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Abstract 
 
During the military planning process, commander’s intent and objectives are defined and courses 
of action (COAs) are developed, analyzed and compared to determine their likelihood of 
achieving the intent and objectives.  For each mission, thousands of COAs could be 
automatically generated but only those in alignment with commander’s objectives are worth 
investigating.  The challenge is to be able to automatically determine alignment, given that there 
is a semantic gap for a specific pair of objective and COA.  The two not only differ syntactically, 
but also semantically.  In this research, we made two specific contributions towards developing a 
solution to this problem.  First, we discovered that classic symbolic reasoning does not work in 
developing such a solution, as the semantics involved are always fuzzy and inexact.  Second, 
under the assumptions that both the operational objective and the COAs are represented in a low 
level semantic hierarchy (such that there is a syntax to represent them in terms of languages), we 
developed a solution that identifies their alignment as well as divergence.  This paper presents 
results of this research, along with results from testing the proposed solution on a small, hand-
crafted ontology. 
 
Keywords: commander’s intent, course of action, COA analysis, semantic inference, fuzzy logic 
 
1.0 Introduction 
 
The military planning process depends upon analysis systems to be able to anticipate and 
respond in real-time to a dynamically changing battlespace with counteractions.  Complex 
technical challenges exist in developing automated processes to derive hypotheses about future 
alternatives for mission scenarios.  The military conducts combat operations in the presence of 
uncertainty and the alternatives that might emerge.  It is virtually impossible to identify or 
predict the specific details of what might transpire.  Plans and strategies, which result in COAs, 
are evaluated to determine the necessary steps to meet the overall strategic objectives.  COA 
analysis is the process of performing “what if” analysis of actions and reactions and is designed 
to visualize the flow of the battle and evaluate each friendly COA.  Due to the dynamic nature of 
military campaigns, COAs are continuously generated, developed and analyzed prior to 
execution.  For each mission, thousands of COAs could be automatically generated.  Clearly, it is 
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neither possible nor necessary to analyze or execute all of the COAs.  Also, it is time prohibitive 
in current fast paced campaigns to evaluate COAs that don’t achieve commander’s intent.  
Instead, prior to analysis and execution of a COA, it must be determined whether a particular 
COA is in alignment with the commander’s intent and objectives for the mission.  This capability 
is extremely important and plays a critical role in dominating the battlefield and consequently 
succeeding in the campaign.  This research addresses the investigation of developing this 
capability. 
 
There are five fundamental issues that must be considered when developing COAs.  A valid 
COA should be suitable, feasible, acceptable, distinguishable and complete [1].  A COA is 
suitable if it is in alignment with commander’s intent and will accomplish the mission when 
carried out successfully.  A COA is feasible if it can be achieved with the given resources.  A 
COA is acceptable if it balances cost and risk with advantage gained through execution.  A COA 
is distinguishable if it is significantly different from others and a COA is complete if it 
incorporates major operations and tasks to be accomplished to accomplish the desired end state.  
The first issue, suitability, relates to the semantic inference on whether the COA matches the 
commander’s intent and will be the focus of this paper. 
 
2.0 Background 
 
A commander’s intent is defined in terms of the goal and the end state.  The goal is what the 
military campaign is expected to achieve.  The end state is what the conditions are expected to be 
after the military campaign is over.  Due to the existence of a typical military administrative 
hierarchy in command of a specific military campaign, a commander’s intent may also be 
represented in different levels of a hierarchy, from the strategic level through the operational 
level to the tactical level. 
 
The strategic level of the commander’s intent refers to a high level commander’s intent, such as 
the president’s intent.  An example of the strategic level intent is shown in Figure 1. 
 

Figure 1: An example of a strategic level commander’s intent. 

We will liberate Orangeland, restore power and control 
to her rightful government, and then punish the 
aggressor nation for its unlawful attack and 
occupation by significantly reducing his ability to 
wage war such that he is no longer a regional threat. 

 
The operational level commander’s intent refers to the actual execution commander’s intent, i.e., 
the intent of the commander in charge of the specific military campaign.  At this level, the 
commander’s intent may be represented in several ways, such as end state, purpose, method, and 
risk.  An example of an operational level commander’s intent is shown in Figure 2. 
 



Figure 2: An example of an operational level commander’s intent. 

End state: a. freedom to operate forces starting with 
pre-deployment activities; b. no Weapons of Mass 
Destruction (WMD)/Theater Ballistic Missile (TBM) or 
terrorist threat to region/US 
Purpose: regional stability and US security 
Method: Global Strike Task Force initial strikes 
followed by Air and Space Epeditionary Task 
Force/Carrier Battle Group persistence forces 
Risk: low to US forces; medium for collateral damage. 

 
The tactical level of commander’s intent refers to the specific objectives that the staff of the 
commander in charge of the military campaign has outlined in terms of the operational level 
commander’s intent.  An example of the tactical level commander’s intent is shown in Figure 3. 
 

Figure 3: An example of the tactical level commander’s intent. 

Disrupt enemy TBM Command & Control (C2) systems. 

 
On the other hand, a COA actually represents a specific possible option in order to achieve a 
military mission, and therefore, it may also be represented in a hierarchy at different levels of 
execution.  For example, a higher level COA may be “attack WMD and TBM power” while a 
lower level COA may be “move FA-18 at speed 500 through route 21”.  Consequently, a COA 
may consist of several lower level granularity COAs in sequence. 
 
This research only addresses the suitability issue of COA analysis.  In other words, given a 
commander’s intent and a COA, the problem is to determine whether the COA is in alignment 
with the commander’s intent, and if not, how far the COA diverts from the commander’s intent.  
The challenge is that typically there are always semantic uncertainty and fuzziness for both 
commander’s intent and COAs.  This semantic uncertainty and fuzziness demand that not only 
natural language be correctly understood, but also the semantic meaning of each word be 
correctly understood, given the different context in different application.  For example, referring 
to Figure 1, what do “control” and “ability significantly reduced” exactly mean?  Due to this 
semantic uncertainty and fuzziness, there is a semantic gap between the commander’s intent and 
a COA; the challenge is to develop a solution that overcomes this semantic gap. 
 
In order to address the semantic uncertainty and fuzziness, we developed a fuzzified approach to 
semantic inference for COA analysis, called CAFSIN, which stands for COA Analysis based on 
Fuzzified Semantic INference.  We demonstrated the effectiveness of the CAFSIN method 
through preliminary testing and evaluations, and present the results here. 
 
3.0 Related Work 
 
COA analysis has received attention in recent military campaign research for years.  COA 
analysis was studied through computer-generated forces in simulation using cognitive modeling 
[2].  Based on individual cases, they used cognitive modeling to attempt to develop a generalized 
strategy for COA analysis using simulations.  In a joint research project on COA analysis 
between Army Research Laboratory (ARL) and Ohio State University (OSU), the multi-criterial 



decision tool developed at OSU was used to mine ARL combat simulation data in order to gain 
the battle-planning insights into understanding the COA space [3].  The approach taken in this 
work is more related to data mining and visualization through user interaction to develop such 
insights.  In a related work, as reported in [4], an effort was accomplished to survey several 
existing tools for visualizing COA analysis results, including the OSU developed tools.  In 
addition, researchers combined the existing tools together using coevolution and Pareto 
optimization for COA analysis. 
 
Situation assessment and COA selection were studied [5] using a Commander Model under the 
Joint Warfare System environment [6].  Fuzzy rules are used due to the typical fuzzy nature of 
the commander’s intent, and users are provided with the ability to modify both the input 
parameters and the underlying rules.  A software system for COA development and analysis was 
reported on in [7] based on colored Petri Nets [8].  The colored Petri Net model is used in this 
study to specify the execution and analysis of tasks in a COA. 
 
Recently, COA analysis has been investigated in the context of real-time decision support at the 
Air Force Research Laboratory (AFRL).  The current status of COA analysis was reported on in 
[9, 10] as well as the approaches AFRL is taking on real-time COA analysis.  Preliminary 
simulation results are reported using high performance computing facilities to achieve real-time 
COA analysis.  A data representation ontology was reported on in [11] and the related schema 
developed for the COA analysis at AFRL. 
 
It is well-observed [12] that in many real-world problems, classic symbolic reasoning [13, 14] 
may not work, and consequently, the research on uncertainty reasoning [12, 15] has received 
intensive attention. 
 
While much of this work relates to COA development and analysis, it fails to address the issue of 
COA suitability that was mentioned previously. 
 
4.0 CAFSIN Solution 
 
Due to the great challenge of the semantic gap between the commander’s intent and a COA, as 
for the first phase of this investigation, we have made the following assumptions to simplify the 
solution: 
 
1. The commander’s intent is given at the tactical level.  This allows a restrictive syntax to be 

used. 
2. The COA is also given in a lower, more specific level.  This also allows a restrictive syntax 

to be used. 
3. A domain ontology must be given. 
 
Based on these assumptions, we developed the CAFSIN solution.  This solution models the 
determination of the alignment problem between a commander’s intent and a COA as a fuzzified 
language matching problem.  This is a general approach to COA analysis and reasoning because 
it addresses the uncertain and fuzzy nature of the problem using fuzzy logic analysis, and 
consequently, the solution leaves a user to define what is considered as a compliant or a diverting 



COA.  Even though CAFSIN is developed under the assumptions made above, it may also work 
when the assumptions are relaxed if reliable information extraction (IE) tools are available. 
 
4.1 Ontology Construction 
 
In order to facilitate the search in CAFSIN, the following issues were considered when 
constructing the ontology: 
 
1. Synonymy: all the synonyms are hard-wired together in a node in the ontology (e.g., “the 

Pentagon” and “DoD” are wired together as the same word and are represented as a single 
node). 

2. Polysemy: words in different meanings in the ontology are represented in different nodes 
(e.g., “chair” as a department chair and “chair” as a piece of furniture are represented and 
located as separate words). 

3. Special names: special names and phrases are coined as single words in the ontology (e.g., 
“WMD support system” as one word). 

 
Given an ontology with these requirements satisfied, a standard hashing function may be used to 
directly identify a specific node in the ontology. 
 
4.2 Fuzzified Word Similarity 
 
Given two words w1 and w2 and an ontology Ψ, the similarity function f is defined as a Gaussian 
function: 
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where dw1 and dw2 are the depths of w1 and w2 from a nearest common ancestor in Ψ; if they do 
not share a common ancestor, they are set as ∞; p is the normalization factor; and σ is the 
standard deviation. 
 
Based on the definition of this fuzzified word similarity function, given an ontology, the 
similarity between two words depends on two things: (1) the relative depth difference between 
the two words in the ontology; and (2) the depth from the nearest common ancestor in the 
ontology. 
 
Thus, two words have a strong similarity if they are synonyms, or siblings sharing a common 
parent, or one is a parent of the other.  The similarity decreases if the depth difference between 
the two words increases in the same ontology tree; and/or their nearest common ancestor moves 
away.  The similarity becomes 0 if the two words do not have a common ancestor, i.e., they are 
located in different ontology trees. 
 
4.3 Language Models 
 



Since we have assumed that the commander’s intent is represented as a tactical level command, 
and since at the tactical level, commands may be represented in a well-defined syntax, we use the 
following grammar as the language model for the commander’s intent: 
 

T = <verb> <noun>*+      (2) 
 
Similarly, a COA may be represented as a language sentence with the following grammar: 
 

C = {<verb> <attribute value>*}+     (3) 
 
4.4 CAFSIN Similarity Function 
 
Now we are ready to define the CAFSIN similarity function based on our CAFSIN design 
principle.  Let t ∈ T, t = v n*; let c ∈ C, c = {u m*}+.  Then the CAFSIN similarity function is 
defined as: 
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where H(n*,m*) is a fuzzified maximum substring matching function between word string n* 
and word string m* using the fuzzified word similarity function f(n,m|Ψ); α is a normalization 
factor. 
 
Now the next question is how to compute the fuzzified maximum substring matching function H.  
It is well known that the substring matching problem is NP-complete, and an optimal solution 
may be found using dynamic programming.  Since the actual t and c typically only have a very 
few words, the complexity is not an issue. 
 
Assume that there are N words for the string n*, and that there are M words for string m*.  Using 
the dynamic programming technique, we create a table of H[N+1, M+1], and the table H is 
initialized as H[0, j]=0 for j=1, … , M+1; and H[i, 0]=0 for i=1, … , N+1.  Thus, the rest of the 
entries in H are computed based on the following recurrence: 
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5.0 Proof-of-Concept Testing 
 
The CAFSIN method has been tested with a hand-crafted ontology, which is shown in part in 
Figures 4 and 5. 



 

Military Order

Conduct Demonstrate Lose Maintain Operate Deter Plan Secure Give

Develop Deploy Attack (deny, strike) Move Engage report 

Disable (disrupt, disable)

Bomb Shoot

Air Bomb

Figure 4: Part of the ontology used in the preliminary testing. 
 

 

Enemy Systems

C2 Systems Support Systems 

Control 
Systems 

Communication
Systems 

TBM C2 
Systems

WMD Support 
Systems 

B13
Figure 5: Another part of the ontology used in the preliminary testing. 

 
As a first example, assume that we have a commander’s intent as “disrupt enemy’s WMD 
support system” and a COA as “engage FA-18 target B13”.  After the standard text processing, 
we have the two strings for the commander’s intent and the COA, as represented in Figure 6. 
 

t = {<disrupt>,(<enemy>,<WMD support system>)} 

c = {<engage>,(<FA-18>,<target>,<B13>)} 
Figure 6: The commander’s intent and the COA strings after text processing. 

 



Based on the ontologies shown in Figures 4 and 5, we have obtained the distances between the 
relevant word pairs which are shown in Table 1. 
 
Assuming the parameters of σ=1, p=       , α=1; from Eq. 1 we compute the fuzzified similarity 
values for the relevant word pairs as shown in Table 2.  Finally, the H function is computed 
using dynamic programming based on Eq. 5 as denoted in Table 3, and the final similarity 
function value between the pair of commander’s intent and the COA is determined based on Eq. 
4 as 0.607. 

π2

 
Table 1: Ontology distances between the words in the example. 

d<disrupt> = 2 d<engage> = 1 

d<enemy> = ∞ d<FA-18> = ∞ 

d<enemy> = ∞ d<target> = ∞ 

d<enemy> = ∞ d<B13> = ∞ 

d<WMD support system> = ∞ d<FA-18> = ∞ 

d<WMD support system> = ∞ d<target> = ∞ 

d<WMD support system> = 0 d<B13> = 1 
 

Table 2: Similarity values between the words in the example. 
f(<disrupt>, <engage>) = 0.607 

f(<enemy>, <FA-18>) = 0 

f(<enemy>, <target>) = 0 

f(<enemy>, <B13>) = 0 

f(<WMD support system>, <FA-18>) = 0 

f(<WMD support system>, <target>) = 0 

f(<WMD support system>, <B13>) = 1 
 

Table 3: The dynamic programming table for computing H in the example. 
  enemy WMD support system

 0 0 0 

FA-18 0 0 0 

target 0 0 0 

B13 0 0 1 
 



As another example, we have the same commander’s intent as in the first example, but the COA 
has one more action “bomb target B13” in addition to the original action in the first example.  
After standard text processing we have the strings specified in Figure 7. 
 

 
Figure 7: Another example of commander’s intent and COA specified as strings after text 
processing. 

c = {<engage>,(<FA-18>,<target>,<B13>); 
<bomb>,(<target>,<B13>)} 

t = {<disrupt>,(<enemy>,<WMD support system>)} 

 
The similarity computation for the pair between the commander’s intent and the first action 
{<engage>,(<FA-18>,<target>,<B13>)} of the COA is identical to the one computed in the 
first example, and is equal to 0.607.  In order to compute the similarity for the pair between the 
same commander’s intent and the second part of the COA, we first determine the ontology 
distance based on the ontology described in Figures 4 and 5, as reported in Table 4.  The word 
pair similarity values are then computed using Eq. 1 and shown in Table 5, and finally the H 
function is computed using dynamic programming based on Eq. 5 shown in Table 6.  Thus, the 
final similarity value between the commander’s intent and the COA is the summation of the two 
parts which becomes 1.607.  Clearly, due to the addition of the second part in the COA, the 
similarity of this COA to the commander’s intent is much higher than the one in the first 
example, which indicates that the second COA is more in alignment with the commander’s intent 
than the first COA. 
 
Table 4: Ontology distance between the words for the second pair in the second example. 

d<disrupt> = 0 d<bomb> = 1 

d<enemy> = ∞ d<target> = ∞ 

d<enemy> = ∞ d<B13> = ∞ 

d<WMD support system> = ∞ d<target> = ∞ 

d<WMD support system> = 0 d<B13> = 1 
 
Table 5: Similarity values between the words for the second pair in the second example. 

f(<disrupt>, <bomb>) = 1 

f(<enemy>, <target>) = 0 

f(<enemy>, <B13>) = 0 

f(<WMD support system>, <target>) = 0

f(<WMD support system>, <B13>) = 1 
 
 
 
 



Table 6: Dynamic programming table for computing H for the second pair in the second 
example. 

  enemy WMD support system

 0 0 0 

target 0 0 0 

B13 0 0 1 
 
As yet another example, let’s stay with the same commander’s intent used in the previous two 
examples but the COA now becomes “lose target B13”.  After the standard text processing, we 
have the strings specified in Figure 8. 
 

 
Figure 8: The strings specified for the commander’s intent and the COA after standard 
text processing in the third example. 

c = {<lose>,(<target>,<B13>)} 
t = {<disrupt>,(<enemy>,<WMD support system>)} 

 
Now the same CAFSIN method is applied to this example and reported in Tables 7 – 9.  The 
final similarity value between the commander’s intent and the COA in this example is 0.135, 
assuming the same parameters are used as in the first two examples.  This similarity value is 
lower than the first two examples (0.607, 1.607).  This indicates that the COA does not align 
with the commander’s intent as well as the first two COAs.  It may also indicate that the COA 
diverges from commander’s intent and should not be considered further. 
 

Table 7: Ontology distance between the words in the third example. 
d<disrupt> = 3 d<lose> = 1 

d<enemy> = ∞ d<target> = ∞

d<enemy> = ∞ d<B13> = ∞ 

d<WMD support system> = ∞ d<target> = ∞

d<WMD support system> = 0 d<B13> = 1 
 

Table 8: Similarity values between the words in the third example. 
f(<disrupt>, <lose>) = 0.135 

f(<enemy>, <target>) = 0 

f(<enemy>, <B13>) = 0 

f(<WMD support system>, <target>) = 0 

f(<WMD support system>, <B13>) = 1 
 
 



Table 9: Dynamic programming table for computing H in the third example. 
  enemy WMD support system

 0 0 0 

target 0 0 0 

B13 0 0 1 
 
The above three examples demonstrate the effectiveness of using CAFSIN method to determine 
the alignment between a pair of given commander’s intent and COA, and showcases the proof of 
the concept for the CAFSIN method.  Using the ontology we have hand-crafted shown in Figures 
4 and 5, we have tested numerous examples for different commander’s intent and COAs and the 
experiments all show that CAFSIN is a very effective method to serve the purpose of 
determining whether a COA is in alignment with a commander’s intent and by how much 
relative to comparable COAs. 
 
6.0 Conclusion and Future Work 
 
In this research, we have reviewed the relevant literature regarding the problem of determining 
the alignment of a course of action with a commander’s intent, and have found that the solution 
to this problem must address explicitly the uncertainty and fuzziness issues in the reasoning 
process.  Consequently, we have concluded that the classic symbolic reasoning does not work.  
Instead, we developed a specific but general solution to the problem that is based on fuzzified 
semantic inference called CAFSIN.  We demonstrated that CAFSIN is an effective method to 
solve the problem through proof-of-concept testing. 
 
CAFSIN has the following advantages: 
• It is independent of the ontology; we can apply it to any domain to solve the problem. 
• It is independent of specific words; the similarity between the words is only dependent on the 

relative locations between the words in ontology. 
• It is always relative; this allows users interaction based on their experience and expertise. 
 
The future work includes: 
 
• Large scale evaluation:  Large scale evaluation is necessary in order to actually turn 

CAFSIN method into a real world technology.  However, there are several issues that we 
must address before we are able to conduct large scale evaluations.  The first is the 
construction of the ontology for a specific application domain.  How to construct such a 
reasonably large ontology is always a question.  We may use the existing general domain 
ontology such as Wordnet.  But how to tailor the general ontology to the specific application 
domain also becomes an issue.  Finally, even if we have an ontology and a data set ready for 
the evaluations, how to define the evaluation metrics is another issue. 
 

• Relaxing the assumptions:  There are two directions that we can go for relaxing the current 
assumptions of CAFSIN.  The first one is to apply CAFSIN to higher level of commander’s 
intent and COA.  In this case we need tools for natural language processing.  If we have 



reliable IE tools available, the direct extension of CAFSIN to this scenario is not a problem; 
the problem now becomes how to interface the IE tools into the CAFSIN method.  The 
second direction is to relax the syntax of the COA to incorporate constraints into the COA.  
This involves revising the CAFSIN strings matching function. 
 

• Improving the computation complexity:  There are two bottlenecks to the complexity of 
the CAFSIN method.  The first is the fuzzified substring matching to compute the H 
function.  Though we claim that typically the strings are not very long and so the complexity 
would not be a problem.  However, in case the strings become very long, we may need to add 
heuristics into the matching to expedite the substring search.  The second bottleneck is the 
ontology tree search for identifying the correct location of the word.  Given the typical 
scenario that the words in a given COA may be located “close enough” in the ontology, we 
may be able to add some locality analysis into the ontology tree search for reducing the tree 
traversal search time. 
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