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Abstract 
This paper presents a novel methodology that utilizes the observations of interactions and relationships 
among enemy actors, resources, and tasks to identify the acting C2 organization (i.e., decision hierarchy, 
allocation of resources and roles to decision–makers, communication and information structures, and 
expertise of decision–makers).  The model is based on probabilistic attributed relational graph matching 
methodology that has been successful in computer vision and pattern recognition.  The basis for our model, 
an expectation maximization algorithm to solve maximum-likelihood estimation of the node mapping, has 
successfully outperformed other graph matching methods and shown the ability to correctly map 70% of 
nodes under 50% of link (structural) errors (Luo and Hancock, 2002).  Our proposed algorithm enhances 
the Luo’s EM-SVD algorithm by accounting for both node and link attributes uncertainty, as well as 
multiple substructures of the interaction networks, to derive the mapping between observed nodes and 
model (hidden) nodes.  Once the mapping between actors and the nodes in a given command organization is 
learned, it can be used to associate the observed transactions with hidden enemy activities and further 
improve the recognition and prediction of adversary’s behavior.   

1. Motivation 
The knowledge of the principles and goals under which the adversary organization operates is required to 
predict its future activities.  To implement successful counter-actions, additional knowledge of the specifics 
of organizational command, communication, control, and information access (C3I) networks, as well as 
responsibilities distribution among members of the organization, is required.  In short, the attributes of and 
relationships among team members, assets, environment areas, and mission tasks are needed.   

Analysis of the behavior of organizations, ranging from the more structured command systems of a 
conventional military to the decentralized and elusive insurgent and terrorist groups, suggest that the strong 
relationship exists between the structure, resources, and objectives of those organizations and the resulting 
actions.  The organizations act in their missions by accomplishing tasks which may leave detectable events 
in the information space.  The dynamic evolution of these events creates patterns of the potential realization 
of organizational activities and may be related, linked, and tracked over time (Pattipati et al., 2004).  The 
observational data, however, is very sparse, creating a challenge to connect relatively few enabling events 
embedded within massive amounts of data flowing into the government’s intelligence and counter-terrorism 
agencies (Popp et al., 2004). On one hand, to successfully detect the interaction patterns over time, the 
models need to associate the observations with true but hidden interactions in the adversarial organization.  
Such association is at the core of activity pattern identification of NetSTAR process (Levchuk and Chopra, 
2005) and requires the knowledge of the mapping between the observed actors and the decision-making 
nodes in the hypothesized enemy organization.  On the other hand, this mapping defines the role of the 
actors and their place in the organization, which is essential to directing the counter-measures against the 
most important enemy nodes or relationships among them.  In this paper, we propose an enhancement to 
our NetSTAR process via finding the mapping between the observed actors and the decision-makers of the 
hypothesized enemy organization. 

Ultimately, the best source of information about the enemy is the enemy himself. While getting into the 
mind of the enemy is impossible, thinking similarly is desirable to truly predict its next moves. When 
dealing with an enemy organization, we are not merely interested in learning about individuals, but in how 
they are organized as a team and what they can do together. The structure of an enemy organization defines 
its capabilities, while its goals define the mission(s). Just like the brain structure can be discovered using 
MRI scans, the structure of the enemy organization can be discovered from observations of interactions and 
activities of its members; these may be observed as part of normal activity monitoring, or they may be 



CCRTS-2006 

 

3 
 

induced with intentional probes. In the context of discovering a covert organization, the scope of the probes 
is very limited. Therefore, one needs to use real–life observations obtained as part of normal monitoring, 
which are tightly coupled with the intent of the adversary.  

Connections (e.g., communication, command) between individuals in the covert organization have three 
effects. First, they provide a means to share information and resources, and coordinate task execution. 
Second, captured individuals can share information about those to whom they are connected. Since it is a 
given that members of a cell share information and can compromise one another, the relevant question 
might be how interconnected are the cells that make up the organization? And third, capturing individuals, 
destroying bottleneck resources, or disabling organizational connections would allow disruption of enemy’s 
operations and decision–making processes for preemptive actions. 

The relationships among adversaries and patterns of their activities change over time. This requires 
continuous/periodic updates of the knowledge about organizational structure to execute effective counter–
measures. The accelerating technologies of communications and computers are overflowing the intelligence 
analysts with information at various levels of decision making. Current labor–intensive manual processes to 
discover enemy organization fail to keep up with dynamic environments. Therefore, analytical tools are 
needed to reduce the complexity of organizational discovery and to allow analysts to focus on information 
most essential for decision making and search through only a limited number of most likely hypotheses. 

The problem of structural discovery is very complex: the observed data does not relate to the structure 
directly; instead, it relates to its manifestation in the form of activities and processes that are enabled by the 
organizational structure(s) and performed by the organization’s members.  Therefore, the algorithms to 
reconstruct the organization from observations alone would need to search through a very large space of 
possible structures.  Given historic data and the availability of subject–matter experts, we can instead pose 
the problem as one of hypotheses testing, where the set of predefined hypotheses about the enemy 
organization and its subelements, albeit very large, is given. The problem then becomes one of rank–
ordering these predefined hypotheses on the basis of how best they match (or explain) the observed data. 

To form the hypotheses about the enemy organization structure to help the identification process, we first 
need to need to understand what is it that we need to discover. That is, we need to develop the quantitative 
representation of the various aspects of the adversary’s organization, relationships between its members, 
behavior rules, and how this behavior can be structured, modeled, and related to the observations. This 
representation of enemy command and control organization is presented in Section 2. In Section 3, we 
outline the structure of the observations available for our use from intelligence sources. Section 4 describes 
the formal model for mapping the actors to specific positions in the given organization, with mapping 
algorithm details presented in the Appendix. We conclude the paper with the application discussion in 
Section 5. 

2. Command and Control Modeling Principles 
Our adversary identification methodology is based on understanding and modeling the decision-making 
processes in the general command and control (C2) organization. While C2 organizations are designed to 
manage personnel and resources to accomplish the mission requiring their collective skills, the term is not 
isolated to only one type of the organization and is common to both friendly and adversary domain. Given a 
specific functions and principles of individuals together with the structural form in which they are 
organized, myriads of the different potential organizations can be constructed. All of them are based on the 
underlying C2 principles. Since one of the most important findings from the organization theories research 
is that there is no single “best” approach to (or philosophy of) command and control, many organizational 
constructs are possible. 
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Command and control refers to procedures used in effectively organizing and directing armed forces to 
accomplish a mission. The command function is oftentimes referred to as an art of an individual to set the 
initial conditions and providing the overall intent for mission execution. The control is referred to as those 
structures and processes devised by command to enable it and to manage risk and other entities in the 
organization. The commander in a C2 organization issues instructions to subordinates, suggestions to 
commanders of adjacent units, and requests and reports to supporting units and superiors. He develops and 
maintains a situational awareness of the area of his operations through reports presented by other people or 
by electronic systems (Coakley, 1991). The basic premise of command and control organization is the 
ability to distribute the responsibilities among its elements and coordinate these seemingly independent 
entities for joint operations to achieve the objectives. The fundamental need for communications 
significantly constrains the options for both command and control, making communications infrastructure a 
critical feature of a C2 system. However, describing the communications links and nodes of a fighting force 
does not suffice to explain, understand, or predict successes and failures in command and control. We need 
to be able to represent, model, and identify the functions and objectives of the individual elements of the C2 
organization. 

(a) Resources of C2 Organization

(d) Communication Structure
(with resource reporting beyond control structure)

(b) C2 Nodes & Command Structure

(e) Task Structure (example)
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Figure 1: Example of C2 Organization 

In our modeling, we describe the command and control organization as a collection of command and 
control (C2) nodes and resources connected via command, control, communication, and task structures 
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(Figure 1). The roles, responsibilities, and relationships among C2 nodes and resources constrain how the 
organization is able to operate.  C2 nodes are entities with information–processing, decision–making, and 
operational capabilities that can control the necessary units and resources to execute mission tasks, provided 
that such an execution does not violate the concomitant capability thresholds. C2 node can represent a 
single commander, liaison officer, system operator, or a command cell with its staff. A set of physical 
platforms and assets, C2 nodes, and/or personnel can be aggregated to a resource (e.g., squad, platoon, 
weapons system, etc.). A resource is considered a physical asset of an organization that provides resource 
capabilities and is used to execute tasks. The level of aggregation depends on the problem at hand. For 
example, in cordon and search missions executed by the company–size forces, we can consider resources 
being the single squads.  The roles and responsibilities of the C2 nodes and resources identify possible 
operational and tactical policies: decisions they can make and actions they can perform. 

Command structure, represented as a network with directed links, defines superior–subordinate 
relationships among C2 nodes of the organization, thus specifying who can send commands to whom. 
Communication structure is a network between the decision makers of the organization, that defines “who 
can talk to whom”, the information flow in the C2 organization, the communication resources that decision-
makers can use (communication channels), as well as the security of the communication channels.  A 
control structure is an assignment of resources to C2 nodes, and specifies which commanders can send 
tasking orders to what assets.  A task structure is a network among resources, where each link corresponds 
to operations jointly executed by these resources. 

In Figure 1 we present an example of the enemy command and control military team consisting of 5 
command elements and 14 units/resources. The commanders of this organization make decisions to manage 
assigned resources in cooperative manner to achieve team objectives. Commanders are executing mission 
tasks and prosecuting the desired targets via allocating their resources (military assets and weapons) and 
synchronizing their mission task execution and target engagements. Figure 1.a describes the set of resources 
– military units and assets controlled by commanders. The assets include bomb maker teams, sniper teams, 
mortars, intelligence and reconnaissance teams, and trucks. This chart also shows the functional or resource 
capabilities (Levchuk et al., 2001) of the units and resources in terms of bomb making, strike and small-
arms attack, intelligence and monitoring, and transportation. The authority structure among 5 commanders 
is a flat hierarchy (Figure 1.b) with a single commander (“BLACK”) being a main commanders of enemy 
forces. The assignment of assets and units to commanders (Figure 1.c) determines the control structure of 
the C2 organization. Note that in hypothetical example of Figure 1 the main commander (“BLACK”) does 
not control any resources directly. A communication structure (who can talk to whom) of the organization is 
depicted in Figure 1.d along with the direction of unit reporting observed events (information flow) beyond 
the control structure (we assume that units controlled by commanders also report their observations to these 
commanders). A partial task structure – a network between resources – is shown in Figure 1.e. The task 
structure is due to the joint task execution by resources; therefore, it evolves throughout mission execution 
and depends on how the commanders manage their resources to assign and execute tasks. 

The meaning of the organization discovery is the ability to recognize the command, control, 
communication, and task structures of the organization. However, the challenge is that most of the time we 
cannot observe the elements of the structures of the organization. Instead, we can obtain the intelligence due 
to the actions and activities of the organization. The specific actions depend on the structure of enemy 
command and control organization and are derived from the goals of the team.  Before we outline our 
methodology to relate the observations to the structural elements, we discuss the structure of the 
observation data available from intelligence gathering sources. 
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3. Observations 
What can be gleaned about the adversary organization? What data is most useful to discover individual’s 
roles as well as important relationships within the organization, and which data is meaningless? What types 
of observations are more important to discovery, and thus should be the focus of data collection efforts? 
These questions are at the heart of organizational identification problem. While it is desirable to have full 
access to certain types of information about the enemy to improve detection capabilities, in practice, we are 
constrained with the types of information that can be collected. 

In the normative representation of organizational structures and quantitative theories of organization 
identification, we restrict our models to several types of intelligence information that are currently feasible. 
We assume that the observations can include the set of tracked (monitored) individuals whose positions in 
the organization we need to determine, information about these individuals, and identified adversary’s 
resources. Tractable information regarding the individuals encompasses their attributes and resources – e.g., 
expertise of individuals, training, background, affiliation, cultural characteristics, family ties, etc. 
Information about adversary’s resources may include detection of enemy’s military assets and their 
capabilities, communication means, political connections, and financial capabilities.  In addition, the 
observed information may also include transactions that involve these entities; these comprise of 
intercepted partially deciphered communications among the individuals and the individuals’ actions – the 
involvements in various observable activities. Communication observations (e.g., “members of militant 
wing engaged in a meeting with weapons suppliers at 11:35 am for 35 min to procure explosives”) may 
include some classification of communication content, e.g. request for or transfer of information, resource, 
action; acknowledgement; direction; etc. Action observations (e.g., “BLUE team discovered a safehouse 
and apprehended RED operatives attempting to manufacture weapons”) may include functions/tasks 
performed, such as individuals committing the same crime, performing financial or business transactions, or 
using the resources in covert or open operations.  Such data is very noisy and sparse due to challenges in 
data collection, e.g. limited sensors and/or human intelligence, security of adversary communication 
networks, uncertainty in message translation, data association uncertainty, attempts of the adversary to 
conduct deceptive actions, etc.  Therefore, our framework has to rely on probabilistic association between 
the actors and the decision-making nodes and between the observed assets and the resources of the 
adversarial organization.   

The observations can be related to true activities and communications of the adversary organization. They 
could also be related to the structural elements of the organization. For example, if we intercept the 
command message from one individual to another, it must be that the first individual is a commander of the 
second individual. If we intercept the information exchange between two individuals, it means that they are 
connected through an existing communication channel. However, we encounter problems when the 
uncertainty of the observations increases, and we cannot make abovementioned conclusions with 
confidence.  

Adopting the hypotheses testing approach, where we need to test which of the organizations from the 
library of hypothesized C2 structures best explains the observations, addresses some of these problems. In 
this model, we need to relate a given structural link or an activity to the one that was observed. However, 
there are too many structural links and activities that seem to be similarly related to the observation. This is 
especially true when the content of the observation is highly uncertain and sparse. What we can and need to 
use to improve the discovery is the information about participants of the observed action and/or 
communication. In this case we encounter a new challenge: while the individuals of the adversary can be 
tracked over time and distinguished between one another, we do not immediately know how they related to 
the individual positions in the hypothesized organization. This problem is illustrated in Figure 2. For 
example, the intelligence can be obtained from intercepted communication that the “individual X ordered 
individual Y to conduct operation”, but what operation is not known. This observation can be associated 
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with the command relationship between the nodes of adversary organization (on the left of Figure 2), as 
well as with some hypothesized actions in the behavior model (on the right). First, we need to understand 
what nodes in hypothesized C2 organization do the tracked individuals “X” and “Y” correspond to. If “X” 
is commander “BLACK”, and “Y” is commander “BROWN”, then this observation can be related to the 
structural relationship “BLACK is commander of BROWN”. In this case, we are also able to associate this 
observation with hypothesized activity “BLACK ordered BROWN to assure safe exit in the village”. If 
another association is made (e.g., “X” is commander “BROWN” and “Y” is unit leader of “SNP-2”), then 
other relations of this observation with structural links and with hypothesized activities are possible. Note 
that such relations are not necessarily unique. For example, if we had received intelligence that “unit Z has 
been observed maneuvering in the village”, then if we assume that “Z” is unit “IT-1”, then this could mean 
any of the actions “IT-1 surveys village entrance”, “IT-1 monitors roads”, or “IT-1 sets positions for sniper 
fire with SNP-2”. 
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Figure 2: Example of Relating Observations to Structural Links and Activities 

The associations of the tracked individuals “X” and “Y” with commanders and units/resources of 
hypothesized C2 organization is called node mapping: assigning observed individuals to the positions in a 
hypothetic organization. It might seem that being able to place a tracked individual at the specific position 
in the organization is enough. But discovering positions of individuals in the organization in this fashion 
lacks the notion of organizational activity evolution, and therefore cannot distinguish between the 
organizations and missions. Still, without the node mapping we would not be able to relate the observations 
with hypothesized activities. Even if such associations were possible, they would be too broad and would 
influence future relations. This influence would be due to implicit association between tracked individuals 
(such as “X” and “Y”) and the corresponding participants in the hypothesized activities. This association 
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would prevent us from using hidden Markov models (HMMs) to identify activity patterns (Levchuk and 
Chopra, 2005), since HMMs assume independence between observations.  

This example illustrates the need to obtain the mapping of tracked individuals to actual C2 nodes and 
resources of hypothesized organization. We address this challenge in next section using the formalism of 
probabilistic graph matching. 

4. Mapping Actors to Organizational Nodes using 
Probabilistic Graph Matching 

How can we know the true identify of a tracked individual? This is a main question of node mapping 
problem. The challenge is to relate the observed individual with a place in the organization – mapping him 
against C2 node and its concomitant command role, expertise, dedicated responsibilities, access to people, 
control over resources, etc. Just as law enforcement agencies discover this knowledge by collecting the 
pieces of data about an individual, his relationships to others, and participation in transpired events, we base 
our decisions on observed attributes of individuals, transactions between them, and attributes of those 
transactions. 

The observations about communication exchanges among nodes can be augmented with discovering the 
linkages between the nodes and resources, tasks, and other environment objects.  In short, we are observing 
a network of relationships of different types among the enemy actors (humans), physical resources, tasks, 
etc. This network must be mapped to the network of command, control, and communications of the 
hypothesized organization. The mapping is accomplished via mapping between the nodes of corresponding 
networks.  

The time component is temporarily disregarded, with all observations aggregated and used for a single 
estimation evaluation. All collected observations are linked together to form the data (observed) network. 
The nodes of this network are tracked individuals, units of enemy fight force, and other resources. The links 
of this network are the structural relationships perceived to be realized in observed communications 
between tracked individuals, commands sent from one individual to another or to the unit, information 
requests and information transfers, joint task executions (discovered from action observations), etc. In our 
modeling, we utilized the classification of communication into 12 classes of communications (Entin, 
Diedrich, & Rubineau, 2003). These classes were assumed to be fixed and no other information about the 
intercepted communications was used. The classes allowed determining what organizational relationship 
did the intercepted communication correspond to, thus creating the concomitant link in the data network. 
We need to find how to map the nodes of this data network to the model network – the hypothesized C2 
organization with command, communication, control and task substructures. Figure 3 illustrates the 
problem, where 10 nodes and units of the adversary has been detected (A,B,C,D,E,F,X,Y,Z), and the 
communication intercepts and action observations of the adversary are aggregated to a data network. 
Matching the topology of this network to a hypothesized C2 model network produces the correct mapping 
A=MTR-2, B=GREEN, C=BMT-2, D=TRK-2, E=MTR-4, F=BMT-3, G=TRK-3, X=BLACK, Y=RED, 
Z=IT-2. That is, we say that tracked agent “X” is commander “BLACK”, tracked resource “A” is a mortar 
resource (MTR-2), agent “Y” is commander “RED”, etc. 

To relate the nodes of data network to nodes of model network, we employ probabilistic node mapping 
(Wilson and Hanckock, 1997), (Luo and Hanckock, 2001) to maximize the likelihood that the data network 
has been generated by the model network over all possible mappings from nodes of data network to nodes 
of model network. The mapping does not have to be one-to-one. It could be one to many, which is 
equivalent to discovering the individual of the enemy organization that performs multiple roles, or many to 
one, which is equivalent to finding the enemy command cell.  
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To develop our models, we draw on the research in 2- and 3-D computer vision and structural pattern 
identification.  The mapping is found by maximizing the likelihood function equal to the probability that the 
observed interaction/relationship network has been generated by the model network coupled with the 
mapping between the nodes of observed and model networks.  This mapping must account for the attributes 
or features of both nodes and links, and the models of attribute uncertainty (the probability of observing the 
attribute(s) correctly).  Node attributes can include areas of responsibility, performed functions and/or tasks, 
expertise of the node (e.g., sniper operations; weapons sales; money laundering; etc.), while link attributes 
may correspond to types of interactions and relationships between nodes in the adversary C3I organization 
(e.g., communication messages may be of the following types: request for or transfer of information, 
resource, action; acknowledgement; direction; etc.).  
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Figure 3: Example of Node Mapping Problem 
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Figure 4: Example of Node Mapping Problem 

To find maximum likelihood, we employ structural consistency approach. The mapping is obtained to 
maximize the topological closeness between data and model networks. In simplified terms, it is equivalent 
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to finding the consistency between the elementary substructures of the data and model networks. An 
example of elementary substructure is a clique – a node and all its neighbors (see Figure 4). The consistency 
is based on (i) correctly matching the nodes of data network to the nodes of model network (i.e., relating 
observed individuals to the C2 nodes in hypothesized C2 organization), (ii) maximizing the number of 
correctly identified relationships between nodes, and (iii) minimizing the number of incorrectly identified 
relationships and missed (unobserved) relationships. For a formal problem formulation and mathematical 
derivations for the node mapping algorithm, see the Appendix. The node mapping algorithm (illustrated in 
Figure 5) using expectation maximization iteratively updates the consistency between the topologies of the 
data graph, permuted with the mapping function, and the model graph. The consistency is based on (i) 
correctly matching the nodes of data network to the nodes of model network (i.e., relating observed 
individuals to the C2 nodes in hypothesized C2 organization), (ii) maximizing the number of correctly 
identified relationships between nodes, and (iii) minimizing the number of incorrectly identified 
relationships and missed (unobserved) relationships. 
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Figure 5: Illustration of Node Mapping Update 

5. Model Application and Future Research 
One of the important modeling aspects of this research is the ability to associate the observed transaction 
(communication, action) with the structural elements of the organization. More sophisticated models are 
needed to represent these relationships. One such approach is to discover the attributes that describe the 
observed data (both suspected enemy actors and their behaviors) and use them to relate observation to the 
structural relationship. This approach would require utilizing the heterogeneous error models, solutions for 
which will require resolving significantly higher complexity. Another challenge is deciphering the content 
of the communication and using its partial knowledge in the detection process. We have utilized fixed 
classification of the observed communications. The actual message classification is beyond the scope of this 
research. 

It might seem that being able to relate a tracked individual to the specific position in the organization is 
enough. But discovering positions of individuals in the organization in this fashion lacks the notion of 
organizational activity evolution, and therefore cannot distinguish between the organizations and missions. 
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The mapping algorithm uses all the observed data together. Its complexity does not allow the dynamic re-
mapping to be performed with every incoming observation, which is needed for organization monitoring to 
detect when the organization changes its structure or changes its mission. The mapping does, however, 
allow associating the observed transactions with activities in the behavior model of the adversary. This will 
be used to monitor and detect patterns of adversary activities and will serve as the final organization 
detection step.  

The ultimate product of adversary organization research is the development of a system to disrupt enemy 
organization at the tactical and/or strategic level based on control–theoretic methodology.  The information 
collected from various sources about enemy activities, communication intercepts, knowledge about enemy 
resources, relationships between goals and actions, hypotheses about the enemy command and mission, – 
all are the inputs into the system.  The developed system can be integrated as a part of a larger OODA 
decision cycle, transformed into Observe, Identify, Assess, Plan, Execute process. 

More specifically, the knowledge obtained with the help of adversary identification process can be used in 
two ways: 

(a) Improving predictions of enemy’s courses of action (COAs). 

(b) Improving the efficiency of disrupting the enemy. 

Current predictive algorithms oftentimes do not take the enemy organization into account when developing 
possible enemy COAs.  Usually, the methods assume either one specific distribution of the resources 
control, information, knowledge, and command in the enemy organization, or the “worst–case” COAs are 
developed which imply joint planning and execution of enemy activities.  This approach does not match to 
the real world.  It has been proven in computational organization theories and has been validated in 
numerous experiments that the structure of the command, control, communication, and information access 
significantly impacts the actions selected by the organization. 

The actions to disrupt the enemy developed by currently employed methods are often based on trying to 
eliminate the most critical enemy resources/assets.  Most of the time, the criticality of the assets is judged 
outside of the enemy organization by simply considering the individual functions and capabilities of the 
assets.  However, such an approach may end up with miscalculating the future impact of the assets since it 
can only be evaluated through understanding where the enemy is intending to use this asset.  The latter 
depends on the responsibilities of the commander who controls the asset.  As the result, if we can identify 
the future employments of the assets by the enemy, then we may be able to eliminate those assets and 
prevent the enemy’s ability to coordinate supplementing the lost resources.  Due to distributed nature of 
such operations, this will represent a more efficient approach to disrupt the enemy capabilities than 
traditional procedures. 
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APPENDIX: Node Mapping Problem Formulation and Solution 
Algorithm 

Formally speaking, we represent a hypothesis organization as a graph ),( MMM EVG = , – a model network 
where  is a set of C2 and resource nodes and  is a set of edges among them.  Without loss of 
generality we assume that we deal with a single network structure of the enemy organization.  The edges 
can also be expressed in the form of adjacency matrix: 

MV ME

βα ,MM = , where  if and only if 1, =βαM

ME∈),( βα . Observed data is aggregated to a data network – a graph ),( DDD EVG =  with adjacency 
matrix βα ,DD = . Here,  is a set of observed individuals and resources, and  is a set of observed 
relationships among them. We need to discover the mapping from actors to their roles in the organization – 
that is, from the nodes of data graph to nodes of model graph. This is accomplished by finding an 
assignment matrix 

DV DE

MD VVaasS
∈∈

=
αα ,, , where 1=αas  if data node  is mapped to model node a α . We find an 

assignment matrix  that maximizes the likelihood function S ( )SGGP MD ,| , which is equal to the 
probability that the observation (data network) has been generated by the hypothesis organization (model 
network) given the roles of tracked individuals (mapping between nodes of data and model graphs). In this 
model, the uncertainty of observing relationships between network nodes is modeled using false alarm 
probability for observed but deceptive activities and probability of a miss for unobserved secure/covert 
activities. While direct optimization of the likelihood is infeasible, an approximate solution can be obtained 
by relaxing structural consistency measure to consider subgroup match, and then employing expectation 
maximization algorithm to find iterative solution (Luo and Hanckock, 2001). Not only do we obtain the 
correspondence of tracked individuals to specific nodes in each hypothesized organization, but we can also 
rank-order these associations for each organization using values of likelihood function . ( )SGGP MD ,|

To simplify problem formulation, we assume that there are two types of errors present.  One type 
corresponds to the deletions of the links from the model graph, which occurs with probability .  This is 
equivalent to saying that probability of observing an existing link (probability of detection) in the model (of 
the hidden organization) is . For simplicity, we also assume that probability of “adding” the link 
(false alarm probability, i.e. having a noisy link – observation about relationship which is deceptive) is .  
Another error generation is according to the random mislabeling of the actors to the roles/nodes in the 
hypothesized graph – that is, the initialization error of incorrectly mapping the node of the data graph with 

L
ep

L
ep−1

L
ep
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the node of the model graph.  This occurs uniformly with probability , and is equivalent to saying that 
the probability to correctly observe the node’s attributes (or mapping the node in a model to the node in a 
data graph) is equal to . 

N
ep

N
ep−1

To solve maximum-likelihood problem, we assume conditional independence and mixture distribution 
assumptions similar to (Luo and Hancock, 2001): ( ) ( )∏∑

∈ ∈

=
D HVa V

aMD SyxPSGGP
α

α ,|,| . Here, ( )SyxP a ,| α  

corresponds to the probability of observing the data node (tracked individual)  given a model node (an 

information about C2 node)  and a mapping from data to model nodes .  Our algorithm uses clique-
based relaxation and both node and link uncertainty models.  The relaxation techniques used in our 
algorithm are better representing structural consistency of matching graphs.   

ax

αy S

To find , we first use conditional independence and mixture distribution 

assumptions to write: 

( SGGPS MD
S

,|maxargˆ = )

( ) ( )∏ ∑
∈ ∈

=
D HVa V

aMD SyxPSGGP
α

α ,|,| . Then, using Bayesian theory, we have: 
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Assuming that , we get: . Here, 

 corresponds to the probability of observing the data node (tracked individual)  given 

a model node (an information about C2 node)  and a mapping from some other data node  to model 

nodes (i.e., the mapping subset ).  The probability  is computed using the 

following observations: 

( ) ( aa xPyxP =α| ) ( ) ∏ ∏
∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

D MVb V
baaa syxPBSyxP

β
βαα ,,|,|

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏
∈ MV

ba syxP
β

βα ,,| ax

αy bx

∏
∈ MV

bs
β

β, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏
∈ MV

ba syxP
β

βα ,,|

 

13 
 



CCRTS-2006 

1. If  (  is a neighbor of  in data network) and DEba ∈),( bx ax 1,, =∑
∈ MV

b Ms
β

βαβ  (the node of model 

network which a data node  is mapped to according to mapping bx ∏
∈ MV

bs
β

β,  is a neighbor of ), 

then  

αy

ε
β

βα =+−−=⎟⎟
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∏
∈

L
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N
e
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V
ba ppppsyxP

M

)1)(1(,| ,

This condition implies that either the link was observed, in which case the correspondence is 
correct, or that the link was missed, in which case the correspondence is incorrect. 

2. If  (  is a neighbor of  in data network) and DEba ∈),( bx ax 0,, =∑
∈ MV

b Ms
β

βαβ  (the node of model 

network which a data node  is mapped to according to mapping bx ∏
∈ MV

bs
β

β,  is not a neighbor of 

), then  αy L
e

N
e
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e
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V
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)1()1(,| , −+−=⎟⎟
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⎛
∏
∈β

βα

This condition implies that either the link was not noisy (not “erroneously observed”), in which 
case the correspondence is in error because there is a link, or that the link was actually noisy (there 
was a false alarm error), in which case the correspondence is correct. 

3. If  (  is not linked to  in data network) and DEba ∉),( bx ax 1,, =∑
∈ MV

b Ms
β

βαβ  (the node of model 

network which a data node  is mapped to according to mapping bx ∏
∈ MV

bs
β

β,  is a neighbor of ), 

then  
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This condition implies that either the link was observed, in which case the correspondence is in 
error, or that the link was missed, in which case the correspondence is correct. 

4. If  (  is not linked to  in data network) and DEba ∉),( bx ax 0,, =∑
∈ MV

b Ms
β

βαβ  (the node of model 

network which a data node  is mapped to according to mapping bx ∏
∈ MV
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β

β,  is not a neighbor of 

), then  αy )1)(1()1)(1(,| ,
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This condition implies that either the link was not noisy (not “erroneously observed”), in which 
case the correspondence is correct, or that the link was actually noisy, in which case the 
correspondence is in error because there is no link here. 

Therefore, we can write: 
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where { } { }
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εμαμμε α −
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1
ln2',)(exp,)(exp' || cTacBK DV

aa , and  is a connectivity index 

of the node: 
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Hence, the log-likelihood function ( )SGGPSL MD ,|log)( =  can be expressed as 
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This problem cannot be directly solved, but we can apply expectation maximization (EM) algorithm. The 
maximization step applies weighted log-likelihood function  
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To maximize weighted log-likelihood function, we then need to maximize 
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Hence, we get to maximize: ( ){ }TnT MSQDtr )(2 Ω−  

Hence, we need: ( ){ }TnT

S

n MSQDtrS )()1( 2maxarg Ω−=+  

Let  - this is a ( ) MQDZ nT )(2 Ω−= |||| MD VV ×  positive-definite matrix.  Then we can perform singular-

value decomposition , where  is T
MD UUZ ⋅Δ⋅= DU |||| DD VV ×  orthogonal and  is  

orthogonal matrix, and  is a  matrix with zero non-diagonal elements and non-zero diagonal 
ones.  If we let 

MU |||| MM VV ×
Δ |||| MD VV ×

E  be a matrix obtained from Δ  by replacing diagonal elements with 1’s, then a matrix 
 maximizes T
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The expectation step then updates the model probabilities, and the process is repeated. Using the Bayes 
rule, the iterative conditional probability update is as follows: 
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Using the described approach, we can find the mapping ( )SGGPS MD
S

M ,|maxarg*=  from the data 

network to every model network from the hypotheses library. The solution to the adversary recognition 
problem is then to find a model network ( )*,|maxarg* MMD

G
M SGGPG

M

= . The final solution to the 

adversary identification problem is then a pair >< **,SGM  of the organization structure (network) and the 
mapping from the actors to the positions in this organization. 
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