
2006 CCRTS
THE STATE OF THE ART AND THE STATE OF THE PRACTICE

Data Schemas for Net-Centric Situational Awareness

Classification: Unclassified

C2 Concepts and Organizations
C2 Modeling and Simulation

Cognitive Domain Issues

Dino Konstantopoulos, Ph.D.
Jeffrey Johnston

Point of Contact: Dino Konstantopoulos

The MITRE Corporation

202 Burlington Road
M/S 1614E

Bedford, MA 01730
(781) 266 9526

dino@mitre.org

The views, opinions and/or findings contained in this report
are those of the authors and should not be construed as an
official Government position, policy, or decision, unless
designated by other documentation.

For internal use and not an official position of The MITRE
Corporation

©2006 The MITRE Corporation

Center for Air Force C2 Systems
Bedford, Massachusetts

mailto:dino@mitre.org

Abstract

The Cursor-On-Target (CoT) Event data model defines an XML data schema for exchanging time sensitive

position of moving objects, or "what", "when", and "where" (WWW) information, between systems. The

CoT data strategy, based on a terse XML schema and a set of sub-schema extensions, is especially

amenable to exchanging WWW information between bandwidth-limited hardware. The state of the art for

such communication exchanges involves the TCP/IP stack, optimized for sending small packets of

information very frequently. In contrast, wireline systems enjoy a high bandwidth capacity, and it is often

more economical for such systems to exchange a rich amount of information less often rather than a small

amount of information very often. Communications between wireline Net-Centric systems usually involves

the XML Web Services protocol, and Web Services are more effective when systems exchange information

for thousands of moving objects through a single Web Service call rather than relying on thousands of Web

Service calls with individual moving object information. In this paper, we extend the CoT data schema so

that it is better adapted to Web Service-based communication exchanges in such a manner that the new

schema still enjoys the characteristics that are its hallmark: terseness and extensibility.

1. Introduction
The terminology "Cursor On Target" is drawn from a speech given by Gen. John Jumper, CSAF, at the
2002 C2 summit. During this speech, Gen. Jumper suggested an end state for DoD systems in which they
interoperate via machine-to-machine mechanisms much like the onboard systems in an F15. The Cursor On
Target initiative at MITRE was started as a means to answer Gen. Jumper's challenge to meet this end-state.
The resulting XML schema for the exchange of information that underlies system interoperability focused
on time-sensitive position exchange needs including spot reporting, blue force tracking, relocation requests,
and any time sensitive position information need, to include, targeting information. Time sensitive "what",
"when", and "where" (WWW) information availability is especially critical in asymmetric warfare arenas
such as the one in Iraq, where agility and responsiveness is key to military superiority, but also to
Homeland Security crisis management and response. "What" tells us if this is a friendly or hostile force; a
target to be killed or a survivor to be rescued. "Where" has become synonymous with military GPS
accuracy of precision coordinates that guide munitions through windows or navigate tanks through zero
visibility sandstorms. "When" is becoming increasingly important as we dramatically shrink the sensor-to-
shooter timeline for "time-sensitive-targeting" missions.

Version 2.0 (dated 13-June-2003) of the Cursor-On-Target (CoT) event data model defines a schema for
exchanging time sensitive position of moving objects, or WWW information, between DoD systems. That
CoT data strategy is based on a terse XML schema and a set of sub-schema extensions. The basic CoT
approach is to keep things very simple, and very general and extensible. As such, the CoT schemas are
organized much like an object hierarchy used in object-oriented programming. There's a simple base class
that provides the basics, and several extension schemas (called "detail sub-schema") that flesh out things
for specific applications. The first release of the CoT base schema provides only the most rudimentary
what-where-when information. It defines only three entities: event, detail, and point, and has only twelve
required attributes. It is very small, but it's sufficient for about 90 percent of all information transfers
needed in the Battle Management enterprise (blue force tracking, target deconfliction, strike warnings, ISR
taskings, etc.). All the other sub-schemas in the package are "special purpose" extensions that let the same
CoT objects carry additional detail where necessary. The innovative aspect of this approach is that even the
least complex CoT program can understand every CoT message that gets passed around, whereas smarter
applications are not limited in the content of the information they can exchange with other systems via the
CoT data schema.

Thanks to the terseness of the first release of the CoT schema, that schema is especially amenable to
exchanging WWW information between bandwidth-limited hardware. The state of the art for such
communication exchanges involves the TCP/IP stack, which is optimized for sending small packets of
information very frequently. However, many wireline DoD systems such as the Joint Mission Planning
System (JMPS), -the Next Generation consolidated Mission Planning System for all 4 services and all
flying platforms-, and Theater Battle Management and Control System (TBMCS) enjoy a high bandwidth
capacity, and it is often more effective and economical for such systems to exchange a rich amount of
information less often rather than a small amount of information very often. Moreover, modern DoD Net-
Centric architectures employ XML Web Services as communication backbone instead of TCP/IP. Web
Service based communications are more effective when systems transmit information about hundreds or
thousands of moving objects through a single Web Service call, rather than relying on hundreds or
thousands of Web Service calls involving individual moving objects. We propose to extend version 2.0 of
the CoT data schema so that it can better adapt to Net-Centric and Service Oriented Architectures (SOA),
and to do so in such a manner that the new schema still enjoys the CoT characteristics that are its hallmark:
terseness and extensibility.

2. Approach
Version 2.0 of the CoT schema is organized much like an object hierarchy used in object-oriented
programming. However, the XML tags defined in that schema involve singular elements (event, detail, and
point). Even though there is no roadblock per se to stringing many such elements one after the other within
a single file or communication stream, there is no provision for accomplishing this in a unique way that
XML data validators can enforce: Should one include first a list of unique events, followed by unique

details and points, or should one string one (event, detail, point) triplet one after the other even if many
events, details, and points are possibly repeated? In other words, the CoT schema isn’t strongly typed for
communication exchanges involving WWW information for thousands of moving objects in a single
stream. In the same way that one advocates for strong typing in object oriented programming, one can
advocate for strong schemas in hierarchical data sets.

Once a strong schema is developed for uniquely and optimally embedding hundreds or thousands of
moving body information within a single XML file transmitted through a Web Service call, the
relationships between event, detail, and point becomes very relevant: In a file (or transmission) involving a
single (event, detail, point) triplet, the relationship is obvious: it is one-to-one. However, with thousands of
events, details, and points, complex many-to-many mappings become possible. To clarify, let us pick two
XML tags: event and point. One could say that critical semantics of a WWW Common Operating Picture
(COP) consist in which points relate to a single event and how many events a single point is related to (e.g.
a troop deployment is a single event that leads to many blue force locations, while a moving target may
have a history of multiple “combat engagement” events). Thus, it is not enough to just devise an optimal
schema for embedding hundreds or thousands of moving object information within a single communication
stream; one must also be able to define mappings between the relevant tags. Lastly, the model for Web-
Service based communications is a pull model, as opposed to the push model for TCP/IP-based
communications. Thus, communication semantics are different and the CoT schema needs to be optimized
for Web Services to accommodate transmissions over time: do we communicate an entire battlefield’s
worth of WWW information for every Web Service call, or is there a more optimal strategy?

In this paper we extend version 2.0 of the CoT schema to version 3.0 in attempting to address the issues
raised above. We also provide data implementation examples, and describe a system prototype that
implements version 3.0 of the CoT schema.

3. Extending the CoT schema to multiple moving objects within a single XML
stream
The purpose of Version 3.0 of the Cursor on Target Schema for Web Services is to extend the 2.0 schema
in such a manner that legacy systems and systems that are bandwidth and power-challenged can still
communicate single-target information with minimal overhead increase, while bandwidth-capable systems
such as JMPS or TBMCS can throttle WWW information for thousands of moving objects in one XML
file, exchanged through XML Web Services.

We begin by giving a short introduction to the façade of the 2.0 version of the CoT schema, which is
depicted in figure 1. The schema is really simple: There are 3 XML tags to keep track of: event, detail, and
point. The event tag gives the context about the geolocalized information (is it an enemy, is it a tank, how
long is that target a valid target?). The detail tag allows Communities Of Interest to tack on their own
schema information so as to add extra information that is specialized to their domain of interest. And the
point tag represents the coordinates of this geolocalized point. The schema is depicted in Figure 1 below:

Figure 1: Version 2.0 of the CoT Schema (legacy)

We see that a single event can include many points and many details, but that there is no apparent method,
for example, for linking one point to many events. For a detailed discussion of the elements and sub-
elements of the schema, we refer you to the following URLs: http://cot.mitre.org and
http://www.primidi.com/2004/09/19.html#a972. We now extend this schema by allowing a sequence of
points to be added to the same XML information stream, but we do this by grandfathering the point XML
element to a points XML element as depicted in Figure 2 below:

http://cot.mitre.org/
http://www.primidi.com/2004/09/19.html#a972

Figure 2: The new points XML tag

As we can see, the point XML element of version 2.0 was grandfathered into the points XML, which
allows a sequence of points to become XML children of the points XML parent. We will address the new
allevents and alldetails tags and the new id and elementOrder attributes later on. Now that we have a vector
of points in the schema, we need to augment the event element to accommodate a vector of points rather
than a single point. Further, some of the 10 attributes of the event tag (version, type, access, qos, opex, uid,
time, start, stale, how) refer to information that may be globally relevant to many points (e.g. “access”
which determines the security level and intended audience for sharing this information), while others refer
to information relevant to individual points (e.g. “type” which refers to the nature of the geolocalized point,
a tank for example, and “time” which refers to the time this point was acquired). Thus, we are led to
grandfathering the event XML element into the events (plural) XML element, much in the same manner
we grandfathered the point XML element into the points XML element. The new events XML element is
depicted in Figure 3 below, and we once again defer discussion on the new allpoints and alldetails XML
tags:

Figure 3: The new events XML tag

Note that the version, access, and opex sub-elements now characterize the entire events XML element,
while the type, qos, uid, time, start, stale, and how XML sub-elements and attributes characterize each
point in the points dataset. Please refer to the URLs we gave in the introduction of this document to get
more information about each one of these sub-elements, or for the courageous data miners amongst us, drill
into the XSD schema file and look at the annotations tag for legend clarification.

Finally and predictably, we also grandfather the detail tag into a details tag in a similar fashion to complete
the (event, point, detail) grandfathering trifecta, as depicted in Figure 4 below:

Figure 4: The new details XML tag

4. Diffgrams and the Linking of “Event”, “Point”, and “Detail” Information
We can see in Figure 3 above that a universal identifier attribute (uid) is associated with each event, and
thus a natural impulse would be to associate through the uid attribute each point sub-element in the points
element with each event sub-element in the events element (for example by “decorating” each point sub-
element with the uid attribute of an event sub-element). However, let’s take a step back and consider that
we are devising a schema for potentially any Community of Interest (COI), each one of which may have
different formats for identifying a point through a uid identifier, some more verbose than others. It would
thus be a mistake, we feel, to “borrow” this XML sub-element and force a format on the uid attribute to
accomplish the linking between event and point (better leave the format unspecified so that each COI can
pick one to suit). Moreover, there is another consideration that we need to take into account, and one that is
relevant to the task at hand, namely embedding many events, details, and points in a single XML stream.

Realistically, an entire battlefield picture can be “streamed” from one DoD system to another. The authors
of the version 2.0 of the CoT schema kept this in mind and thus incorporated into the schema the stale
attribute. Any geolocalized point can thus be considered “valid” and constitutes actionable information
until the current time & date overtakes the time and date identified in the stale sub-element. In this way,
DoD systems need not be constantly exchanging WWW information in order to keep their Common
Operating Picture (COP) synchronized at all times. All they need to do is communicate a new uid-identified
(event, point) pair as soon as its stale date/time has expired. But what if we actually do not know when the
validity of a specific point “expires”, when it moves to a new location, when it ceases to exist, or when it is
destroyed, in order to decorate it with an appropriate stale attribute value? The only solution is to keep on
monitoring the point, giving it very short “stale” date/times and continuously transmitting the WWW
information between systems. That is clearly not an effective awareness and synchronization strategy. A
more effective alternative consists in having an “understanding” between systems that as long as subsets of
WWW information remains unchanged, systems need not re-transmit the WWW information for those
subsets. Instead, when the WWW information changes for select (event, point) tuples, that information
ought to be immediately transmitted between systems. In other words, what is really transmitted between
systems sharing WWW information consists of “diffgrams”, or “deltas” which are relative to changed data.

The Microsoft.NET© Framework adopts a similar strategy when transmitting database information
between systems: .NET Active Data Objects (ADO.NET©) transmit information diffgrams rather than

transmitting a complete dump of the entire database every time a new database record is inserted, updated,
or deleted.

We now begin to see the outlines of a solution that will define our (event, point) tuple linking mechanism
and that will allow systems to transmit WWW diffgrams in order to effectively share Common Operating
Picture (COP) information with optimal bandwidth usage. We introduce a new XML namespace:

targetNamespace=http://cot.mitre.org/ws/provisioning/events

We also introduce two new Uniform Resource Names (URN) intended to serve as persistent, location-
independent, resource identifiers and designed to make it easy to map other namespaces into URN-space.
These are:

xmlns:mitredata="urn:schemas-mitre-org:xml-mitredata"

xmlns:diffgr="urn:schemas-mitre-org:xml-diffgram-v1"

Note that the latter one is a mirror of the following URN:

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"

that describes the diffgram standard for Microsoft ADO.NET© database rowsets. It is intended that the
events CoT schema will be published at the URL above (http://cot.mitre.org/ws/provisioning/events.xsd)
for all WWW data consumers. Note that alternatively, this schema can be embedded in the XML file being
transferred. In keeping with the Web Services-specific data strategy that transmitting a thousand (event,
point, detail) triplets in a single XML file is more efficient than a thousand transmissions of every
individual (event, point, detail) triplet, embedding the schema information in the XML file being
transmitted represents a low overhead, especially if the annotation information is stripped from the
embedded CoT schema. Version 3.0-beta-3 of the CoT schema optimized for Web Services is depicted in
Figure 4 below: event, point, and detail XML tags are linked within the XML stream through the diffgr:id
XML attribute, which is different from the uid attribute that identifies WWW information in a manner that
is appropriate for the Community of Interest at hand. Note that we have introduced an additional attribute:
the mitredata:elementOrder annotation preserves the row order of each original point in relation to its
siblings (so that the XML stream remain context free: tags can be freely reordered by XML parsers without
changing data semantics) and identifies the index of a point in a particular WWW dataset. These
annotations are all defined in the urn:schemas-mitre-org:xml-mitredata namespace. Figure 5 below details
the new diffgr:id (required) and mitredata:elementOrder (optional) attributes.

Figure 5: The new diffgr:id and mitredata:elementOrder attributes

http://cot.mitre.org/ws/provisioning/events
http://cot.mitre.org/ws/provisioning/events.xsd

As we can see in line 9 of Figure 1 (<xs:element ref=”point” />), version 2.0 of the CoT schema uses an
embedding strategy whereby the entire “point” element is embedded in the “event” element so that there
can be no doubts about which point(s) the event is all about. However, this does not represent a context-
free XML grammar1. By taking the point element out of the event element as we accomplished in the
previous section, and by linking the two with a diffgr:id identifier, it becomes easier to parse a file that may
contain thousands of (event, point) tuples and to establish many-to-many semantic relationships between
events and points. Indeed, a single event can be comprised of many points, while a single point could
potentially belong to many events.

In a similar fashion, we associate diffgr:id and mitredata:elementOrder attributes to the event and detail
XML tags. One-to-one, one-to-many, many-to-one, and many-to-many relationships between event, point,
and detail can now be defined: In figures 2, 3, and 4 and section 3 of this paper, we introduced the
allevents, alldetails, and allpoints XML tags, even though we glossed over them and deferred explanation
until now: These are vector XML tags that include zero, one, or many XML tags with a single attribute: an
integer id that corresponds to the diffgr:id of an event, a detail, or a point. In other words, the allevents,
alldetails and allpoints XML tags encapsulate pointers to individual event, detail, and point XML tags, thus
providing a semantic for describing any kind of relationship between events, details and points. Figure 6
visualizes how the schema implements many-to-many relationships between events, details, and points.

Figure 6: Implementing many-to-many relationships between events, details, and points

In Figure 6, green arrows constitute references to particular details, yellow arrows constitute references to
particular events, and teal arrows constitute references to particular points, so that each event can be
comprised of one or many points and annotated with meaning by one or many detail elements, each point
can belong to one or many events and one or many detail annotations, and each detail can add meaning to
one or many points and one or many events.

1 Context free grammars (CFG) are often the most compact and natural strategies for describing data
structures: A CFG provides a tree structure for the data it encapsulates, and tree structures are easier to read
and mine by data parsers (the reader is referred to technical literature on context free grammars, often
referred to as Extended Backus-Naur Form grammars).

Note that when WWW information is written as a datagram to serialize its contents for transport across a
network, it populates the diffgram with all the necessary information to accurately recreate the contents,
albeit not the schema itself, including values from both original WWW (event, detail, point) tuples and
current (event, detail, point) tuples which may represent updates, inserts, or deletes of already existing
information. Moreover, error information and (event, detail, point) tuple ordering information is also
conveyed. The diffgram schema derived from the one in use with Microsoft ADO.NET© rowsets is
described in the following sections.

5. DiffGram Format
This section describes the diffgram indexing format and can be skipped by readers who are after general
ideas rather than technical detail.

The uid attribute in the event sub-element of the events element uniquely identifies an event element, while
the various diffgr:id’s link each event to one or many points and details. Thus, a single uid suffices to
match an original event to an updated event. In this manner, uids allow one to keep track of (event, detail,
point) tuples, in order to be able to insert news ones, update old ones, and delete expired ones. However,
this would represent a stateful information model from one Web Service call with events, details, and
points datasets to another (uid information from one Web Service call must be persisted in a data cache so
that it can be compared to the uid information from an ensuing Web Service call). A stateful information
model makes good sense in TCP/IP communications, where information payload is at a premium.
However, with Internet communications, it is more optimal to minimize communication exchanges and
increase the communication payload. We thus opt to add information overhead in each data stream in order
to keep the information model stateless: clients need not cache uids from one Web Service call to another.
We thus choose a diffgram format that affords us to remain stateless (derived from the Microsoft
ADO.NET© diffgram) by dividing the payload in two sections: the current data, and the original (or
"before") data. This format is detailed in Figure 6 below.

<?xml version="1.0"?>
<diffgr:diffgram
 xmlns:mitredata="urn:schemas-mitre-org:xml-mitredata"
 xmlns:diffgr="urn:schemas-mitre-com:xml-diffgram-v1"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <events>
 </events>
 <details>
 </details>
 <points>
 </points>

 <diffgr:before>
 <events>
 </events>
 <details>
 </details>
 <points>
 </points>
 </diffgr:before>

</diffgr:diffgram>

Figure 7: The adopted diffgram format

<diffgr:before> contains the original version of the events block or of any <event, detail, point> tuple
uniquely identified by the uid attribute in the event XML element. The last XML element, <diffgr:before>,

is optional so that Communities of Interest that exchange terse CoT WWW information involving few
mobile objects, but do so often (e.g. over the TCP/IP communication protocol), are not straddled with extra
communication overhead.

Diffgrams also use annotations to relate elements from the different diffgram blocks that represent different
row versions of event, detail, or point elements. Figure 7 describes the DiffGram annotations that are
defined in the DiffGram namespace urn:schemas-mitre-org:xml-diffgram-v1.

Annotation Description

Id Used to pair the elements in the <diffgr:before> and <diffgr:errors> blocks to
elements in the <events> block.

HasChanges Identifies a row in the <events> block as modified. The hasChanges annotation
can have one of the following three values:

inserted
Identifies an Added (event, point) tuple.

modified
Identifies a Modified (event, point) tuple that contains an Original
(event, point) tuple version in the <diffgr:before> block. Note that
Deleted (event, point) tuples will have an Original row version in the
<diffgr:before> block, but there will be no annotated element in the
<events> block.

Figure8: Diffgram annotations

DiffGram processing logic rules to determine whether an (event, detail, point) tuple is an insert (new
event), an update of an already existing event, or a delete of an expired event are described in Figure 8.

Operation Description

Insert A diffgram indicates an insert operation when an element appears in the events
block but not in the corresponding before block, and the diffgr:hasChanges
attribute is specified (diffgr:hasChanges=inserted) on the element. In this case, the
diffgram instructs that the (event, point) tuple instance that is specified in the
events block consists of a new event.

If the diffgr:hasChanges attribute is not specified, the element is ignored by the
processing logic and no insert is performed.

Update The diffgram indicates an update operation when there is an (event, detail, point)
tuple in the before block for which there is a corresponding element in the events
block (that is, both elements have a diffgr:id attribute with same value) and the
diffgr:hasChanges attribute is specified with the value modified on the element
in the events block.

If the diffgr:hasChanges attribute is not specified on the element in the <events>
block, an error is returned by the processing logic.

Delete A diffgram indicates an expired (event, detail, point) tuple when an element
appears in the before block but not in the corresponding events block. In this case,
the diffgram deletes the (event, detail, point) tuple that is specified in the before
block from any Common Operating Picture.

Figure 9: Diffgram processing rules logic

6. A New “Details” Schema for the Targeting COI
The details schema as defined in Appendix F of the DoD’s Intel Interface Control Document (ICD) dated
12 January 2005 contained redundant information that we now excise with a new updated version of that
schema. The Tasking XML tag was repeated in the Weapon and Target tags. We delete these repetitions
and we end up with the updated version of the details schema as depicted in Appendix A of this document.

7. Conclusion and Sample CoT Diffgrams for the Targeting Community
There is one more important difference between TCP/IP-based communications, and Web-Service-based
communications: the former employ a push model whereby the server transmits information to clients, the
latter reflect a pull model whereby the client polls the server for data. Theoretically speaking, push models
are more adapted to transmitting Battlespace awareness/ Common Operating Pictures (COP) information,
since the server retains the knowledge of when important data has changed in order to initiate a new
transmission with clients. In such cases, high-bandwidth wireline clients that still wish to use Web Services
to exchange COP-type data may want to employ a hybrid TCP/IP + Web Services strategy whereby TCP/IP
messages are exchanged to notify clients about new data availability, leaving it up to the client to initiate a
Web Service call with the server to receive the new data payload. In practice, clients are the final authority
on which data is important (to them), and thus it is ultimately better to leave it up to the clients to initiate a
pull for new data rather than having the server force-feeding them data that may be fresh but of marginal
consequence. Moreover, clients may fuse data from multiple servers, and fusing is easier when the client is
in control of data refresh activity. The picture below, from
http://cot.mitre.org/resources/usecases/M2MSA/M2MSA.ppt, is an example of a Situational Awareness
(SA) display on FalconView© which represents CoT-based fusing from multiple data sources.

Figure 10: CoT-based Situational Awareness fusion on FalconView

There is a demonstration that is available of the Joint Mission Planning System (JMPS) exchanging
Battlespace awareness information with a simulated AWACS server, using TCP/IP and version 2 of the
CoT schema, and using Web Services and version 3 of the CoT schema. The Web Services alternative
provides a faster system refresh and is a more compelling solution for high-bandwidth wireline systems
such as JMPS and TBMCS (better use of system resources).

http://cot.mitre.org/resources/usecases/M2MSA/M2MSA.ppt

We conclude by reiterating on the goal of version 3.0 of the CoT schema adapted to Web Services as being
two-fold:

• Adapting to information exchange strategies of Net-Centric DoD systems that implement Service
Oriented Architecture through the use of Web Services. For these architectures, it is much more
efficient to transmit one thousand (event, detail, point) tuples through a single Web Service call,
rather than to transmit each individual (event, detail, point) tuple through one thousand Web
Service calls. However, as the data payload is increased, so is the schema overhead used to convey
data semantics.

• Keeping that overhead at a minimum for bandwidth-limited systems that plan to continue
transmitting single (event, detail, point) tuples. These systems employ TCP/IP packets to exchange
small amounts of information very often rather than Web Services to exchange larger amounts of
information less often.

We now apply version 3.0 of the CoT schema adapted to Web Services to a specific Community of
Interest: the targeting community, where (event, detail, point) tuples consist of targets of opportunity that
are to destroyed within specified windows of time. The detail schema for the targeting community has been
defined in Appendix A of this document. An exemplar of a CoT version 3 compliant XML file containing a
single target is provided in Appendix B, proving that version 3 of the CoT schema is almost as terse as
version 2 in its classic use of transmitting single (event, detail, point) information. An exemplar of a CoT
version 3 compliant XML file containing two targets is provided in Appendix C. Finally, version 3.0 of the
CoT schema is included in Appendix D.

Appendix A: A new “detail” element for the targeting Community Of Interest

Appendix B: A simple targeting CoT XML file containing a single target

Appendix C: A simple targeting CoT file containing two targets

(Note: in this example, there are two unrelated (event1, point1, detail1) and (event2, point2, detail2) tuples)

Appendix D: Version 3.0 of the CoT schema adapted to Web Services

(Note: as of this reading, in order to open this schema successfully with Altova’s XMLSpy product, please replace all occurrences of
diffgr:id with id and all occurrences of mitredata:elementOrder with elementOrder)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema id="CursorOnTargetWebServices" targetNamespace="http://cot.mitre.org/ws/provisioning/events"
xmlns="http://cot.mitre.org/ws/provisioning/events" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:mitredata="urn:schemas-mitre-org:xml-mitredata" xmlns:diffgr="urn:schemas-mitre-org:xml-diffgram-v1"
attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:attribute name="version" default="3">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="3"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:element name="events">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>Events Definition</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="event" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="allpoints">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="point" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="diffgr:id"
use="required">
 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="alldetails">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="detail" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="diffgr:id"
use="required">
 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="diffgr:id" use="required">
 <xs:annotation>
 <xs:documentation>Identifier for linking
this event to point(s) and/or detail(s).</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mitredata:elementOrder" use="optional">
 <xs:annotation>
 <xs:documentation>Identifier for
reconstituting the ordering of all event elements of the events set.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="type" use="required">
 <xs:annotation>
 <xs:documentation>
 The "type" attribute is a composite of components delimited by the semi-colon
 character. The first component of this composite attribute is defined below.
 Future versions of this schema will define other components which we expect
 will aid in machine filtering. Despite the exclusion of definitions
 for additional components in this version of the schema, users of
 this schema should expect and design an optional trailing field
 delimited by the semi-colon character. This field can be ignored.

 component1;optional field

 The first component (component1) is a hierarchically organized hint about type.
 The intention is that this hierarchy be flexible and extensible and
 facilitate simple filtering, translation and display. To
 facilitate filtering, the hierarchy needs to present key
 fields in an easily parsed and logical order. To facilitate
 this, this component is a composite of fields separated by the "-" punctuation
 character, so a valid type would be: x-x-X-X-x. Using a
 punctuation for field separation allows arbitrary expansion of the
 type space, e.g., a-fzp-mlk-gm-...

 Field meanings are type specific. That is, the third field of an
 "atom" type may represent air vs. ground while the same field for a
 "reservation" type may represent purpose.

 The "Atoms" portion of the type tree requires some additional
 explanation past the taxonomy defined below. The "Atoms" portion of
 the type tree contains CoT defined fields and part of the MIL-STD-2525
 type definition. To distinguish MIL-STD-2525 type strings from CoT defined
 fields, the MIL-STD-2525 types must be represented in all upper
 case. Differentiation of type namespace with upper/lower case
 facilitates extension of CoT types and MIL-STD-2525 types without
 name space confliction. An example:

 a-f-A-B-C-x

 The organization of CoT and MIL-STD-2525 types can be determined
 from the taxonomy below, but additional details are provided here.

 The "Atoms" portion of the "type" tree contains the "Battle
 Dimension" and "Function ID" fields taken from MIL-STD-2525.
 "Battle Dimension" is a single character taken from
 MIL-STD-2525.

 P - Space
 A - Air
 G - Ground
 S - Sea Surface

 U - Sea Subsurface
 X - Other

 The typical 2525 representation for "Function ID" is three groups of
 two characters separated by a space (e.g. "12 34 56"). The CoT
 schema maps this to a "-" delimited list of characters. (e.g. "1-2-3-4-5-6").
 The concatenation of the "Battle Dimension" and "Function ID" fields
 from the MIL-STD-2525 specification represented in the CoT schema
 will be as follows:

 battle dimension-func id char1-func id char2- ... -func id char6

 for example: a-h-G-U-C-D-M-L-A

 is a hostile Ground-based "AIR DEFENSE MISSILE MOTORIZED (AVENGER)"

 When an appropriate MIL-STD-2525 type exists, it should be used. If
 there is a MIL-STD-2525 representation which is close, but may be
 refined, a CoT extension to the 2525 type can be appended. For
 example...

 for example: a-h-G-U-C-D-M-L-A-i might represent

 hostile Ground-based "AIR DEFENSE MISSILE MOTORIZED (AVENGER)" of
 Israeli manufacture. Again, the CoT extension uses lower case.
 Conceptually, this extension defines further branching from the
 nearest MIL-STD-2525 tree point.

 If no appropriate 2525 representation exists, a type definition can
 be added to the CoT tree defined here. The resulting definition
 would be represented in all lower case. For example

 a-h-G-p-i

 might define atoms-hostile-Ground-photon cannon-infrared.

 The taxonomy currently looks like this: Note that the coding of the
 sub fields are determined entirely by the preceding fields!) The
 current type tree is defined here.

 +--- First position, this event describes
 |
 V

 a - Atoms - this event describes an actual "thing"

 +--- CoT affiliation of these atoms
 |
 V

 p - Pending
 u - Unknown
 a - Assumed friend
 f - Friend
 n - Neutral
 s - Suspect
 h - Hostile
 j - Joker
 k - Faker
 o - None specified
 x - Other

 +--- Battle dimension
 | Taken from MIL-STD-2525 "Battle Dimension" (upper case)
 |
 V

 P - Space
 A - Air
 G - Ground
 S - Sea Surface
 U - Sea Subsurface

 X - Other

 +--- Function (dimension specific!)
 | Taken from MIL-STD-2525 function fields (upper case)
 |
 V
 ...
 U-C-D-M-L-A - AIR DEFENSE MISSILE MOTORIZED (AVENGER)
 ...
 U-C-A-A-A-T - ANTI ARMOR ARMORED TRACKED
 ...

 +--- The event describes ...
 |
 V

 b - Bits - Events in the "Bit" group carry meta information
 about raw data sources. For example, range-doppler
 radar returns or SAR imagery represent classes of
 information that are "bits". However, tracks
 derived from such sources represent objects on the
 battlespace and this have event type "A-..."

 The intention with the "Bit" type is to facilitate
 the identification of germane information products.
 This hierarchy is not intended to replace more
 detailed domain-specific meta information (such as
 that contained in NITF image headers or the GMTI
 data formats), rather it is intended to provide a
 domain-neutral mechanism for rapid filtering of
 information products.

 +--- Dimension
 |
 V

 i - Imagery
 e - Electro-optical
 i - Infra red
 s - SAR
 v - video
 ...
 r - Radar
 m - MTI data
 ...
 d - Sensor detection events
 s - Seismic
 d - Doppler
 a - Acoustic
 m - Motion (e.g., IR)
 m - Mapping
 p - Designated point (rally point, etc.)
 i - initial points
 r - rally points
 ...

 r - Reservation/Restriction/References
 Events in this category are generally "notices"
 about specific areas. These events are used for
 deconfliction and conveyance of significant "area"
 conditions. Generally, the "point" entity will
 describe a conical region that completely encloses
 the affected area. The details entity will provide
 more specific bounds on precisely the region
 affected.
 u - Unsafe (hostile capability)
 o - Occupied (e.g., SOF forces on ground)
 c - Contaminated (NBC event)
 c - chemical
 x - agents, direction,
 y
 z

 f - Flight restrictions

 t - Tasking (requests/orders)
 Events in this category are generalized requests for
 service. These may be used to request for data
 collection, request mensuration of a specific
 object, order an asset to take action against a
 specific point. Generally, the "details" entity
 will identify the general or specific entity being
 tasked.
 s - Surveillance
 r - Relocate
 e - Engage
 m - Mensurate

 c - Capability (applied to an area)
 s - Surveillance
 r - Rescue
 f - Fires
 d - Direct fires
 i - Indirect fires
 l - Logistics (supply)
 f - Fuel
 ...
 c - Communications

 Examples:
 a-f-A-U-C-V-R-A -> atoms-friendly-air-attack rotary wing
 a-a-S-C-L-B-B -> atoms-assumed friend-sea surface-battleship
 c-c -> communications capability
 b-i-i -> indication that there exists infrared imagery
 t-r -> tasking to relocate
</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\w+(-
\w+)*(;[^;]*)?"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="qos" use="optional">
 <xs:annotation>
 <xs:documentation>
 format - digit-character-character as defined below

 The QoS attribute will determine the preferential treatment events
 receive as they proceed through the kill chain. The field has
 several distinct but related components.

 A "priority" value indicates queuing and processing order for
 competing events. At a processing bottleneck (e.g., bandwidth
 limited link) high priority events will be processed before lower
 priority events. Priority determines queuing order at a
 bottleneck.

 9 - highest (most significant) priority
 0 - lowest (least significant) priority

 A "overtaking" value indicates how two events for the same uid are
 reconciled when they "catch up" to one another. The more recent
 event (by timestamp) may supersede the older event (deleting the
 old event) when it catches it, or it may follow the old event so
 that event order is preserved, or it may be routed independently
 of previous events.

 r - replace - new event replaces (deletes) old event
 f - follow - new event must follow previous events
 i - independent - new event processed independently of old events

 An "assurance" value indicates how much effort must be placed in
 delivering this particular event. Events from sources that

 continually send updates (blue force tracks) or that are sent for
 information purposes only require a lower level of delivery
 effort. Events that are singletons (sent only once) and are
 critical require guaranteed delivery.

 g - guaranteed delivery (message never dropped even if delivered late)
 d - deadline (message dropped only after "stale" time)
 c - congestion - message dropped when link congestion encountered

 Thus, a valid QoS field looks like:

 qos="1-r-c"

 Note that different events with the same UID may have differing
 QoS values. This enables a graceful degradation in the presence
 of congestion. For example, a blue force tracker may output a
 sequence of events with like
 < ... qos="1-r-c" ... > <= frequent, low priority updates
 < ... qos="1-r-c" ... >
 < ... qos="1-r-c" ... >
 < ... qos="5-r-d" ... > <= occasional "push" priority update
 < ... qos="1-r-c" ... >
 ...
 < ... qos="9-r-g" ... > <= A "Mayday" position report
</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\d-\w-\w"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="uid" type="xs:string" use="required">
 <xs:annotation>
 <xs:documentation>
The "uid" attribute is a globally unique name for this specific piece of information.
Several "events" may be associated with one UID, but in that case, the latest (ordered by timestamp),
overwrites all previous events for that UID.
</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="time" type="xs:dateTime" use="required">
 <xs:annotation>
 <xs:documentation>
The CoT XML schema includes three time values:
time, start, and stale. "time" is a time stamp placed on the event
when generated. start and stale define an interval in time for which
the event is valid. Example: For the scenario where we have intel
reports about a meeting of terrorist operatives later in the day: An
event might be generated at noon (time) to describe a ground based
target which is valid from 1300 (start) until 1330 (stale). All time
fields are required. In version 1.1 of the CoT schema, the time and stale
attributes together defined and interval of time for which the event was
valid. In V2.0, time indicates the "birth" of an event and the start and stale pair
define the validity interval.

The "time" attribute is a time stamp indicating when an event was generated.
The format of time, start, and stale are in standard date format (ISO 8601):
CCYY-MM-DDThh:mm:ss.ssZ; e.g., 2002-10-05T17:01:14.00Z.
</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="start" type="xs:dateTime" use="required">
 <xs:annotation>
 <xs:documentation>
 format - DTG

The "start" attribute defines the starting time of the event's validity
interval. The start and stale fields together define an interval in time.
It has the same format as time and stale.
 </xs:documentation>
 </xs:annotation>

 </xs:attribute>
 <xs:attribute name="stale" type="xs:dateTime" use="required">
 <xs:annotation>
 <xs:documentation>
The "stale" attribute defines the ending time of the event's validity
interval. The start and stale fields together define an interval in time.
It has the same format as time and start.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="how" use="required">
 <xs:annotation>
 <xs:documentation>
 format = character-character

 The "how" attribute gives a hint about how the coordinates were
 generated. It is used specifically to relay a hint about the
 types of errors that may be expected in the data and to weight the
 data in systems that fuse multiple inputs. For example,
 coordinates transcribed by humans may have digit transposition,
 missing or repeated digits, estimated error bounds, etc. As such,
 they may require special attention as they propagate through the
 kill chain (e.g., they may require an additional review).
 Similarly, machine generated coordinates derived solely from
 magnetic sources may be subject to known anomalies in certain
 geographical areas, etc.

 h - human entered or modified (someone typed the coordinates)
 e - estimated (a swag by the user)
 c - calculated (user probably calculated value by hand)
 t - transcribed (from voice, paper, ...)
 p - cut and paste from another window
 m - machine generated
 i - mensurated (from imagery)
 g - derived from GPS receiver
 m - magnetic - derived from magnetic sources
 s - simulated - out of a simulation
 f - fused - corroborated from multiple sources
 c - configured - out of a configuration file
 p - predicted - prediction of future (e.g., a from a tracker)
 r - relayed - imported from another system (gateway)

 As with other compound fields, the elements of the how field
 will be delimited by the field separator character "-". E.g,
 A coordinate mensurated from imagery would have a how field of "m-i".
</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\w-\w"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType >
 </xs:element>
 </xs:sequence >
 <xs:attribute name="version" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="3"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="access" type="xs:string" use="optional">
 <xs:annotation>
 <xs:documentation>
 The access field is intended to indicates who has access to this
 event. (e.g. unrestricted, nato, army, coalition...)
 It is currently defined as a string, and is optional in V2.0.
 Future version of the event schema will provide formal
 definition of this field.
</xs:documentation>

 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="opex" type="xs:string" use="optional">
 <xs:annotation>
 <xs:documentation>
 The opex field is intended to indicate that the event is part of a
 live operation or an exercise. For backward compatibility, absence
 of the opex indicates "no statement", which will be interpreted in
 an installation specific manner.

 opex="o-<name>" or "e-<nickname>"

 o = operations
 e = exercise
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element >
 <xs:element name="details">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 A list of Detail elements, each of which has schema defined outside of this document...
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="detail" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 format = XML schema defined outside of this document

 Detail entities...

 The "detail" entity is intended to carry information that is
 specific to smaller communities of producers and consumers and
 require more intimate knowledge of the operating domain. For
 example, mensurated "target" events may come from dramatically
 different sources and need to propagate dramatically different
 "detail" information. A close-air-support mission will augment
 target details with initial point and callsign details to
 facilitate coordination of weapon delivery. In contrast, a
 mission planning system may augment planned targets with target
 catalog information and weapon fuzing requirements.

 # For a SOF-generated target, details aid weapon delivery
 <event ... uid="yosh#laser#21" type="a-h-G-f" ...
 <detail>
 <nine-line callsign="jagged shadow" ip="charlie" equip="BareBack"
...>
 remarks="Square building, NE corner of clearing"
 </nine-line>
 </detail>

 # Targets from a mission planning system have different details
 <event ... uid="mgb@raindrop.020402.1" type="a-h-G-f" ...
 <detail>
 <target
 be="1234ca5678" osuffix="xyzzy" dmpi="MB0002" shape="180,45,12"
 cep="90" fuzing="impact" ...
 />
 </detail>

 The detail entity may contain a number of community-specific
 entities, and these entities may be added and removed as the
 events propagate through the kill chain.

 <event ... type="a-h-G-f" ...
 <detail>
 <nine-line callsign="jagged shadow" ... />
 <adocs target-number="AB1234" tailnumber="TY33" platform="F16"...

/>
 <link16 track="1402" rr="0035" weapon="00135" c2node="00037" ... />
 </detail>

 Because the "details" portion of the event are of interest only to
 a subset of subscribers, that entity may be mentioned by reference
 when the event is communicated. This reduces the congestion when
 events are transmitted over bandwidth limited links and also
 prevents the retransmission of static data elements.

 <event ... uid="yosh#laser#21" type="a-h-G-f" ...
 <detail link="http://cot.hanscom.af.mil/targets?uid=yosh#laser#21" />
 ...

 The latter example shows a complete URL being provided as the
 link. In practice, it is more likely that URLs (or other links)
 will be implicit based on event type and will reference virtual
 servers, not specific hosts. This will provide for information
 redundancy and reduce communications bottlenecks. Use of implicit
 links will also reduce the amount of redundant information
 transferred in the published events. An initial query may result
 in a redirection to the server with specific detailed knowledge of
 that event.

 This event:

 <event ... uid="yosh#laser#21" type="a-h-G-f" ...
 <detail link="targets" />
 ...

 indicates that there are more details available via a link to the
 "target" virtual server. An initial query to
 "http://targets.af.mil?yosh#laser#21" may resolve to any number of
 hosts depending on the topological location of the source of the
 query and the organization responsible for the detailed
 information. E.g., "http://targets.af.mil?yosh#laser#21" may
 resolve to "sol.aoc.usafe.mil/targets?yosh#laser#21" while a
 similar query to "http://targets.af.mil?mgb@raindrop.020402.1" may
 resolve to "mission-planning.pentagon.mil..."
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="allevents">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="event" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="diffgr:id"
use="required">
 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="allpoints">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="point" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="diffgr:id"
use="required">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="diffgr:id" use="required">
 <xs:annotation>
 <xs:documentation>Identifier for linking
this detail to event(s) and/or point(s).</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mitredata:elementOrder" use="optional">
 <xs:annotation>
 <xs:documentation>Identifier for
reconstituting the ordering of all detail elements of the dataset.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="points">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="point" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="allevents">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="event"
minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute
name="diffgr:id" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 </xs:element>
 <xs:element name="alldetails">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="detail"
minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute
name="diffgr:id" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="diffgr:id" use="required">
 <xs:annotation>
 <xs:documentation>Identifier for linking
this point to event(s) and/or detail(s).</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="mitredata:elementOrder" use="optional">
 <xs:annotation>
 <xs:documentation>Identifier for
reconstituting the ordering of all point elements of the dataset.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="lat" use="required">
 <xs:annotation>
 <xs:documentation>Latitude based on
WGS-84 ellipsoid in signed degree-decimal format (e.g. -33.350000). Range -90 -> +90.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="-90"/>
 <xs:maxInclusive value="90"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="lon" use="required">
 <xs:annotation>
 <xs:documentation>Longitude based on
WGS-84 ellipsoid in signed degree-decimal format (e.g. 44.383333). Range -180 -> +180.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="-180"/>
 <xs:maxInclusive value="180"/>
 </xs:restriction>
 </xs:simpleType>

 </xs:attribute>
 <xs:attribute name="hae" type="xs:decimal" use="required">
 <xs:annotation>
 <xs:documentation>HAE acronym for
Height above Ellipsoid based on WGS-84 ellipsoid (measured in meters).</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="ce" type="xs:decimal" use="required">
 <xs:annotation>
 <xs:documentation>
Circular Error around point defined by lat and lon fields in meters. Although
named ce, this field is intended to define a circular area around the event point, not
necessarily an error (e.g. Describing a reservation area is not an
"error"). If it is appropriate for the "ce" field to represent
an error value (e.g. event describes laser designated target), the
value will represent the one sigma point for a zero mean
normal (Guassian) distribution.
</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="le" type="xs:decimal" use="required">
 <xs:annotation>
 <xs:documentation>
Linear Error in meters associated with the HAE field. Although named le, this
field is intended to define a height range about the event point, not
necessarily an error. This field, along with the ce field allow for the
definition of a cylindrical volume about the point. If it is appropriate
for the "le" field to represent an error (e.g. event describes laser
designated target), the value will represent the one sigma point for
a zero mean normal (Guassian) distribution.
</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

	Data Schemas for Net-Centric Situational Awareness
	Classification: Unclassified
	Cognitive Domain Issues

	5. DiffGram Format

	Description
	Figure 9: Diffgram processing rules logic

