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Abstract: The paper compares the state of the art in two different problem areas: 
artificial intelligence (AI) theory and the practice of military planning. In particular, 
hybrid metaheuristic scheduling and the operational decision-making process are 
compared. Although very different in nature, they share a striking number of 
commonalities resulting from their focus on real-world problems. This paper proposes 
ways in which each field could benefit from the other. 

1. Introduction 
The Netherlands Defence Academy (NLDA) is responsible for academic officer training for all four 
services (Royal Dutch Army, Air Force, Navy, and Marechaussee). In addition, it conducts research 
under the following six research themes: 
1. Optimising the operational effort of manpower and materiel. 
2. Preparing for future wars. 
3. Intelligent support for operational decision-making. 
4. Technology-induce transformation. 
5. Collaboration between organisations. 
6. Availability of military manpower and equipment. 
This paper is concerned with theme (3). Key research questions in providing intelligent support for 
operational decision making are: 
1. How can we speed up the operational decision-making process? 
2. How can we ensure that the correct decisions are taken? 
The research reported here focuses on speeding-up the operational decision-making process. A 
time-consuming part of this process is generating plans. The paper summarises the results from a 
preliminary study to compare military practice in generating operational plans with the state of the 
art in AI planning theory, with particular reference to hybrid metaheuristic scheduling. Both 
military practice and planning theory are undergoing transformation. Although the reasons are 
totally different, striking similarities are emerging. Our research was motivated by the idea that 
these similarities could be exploited for mutual benefit. 
The paper outlines AI planning theory and hybrid metaheuristic scheduling (HMS) in particular, 
comparing HMS to the military operational decision-making process (ODMP). The commonalities 
are highlighted, and the potential implications for the military planning process are derived. 



2. AI Planning Theory 

2.1 Planning and scheduling 
Planning and scheduling (P&S) problems occur everywhere in everyday life. Every situation in 
which actions are ordered or timed can be regarded a P&S problem (Biundo et al, 2003). Examples 
of P&S range through: 
• Parameter optimisation. This involves finding the best set of parameter values. Parameters are 

unordered. 
• Budgeting. This involves matching a set of resources to a set of needs, where the mapping from 

resources to needs is irrelevant. 
• Resource allocation. This is similar to budgeting, but where the mapping is relevant. 
• Timetabling. This is a specialisation of resource allocation with chronologically-ordered needs. 
• Sequencing. This involves ordering actions into a logical sequence. The sequence may be 

linearly or partially (non-linearly) ordered. 
• Scheduling. This involves ordering actions chronologically and assigning them start- and end-

times. 
• Design or assembly. This involves ordering actions in spatial order or in the order of assembly. 
• Routing or navigation. This involves actions both spatially and chronologically. 

2.2 Classical planning in AI 
In AI, planning research focuses on the generation of plans, either automatically or in cooperation 
between automation and human planners (mixed-initiative planning). Plan generation is defined as 
the process of composing a set of operator schemata and assigning times and resources into a plan 
that, when executed, will change the state of the application domain from an initial state into a 
desired goal state. An operator schema is the generalised representation of a state-transition. 
Typically, the STRIPS representation (Fikes, Hart & Nilsson, 1972) is used, in which a schema has 
preconditions and effects. The preconditions are the elements of the domain state that must be true 
for the state-transition to take place, and the effects are the additions to and deletions of these state-
elements that occur once the state-transition has taken place. Plan-generation algorithms exploit 
these preconditions and effects in selecting and sequencing the schemata. 
What distinguishes AI from non-AI planning is the treatment of domain-specific knowledge. In AI 
planning, only the operator schemata are domain-specific. This means that the same plan-generation 
algorithm can – in principle - be used to generate plans for different domains just by changing the 
set of operator schemata, similar to using the same compiler to compile different source-code 
programs. 
Plan generation has shown to be intractable for complex real-world problems. To make such 
problems tractable, restrictive assumptions must be made. The assumptions in classical planning 
are (Ghallab, Nau & Traverso, 2004): 
• The application domain exhibits a finite set of states. 
• All information about the application domain is available before plan generation begins, i.e. no 

observations need to be made to collect information about its state or the possible transitions 
that could occur. 

• The domain is deterministic, i.e. there is no uncertainty and all information is complete and 
correct. 

• All domain events are controllable by the planner, i.e. no external agents can change the state of 
the domain. 

• The set of possible goal states is itself finite and restricted by comparison to the set of all 
possible domain states. 

• All plans to be generated are sequential, i.e. linearly ordered. 



• Time is implicit, i.e. the duration of states is unimportant, transitions are instantaneous, and 
there are no temporal constraints such as deadlines. 

Real-world planning domains violate one or more – if not all - of these assumptions. For example, a 
domain containing consumable resources such as fuel or money will exhibit an infinite set of states. 
Where there are other “players” in the domain then the fourth assumption will be violated. Time is 
important in almost every practical problem, turning planning into scheduling. 
The state of the art in AI planning research is to create algorithms for problems in which one or 
more of the classical planning assumptions are relaxed. 

2.3 Hybrid metaheuristic scheduling 
One approach to generating plans for non-classical problems is to maintain a set of algorithms. 
During the plan-generation process, the most suitable algorithm for the stage reached in the process 
is used. Several algorithms will be applied in the course of generating a plan. This approach is 
known as hybrid planning. If time or resources are involved, then it is known as hybrid scheduling. 
This way of linking algorithms together is called hybridization (Gomes and Selman, 2001; Grant, 
1986). Hybrid algorithms are a very recent playing field in metaheuristics research. Hybridization 
can be done in several ways. For example, different algorithms can act as islands within the bigger 
planning system, occasionally exchanging information. They can also be fully interleaved, resulting 
in a new algorithm. The algorithms can do their work in turn, resulting in a stovepipe model, as 
opposed to the teamwork model where the algorithms run in parallel. Talbi (2002) has developed an 
extensive taxonomy of hybrid metaheuristics.  
As we have seen, planning problems may not turn out to be as expected from the type of problem 
that is to be solved. Moreover, the problem itself may change in dynamic environments. Applying a 
fixed hybridization may yield good results, but a really robust hybrid system should choose its 
constituents on the fly. Burke et al. (2003a) describe systems that pick algorithms from a portfolio. 
An interesting aspect of these systems is that they need an intelligent decision maker to make the 
actual algorithm choices (Burke et al., 2003b). 
Additional problems that hybridization introduces are: 
1. Which algorithm is most suitable for the current stage of the plan generation process? 
2. In what order should the algorithms be applied and for how long? 
In other words, hybrid planning introduces another P&S problem at a higher (meta) level. 
The meta-level problem must be solved during the course of the plan-generation process, i.e. in real 
time. A common technique for controlling P&S problems in real time is to use heuristics, i.e. rules 
of thumb. Heuristics for a higher-level problem are known as metaheuristics. 
Metaheuristics are search methods that are not problem-specific (Blum & Roli, 2003). They are 
more generic in nature, automatically searching solution spaces that can be described in terms of a 
fitness landscape. Different metaheuristics have been developed over the last two decades. 
Recently, they have been grouped and compared as different specimens of the same family. 
Evolutionary algorithms and tabu search are examples of well-known metaheuristics. All 
metaheuristics have in common that they perform two basic operations: they explore the search 
space and they exploit the promising regions. Sometimes these two processes take place in parallel, 
sometimes in a more sequential manner.  
Different metaheuristics have different characteristics. Some put a stronger accent on exploration, 
others on exploitation. Depending on the problem, a certain metaheuristic may be more suitable 
than another. For example, when the fitness landscape is very large and contains a great number of 
peaks, the emphasis should lie on the exploration part of an algorithm, a task that can very well be 
performed by an evolutionary algorithm (Eiben & Smith, 2003). Other search spaces have a smaller 
amount of peaks, calling for emphasis on exploitation: where is the exact top of the peak? Tabu 
search (Glover & Laguna, 1997) would be an obvious choice for such a problem.  



In more realistic dynamic planning problems, it is important to retain an amount of exploration and 
exploitation in parallel. Thus, when a solution becomes outdated, the planner can quickly catch up 
with a good alternative solution. Andrews and Tuson (2003) have shown that both strongly 
exploring and strongly exploiting algorithms have at times good characteristics in catching up on 
changing situations. This gives rise to the question of how both qualities of such algorithms can be 
used simultaneously. 
Hybrid metaheuristic scheduling is the employment of rules of thumb to select and apply algorithms 
for generating schedules, i.e. for solving planning problems involving time and resources. 
According to Burke (2003a), HMS techniques: 
• Are faster than single algorithms 
• Provide solutions of better quality than single algorithms 
• Are more robust than single algorithms 
• Are more broadly applicable than single algorithms 
These advantages of HMS techniques offer us what we are seeking, namely a potential way of 
speeding up the planning part of the ODMP. 

2.4 Indications for applying HMS 
There are a number of planning situations for which hybrid metaheuristic scheduling is indicated. 
These situations are described in the following sub-sections. 

Hard versus soft constraints 
Planning problems can be categorized along a wide range of variables. The more jobs that have to 
be planned and the more resources that can be used to execute the necessary operations, the more 
options the planner has to choose from. These choices are not free, as hard constraints have to be 
met. A feasible solution is a plan where all hard constraints have been met. Soft constraints, or 
optimality criteria, direct the search for the best solution even further. Unlike hard constraints, they 
cannot decide for solutions to be feasible or not. They provide a means of comparing different 
(feasible) solutions. Typical soft constraints are “minimize makespan”, or “maximize profit”. 
Constraints can even be mixed in nature, e.g. “minimize completion time (soft), but ensure it does 
not exceed 10 hours (hard)”. Quality of Service (QoS) levels define the minimum quality for soft 
constraints. 

Multi-criteria optimization 
In most real-life problems, multiple hard constraints have to be met, directed by multiple soft 
constraints. This introduces dilemmas, for example when a new candidate plan is valued higher 
according to one of the soft constraints, but worse on another. In such cases, instead of having just 
one optimal solution, some kind of multi-dimensional boundary has to be drawn consisting of 
pareto-optimal solutions. These solutions are optimal with respect to one or more of the criteria, but 
usually not all. T’kindt & Billaut (2002) present an elaborate overview of multicriteria scheduling. 

NP-hard problems 
When a problem is simple, e.g. when only a few tasks have to be performed on a limited set of 
resources, the possible solutions can simply be enumerated, after which the best one can be chosen. 
When the number of tasks, resources and constraints increase, the number of options to choose from 
increases as well. NP-hardness means that the amount of options is no longer a polynomial function 
of the problem size. In those situations, enumerating the options and choosing the best is no longer 
feasible (Garey & Johnson, 1979). 



Dynamic problems 
Using soft constraints as mentioned above makes it possible to value solutions. When the fitness of 
each solution is known, the solution space can be viewed as a fitness landscape, see Figure 1. Peaks 
in the landscape correspond to high-valued solutions. But problems may also be dynamic in nature: 
they continuously change as new orders come in and the execution of others has finished, variables 
or constraints change, etc. In such cases the fitness landscape is not fixed, but varies like waves on 
water. There will be no single solution because the optimum is always changing (Angeline, 1997).  

 
Figure 1.   An example fitness landscape. 

Typically, in dynamic planning problems, another type of hard constraint comes into play: 
maximum planning time. This constraint is not related to the actual problem, but it is another QoS 
constraint put on the planner. The planner is then forced to come up with a solution within a certain 
amount of time.  

Incomplete and uncertain knowledge 
Another aspect is that the knowledge the decision maker has of the problem instance or the problem 
domain may be incomplete or uncertain. If so, the problem solver must fall back on his experience 
to assess the situation. In the dynamic planning problem described above, the future is typically 
unknown. The experienced problem solver will try to make predictions to assess the viability of his 
plans. 

3. Military Operational Decision-Making 

3.1 NATO ODMP 
The NATO-standard operational decision-making process (ODMP) is taught to officer cadets of all 
military services in many nations, including the Netherlands. It is designed for hierarchical 
organisations, clear goals, and rational decision makers. Characteristics of the ODMP are: 
• It emphasises the planning process before an operation begins. 
• It assumes a hierarchical organisation. 
• It is a successive, top-down decomposition process. 
• Planning at each level of decomposition is largely linear; see Figure 2. 
• Planning at any given level can only begin when planning is complete at the next level up. 

Warning orders allow some overlapping. 



• Synchronisation is achieved by deconfliction at the next level up, rather than peer-to-peer. 
Liaison officers allow some cross-hierarchy information flow. 

• There is no specific provision for multi-displinary collaboration. 
• It assumes rational decision makers. While option selection is not exhaustive, decision makers 

are advised to consider three own and three enemy courses of action (COAs). 
• Step 7 enables limited projection by wargaming each own COA against each enemy COA. 

Projection is limited because neither COA is altered by confrontation with the opposing COA. 
• Decision makers may partially tailor the process. This makes compliance and interoperability 

dependent on shared terminology, training, culture, and infrastructure. 
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Figure 2.   NATO-standard operational decision-making process. 

Operational decision-making has many of the characteristics of the rational decision making model. 
The rational decision-maker gathers an exhaustive set of information, evaluates each option against 
the evaluation criteria, compares the set of options against one another, and selects the best option 
without regard to previous or future problems. Scientific analysis of rational decision-making 
centres on option evaluation and selection. 
The attraction of the rational decision-making model is that it has been proven to be optimal. Its 
main disadvantage is that it is a time-consuming process. Moreover, optimality is dependent on the 
completeness and correctness of the input information. However, this is hardly ever encountered at 
combat situations. Moreover, the future cannot be predicted as of yet, so completeness of 
information can never be gained. Furthermore, the evaluation criteria should yield comparable 
results, otherwise no sound comparison can be made. In real life however, different criteria are of 
different sort, and consequently cannot be compared without the use of some translation to 
comparable amounts. Finally, the process assumes an unchanging world, whereas the real world 
actually changes during the decision making process. Enemy movements, for instance, will cause 
preventive movements on our side, possibly resulting in obsolete plans. 
As a consequence, the theoretical guidelines are seldom followed strictly. Holewijn (2004) 
investigated 101 operational situations where difficult decisions had to be made, and found that the 



model was properly used in only seven cases. In most cases, a straightforward decision was made 
based on experience. Hence, theory and practice differ greatly in most crisis response situations. 

3.2 Naturalistic approach to operational decision-making 
In the military domain planning problems are usually performed by human problem solvers. 
Research performed on planning in the military and related crisis management domains shows a 
number of typically recurring problem aspects. Holewijn (2004) presents a more elaborate overview 
of these aspects. 
In real-life, decision makers often have to make up their goals as they go, as the problem is ill 
defined and ill structured. Apart from that, there may be shifting goals during execution, and there 
may be competing goals. The planner typically finds himself in an uncertain and dynamic 
environment. As a result of these dynamic goals and environments, planning cannot be a 
straightforward stovepipe process. Instead, action/feedback loops are continuously challenging 
decisions that have been made. Multiple players make the uncertainty even worse, as each has its 
own goals, potentially colliding with your own goal. Crisis management obviously involves a lot of 
time stress aggravated with high stakes.  
Klein (1998) and his colleagues studied naturalistic decision-making (NDM) in a wide range of 
crisis management situations. They showed that expert decision-makers working in their real 
environments did not follow the rational decision-making model. A major incentive for them to 
start searching for a new decision-making model was a fire-fighter’s classic remark: “I don’t make 
decisions. I don’t remember when I’ve ever made a decision.” (Klein, 1998, p. 11).  
Klein’s recognition-primed decision-making (RPDM) model revolves around a number of main 
features. One is the power of experience – i.e. the experts’ ability to match situations to templates 
developed from previous experience. A template consists of a set of cues for matching, a course of 
action to perform if matching succeeds, a set of expectations to check that the course of action is 
proceeding correctly, and a set of plausible goals. Another feature is the power of mental 
simulation – i.e. experts’ ability to make a mental movie to play a course of action from start to end. 
In NDM, the scientific focus is on situation assessment, not on option evaluation and selection. The 
decision maker is primed to act with incomplete information, not to wait for complete analyses. 
RPDM was developed as a descriptive approach to crisis response decision-making. Subsequently, 
Schmitt and Klein (1999) derived a prescriptive model of planning, known as the “Recognitional 
Planning Model”. It features lessons learned from the previous research. For example, war-gaming 
is introduced to gain the experience needed to cope with difficult decision-making situations, and to 
rehearse the planned course of action. 

4. Comparing ODMP to HMS 

4.1 Features for comparison 
The features for comparing ODMP and HMS have been extracted from Klein and Klinger’s (1991, 
Table 1, p.17) list of features of naturalistic decision-making. Hybrid metaheuristic scheduling and 
the two forms of operational decision-making have been assessed against these features. The results 
of our evaluation are summarised in Table 1. 
 
Table 1.   Comparison of HMS and ODMP against features. 

Features Hybrid Metaheuristics NATO ODMP RPDM 
Goals / tasks Well-defined, shifting  Well-defined, constant, & 

coherent 
Ill-defined, shifting 

Information Uncertain & incomplete Uncertain & incomplete, but 
intelligence reduces 

Uncertain & incomplete 



uncertainty 
Criteria Dynamic, multiple, 

competing 
Constant, small number, 
coherent 

Dynamic, multiple, 
competing 

Options Unlimited (NP-hard) Max. 3 COAs Single option evaluation 
Organization No limiting cultures Hierarchical; well defined Organizational norms 
Decision makers Experience hard-wired 

into algorithms 
Experience nice to have. Experienced 

Cognitive 
representation 

Constraints Doctrine; standard operating 
procedures 

Templates (cues, COAs, 
goals, & expectations) 

Learning None By experience By experience and from 
other decision-makers’ 
stories 

Projection No forecasting No forecasting Mental simulation 
Environment 
(other agents) 

Multiple algorithms; 
shared goals 

Multiple players; 
competitors 

Multiple players; 
competitors 

Feedback Continuous real-time Next operation (not this) Real-time 
Time constraints Severe time stress Ample time Time stress 
Stakes Increasing Life & death Life & death 
 

4.2 Commonalities 
Inspection of Table 1 shows that hybrid metaheuristic scheduling and RPDM have the following in 
common: 
• Goals and tasks are shifting. 
• Input information is uncertain and incomplete. 
• Decision-making is based on experience. In HMS this experience is hard-wired into the 

scheduling algorithms. In RPDM it takes the form of the human decision-makers’ templates. 
• The environment contains multiple other agents. In HMS the other agents are the multiple 

algorithms. In RPDM the other agents are the competitors. 
• Feedback takes place in real time. 
• Decision-making must be performed under time stress. 
• The stakes are very high or increasing as plan generation progresses. 

4.3 Differences 
Hybrid metaheuristic scheduling and RPDM also have differences. Table 1 shows that they differ in 
the following respects: 
• Whether goals and tasks are well- or ill-defined. HMS assumes well-defined goals and tasks, but 

RPDM assumes that they are ill-defined. 
• The number of options that are evaluated at any moment. HMS can evaluate a large number of 

options, limited only by the NP-hardness of the algorithms. RPDM involves single-option 
evaluation. 

• The organisation in which decision-making takes place. There are no limiting cultures on HMS, 
but RPDM takes place against a backdrop of organisational norms and goals. 

• The cognitive representation in HMS is (typically) constraints, whereas it is templates in 
RPDM. 

• Current HMS techniques do not incorporate learning. By contrast, decision-makers using 
RPDM must be able to acquire new templates by learning from experience. 

• HMS techniques lack forecasting capabilities, while RPDM depends on projecting courses of 
action into the future using mental simulation. 



• The other agents in HMS share common goals, but in RPDM their goals conflict with the 
decision-maker’s, resulting in competition. 

5. Conclusions and Recommendations 

5.1 Lessons learned: HMS 
We can draws lessons for HMS techniques in self-awareness, situation awareness, situation 
recognition, and projection into the future.  

Self-awareness 
An important aspect of planning in crisis management situations is awareness of your own 
possibilities and competences. This awareness greatly increases your ability to deploy your assets 
efficiently and effectively. In analogy, the algorithms that constitute the portfolio are the assets of a 
hybrid planning system. Self-awareness, however, is a topic that can hardly be found in AI planning 
literature. In the hybrid case, self-awareness would mean that the system assesses the qualities of 
the constituting algorithms. When can they best be deployed, when not? Which algorithms work 
well together, which ones do not? Which algorithms will guarantee me a certain quality of service 
level? Future research should investigate how the qualities of constituting algorithms can best be 
assessed or quantified, enabling the managing system to better deploy them.  

Situation Awareness  
Even more difficult than getting Self Awareness is obtaining good Situation Awareness. The vast 
amounts of literature available on this topic emphasize its importance in the planning field 
(Endsley, 2000). Knowing the, possibly changing, situation in which you find yourself enables you 
to better deploy yourself appropriately. Again, in AI planning literature, this virtue in underrated. 
Putting algorithms together to solve the problem, and reconfiguring them to suit the specific 
(changing) situation is not a topic of interest, as of yet. The benefits are clear: choosing algorithms 
in accordance to the problem could greatly increase the optimality for a specific problem. 

Recognition 
As section 3.4 shows, a lot of decisions are made not so much based on choosing from a large set of 
possibilities. Instead, expert decision makers make shortcuts from situation to action, based on fast 
recognition of the situation. In nearly all of AI Planning literature, however, the planner starts from 
scratch and completely has to re-invent the wheel every time it is run. Building a library of 
templates that have only to be refined in order to suit a specific problem could increase the planning 
speed enormously. Finding out how experience and templates are gathered is a very interesting and 
important topic of research. 

Projection 
Being able to ‘play the movie in your head’ is helps the decision maker to evaluate his plans by 
mental simulation. It involves ‘looking in the future’ and assessing ‘how the plan will work out’. 
This situation forecasting is a much-underrated topic in the AI planning literature. Actually, a 
forecast of the situation in the future should be a standard evaluation criterion in all dynamic 
planners, as change is a constant in these environments. 

5.2 Lessons learned: ODMP 
We can draws lessons for ODMP in multi-disciplinary co-operation and collaborative planning.  

Multi-disciplinary co-operation 
The strong point of HMS systems is the fact that they combine the strength of multiple different 
algorithms. Different algorithms have different strong points; each has a typical ‘view’ on the 
problem. In the military situation, bringing decision-makers from multiple disciplines around the 
same table is not common. A typical example would be to change the ‘people portfolio’ according 



to the situation, and have, for example, an expert of a certain culture when performing military 
operations abroad. Keus (2002) initiated such research with his framework for cooperative decision 
making in teams. 

Collaborative planning 
Another form of multidisciplinary cooperation would be to let different levels within an army 
organization collaborate with one another. In good hybrid systems, ‘higher’ algorithms can benefit 
from ideas thrown up by ‘lower’ ones. By analogy, information on an emerging plan in military 
decision-making should be communicated both top-down and bottom-up. Computerized planning 
aids would enable this way of planning, where all of the different planners are planning 
concurrently. Such collaborative planning should dramatically reduce planning time. Furthermore, 
all groups involved have a better picture of the plan as a whole, and therefore a better situation 
awareness. Within a brigade, for example, one discipline can quickly catch up with a changing 
situation because it has good knowledge of what the adjacent disciplines are doing. It will also 
prevent higher levels from creating plans that are hard to implement at a lower level. 

5.3 Recommendations 
We recommend that research should be done into incorporating: 
• Self-awareness, situation awareness, situation recognition, and projection in hybrid 

metaheuristic scheduling. 
• Multi-disciplinary co-operation and collaborative planning in the operational decision-making 

process.  
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