNNFNNr

dt
dN

βαγ +−+−+= )()())2((   (2) 

 
The concentration of the extra-cellular QSM (A) is defined in Equation 3 and is a function of the 
production of QSM in both the up-regulated (rate Ku) and down-regulated (rate Kd) states, the 
use of QSM  in complex formation (G(A)), where α is the formation rate of the up-regulated 
state and λ is the disappearance rate of the QSM (A).   
 

ANAGNKNK
dt

dA
ddduu λα −−+= )(     (3) 
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The three equations above are deterministic population scale differential equations.  The 
mathematical framework is assumed to be well-mixed, so there is no concentration gradient of 
the QSM.  One extension of the existing research, includes introducing a spatial component that 
would represent a sensor network that is not homogeneously distributed—a spatially disbursed 
mote field.  Reaction diffusion equations and wavefront propagation has been useful in 
describing biological systems that cannot be assumed to be well mixed (Doering et al., 2003).  
For example, mushrooms, the reproductive organ of fungus (e.g. ferry ring), can be described 
using two phases of wave front propagation (e.g. stochastic differential equations since partial 
differential equations requires that the n → ∞).  Therefore, fusion agent behavior that is 
advantageous is propagated through the sensor network.  For example, nodes become active in a 
certain region and the threat is tracked through the network.  This leverages understanding the 
local conditions, especially what happens on the edge of the detection zone, and exploiting the 
information. 
 
To demonstrate the application of quorum sensing dynamics to netted sensors, we developed an 
individual node scale (e.g. agent-based) model with spatially distributed QSM densities.  In this 
case, we formulate the model so that the spatially distributed population scale models have 
nonlinear dynamics similar to Equations (1-3) and adapted it to the detection problem at hand.  
For our illustration, 600 sensors are distributed randomly and independently, with uniform 
distribution, over a 1 km square region.  Each sensor has a local neighborhood defined as all 
other sensors within a 100 m radius.  Note that, since the sensor locations are random, the 
number of neighboring sensors is also a random variable.  In our example, the mean and the 
variance of the number of neighbors are both approximately 18.5 (without edge effects, we 
would expect a Poisson distribution for this variable). 
 
Figure 4 shows the placement and distribution of sensor nodes in the field.  A detection target 
moves across the field from the lower left to the upper right in 1000 time steps.  At each time 
step, each sensor independently has a probability of false alarm of 0.0005, leading to a Poisson 
distribution (mean: 300 = 600*0.0005*1000) for the total number of false alarm events during 
the test.  For each sensor located at sx  and target located at tx , independently at each time step, 
we also have a probability of a sensor detection of 
 

2

2
|| ||1 exp2 2

s t
d

t

x xP
σ

⎛ −
= −⎜⎜

⎝ ⎠

⎞
⎟⎟       (4) 

 
Note that, for a sensor located directly at the moving target, that the probability of a detection is 
only ½. Detection probabilities decline rapidly as the distances between sensor and target 
increase, with tσ  describing the spatial scale of detection.  In the analysis that follows, we 
illustrate the challenges at different spatial scales.  A sensor  registers a signal detection 

 at each time step t  if either a false alarm occurs or a target causes a detection, and h
k

( ) 1kh t = k(t) = 
0 at each time step if signal detection is not registered. 
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Figure 4:  Sensor locations based on a Poisson distribution. 

 
 
Next, we investigate the dynamics.  For sensor k , let state ( ) 1ku t =  indicate target present and 0  
indicate no target present.  ( )kA t  will then represent the QSM concentration or shared 
information for node .  We implement a split step procedure for updating the node.  First, we 
find 

k
( )kA t  and  based on the current network state.  We then check for new sensor signal 

detections  and update .  We have 
( )ku t −

( ) 1kh t = ( )ku t
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Here  is the number of neighbors of node , kN k β  describes the decay or forgetting rate of the 
detected signal, and α  the quorum sensing effect.  In our illustration below, we use 0.15α =  and 
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0.25β =  to balance the nonlinear increase against the decay.  Figure 5 shows a typical time 
snapshot of the sensor field tracking the target.  The maximum neighborhood here is the 
neighborhood of the node at time  with maximum QSM concentration k t ( )kA t . 
 

 
Figure 5:  A tracking example for detection scale 60tσ =  m. 

 
Success in tracking is closely dependent on the scale of the node neighborhood and the scale of 
the target detection scale .tσ   If .tσ  is too small, then too few sensor signal detections occur to 
establish a track.  If .tσ  is too large, then the detections form a large group, and the target, 
although inside the group, may sometimes not be in the neighborhood of the node k  at time t  
with maximum QSM concentration ( )kA t .  Figure 6 illustrates this behavior.  For very small .tσ , 
the target is in the maximum neighborhood less than half the time.  Misses in this case tend to be 
large, with the track dropped.  Tracking for well-matched .tσ  is excellent, with misses occurring 
primarily for targets at the edge of the sensor field.  When .tσ  is too large, the target is 
sometimes quite near, but still outside the maximum neighborhood. 
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Figure 6: Fraction of time the target is in the maximum neighborhood based on 10 simulated runs 

at each detection scale (log scale).  Error bars are 95% confidence intervals. 
 
 
Agent-Based Approaches to Complex System Engineering Problems - Data Fusion 
 
How can modeling and simulation assist in complex system management when by definition 
complex systems are unique and impossible to predict?  Developing models with a high degree 
of accuracy or fidelity will not benefit complex System Engineering, where changing the pace or 
direction of the complex system is the prime objective.  However, if models could be developed 
cheaply (e.g. medium fidelity) to explore alternatives—they may be of use.  Running multiple 
scenarios would make it possible to provide decision makers with the probability of how certain 
interventions may affect the complex system or Enterprise.  For example, using a simulation 
model to test how changing the current operating parameters will affect the threat being handled. 
Such a modeling effort would not provide exact predictions, but would indicate the probability of 
certain outcomes—or consequence analysis.  Complex biological systems and Enterprises 
function at multiple scales; thus, a technical approach is needed that can model multiple scales 
and respond to complexity.  The approach needs to accommodate emergence (self-organization) 
as well as allow top down (hierarchical) directives. 
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In computer science, management, and the social sciences, complex systems composed of 
disparate elements have been analyzed using distributed or agent-based approaches.  Agent-
based modeling has been successfully used to explore stock market dynamics (Nasdaq), design 
department/grocery stores (Macy’s and Sainsbury’s), explore hiring strategies (Hewlett-
Packard), explore operational risk (Societe Generale), and design stadiums, shopping malls, and 
amusement parks (Bonabeau, 2002), as well as in disease modeling (Eubank et al., 2004).  
Information exchange between parts of the Enterprise can be (1) tight coupled in which groups 
strongly influence each other, (2) loose coupled in which groups do not strongly influenced each 
other, or (3) decoupled in which groups do not interact with each other. Loosely coupled systems 
tend to have greater flexibility promoting robust and adaptive behavior (e.g. Internet).  In loosely 
coupled systems, control is separated from the system through the specific control interfaces 
(points of coupling).  A distributed or agent-based approach, as illustrated using quorum sensing 
algorithm, can leverage this attribute. 
 
In netted sensors, the distributed sensor node or agent must be able to automatically start up, 
determine its resources, receive communications (from higher Tiers, Command and Control, 
and/or neighbors), and fuse information as shown in Figure 7.  Based on information fusion, 
decisions to sample or transmit information are made.  The proposed quorum sensing algorithm 
is for information fusion or integration; for example, a decision to turn on (up-regulation in 
Figure 2) or turn off (down-regulation) the sensor.  Similarly, the decision could be used for 
deciding whether or not to communicate with neighbors.   
 

Auto Start-up

Determine 
Resources 

Receive 
Communications

Information 
Fusion

Sample as 
Directed by 

Agent

Transmit to 
Neighbors

Transmit to C2

 
Figure 7: Functions of the distributed sensor node or agent. 

 
 

Modeling agents captures the heterogeneity of the system. Emergent phenomena are often 
distinct from the behavior of the agents.  As outline by Bonabeau (2002), top down techniques 
use global equations and frameworks and emergent behavior is bottom up, starting with local 
interactions of independent “agents” that lead to group behavior.  Furthermore, Bonabeau (2002) 
states that regression analyses and system dynamics (differential equations) “are currently 
impotent in analyzing and predicting them [emergent phenomena]” and “agent-based modeling 
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helped connect the local behavior of country managers to the global performance of the 
organization (Bonabeau, 2002).”  It appears that a hybrid technique, both bottom up and top 
down, may be necessary and this has recently been endorsed in tackling problems in the US 
healthcare system, including Enterprise management tools supply-chain management, game 
theory, system dynamics, and productivity measuring and monitoring (Reid et al., 2005).   
 
Concluding Remarks and Future Work 
 
This interdisciplinary effort reflects an Enterprise view of netted sensors through the exploration 
of biologically inspired distributed control algorithms.  Such algorithms are hypothesized to 
inform individual behavior to population response dynamics for important netted sensor 
applications such as data fusion for Force Protection and Border Security, as well as extending to 
other domains.  Quorum sensing or cell-to-cell “communication” has been shown to have 
promise for tracking a target in a sensor field.  Through distributed control or agent-based 
approaches, mote fields can be designed to allow for emergent behavior and learning.   
 
Biologically inspired distributed control algorithms that yield a desired global response without 
global control is desirable for each mote.  Once candidate algorithms are developed, the sensor 
network performance, both for hierarchical (e.g. resource manager) and flat (e.g. distributed) 
architectures, can be determined.  Quantitative figures of merits such as receiver operating 
characteristic curves and efficiency of detection can then be generated.  A quantitative method to 
identify the global situation (e.g. Command and Control) from the state of the entire population 
can also be established.  Lastly, the fundamental differences and similarities between the 
biological and netted sensor systems can be determined.  
 
Parallel research in parley and consensus data fusion in the engineering literature also has 
valuable information for algorithm development (Xiao et al., 2005; Boyd et al., 2005; Ren and 
Beard, 2005), and will be investigated.  Particle filtering (Djuric et al., 2003) has some 
similarities to the quorum sensing mechanism.  A dynamic parameter is estimated similar to the 
population density in the bacterial system.  Both the particles and the bacteria are discrete, which 
may lead to insight for the robustness and adaptability of the system.  Providing rigor to agent-
based modeling is necessary.  Much work exists in the artificial intelligence community.  Process 
algebra or preference based decision making from theoretical computer science can be used to 
promote favorable emergence. 
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