
2006 CCRTS

THE STATE OF THE ART AND THE STATE OF THE PRACTICE

Title: Determining Course of Action Alignment with Operational Objectives

Topics: C2 Modeling and Simulation, C2 Analysis, C2 Experimentation

Authors: Duane Gilmour, Zhongfei (Mark) Zhang

POC: Duane Gilmour

Organization: Air Force Research Laboratory

Address: Air Force Research Laboratory, IFTC

525 Brooks Road

Rome, NY 13441-4505

Phone: 315-330-3550

Fax: 315-330-2953

Duane.Gilmour@rl.af.mil

Determining Course of Action Alignment with Operational Objectives

Duane Gilmour*, Zhongfei (Mark) Zhang**

Duane.Gilmour@rl.af.mil, zhongfei@cs.binghamton.edu

*Air Force Research Laboratory, Information Directorate
Advanced Computing Technology Branch
525 Brooks Road, Rome, NY 13441-4505

** Department of Computer Science

Watson School of Engineering and Applied Sciences
Binghamton University

Binghamton, NY 13902-6000

Abstract

During the military planning process, commander’s intent and objectives are defined and courses
of action (COAs) are developed, analyzed and compared to determine their likelihood of
achieving the intent and objectives. For each mission, thousands of COAs could be
automatically generated but only those in alignment with commander’s objectives are worth
investigating. The challenge is to be able to automatically determine alignment, given that there
is a semantic gap for a specific pair of objective and COA. The two not only differ syntactically,
but also semantically. In this research, we made two specific contributions towards developing a
solution to this problem. First, we discovered that classic symbolic reasoning does not work in
developing such a solution, as the semantics involved are always fuzzy and inexact. Second,
under the assumptions that both the operational objective and the COAs are represented in a low
level semantic hierarchy (such that there is a syntax to represent them in terms of languages), we
developed a solution that identifies their alignment as well as divergence. This paper presents
results of this research, along with results from testing the proposed solution on a small, hand-
crafted ontology.

Keywords: commander’s intent, course of action, COA analysis, semantic inference, fuzzy logic

1.0 Introduction

The military planning process depends upon analysis systems to be able to anticipate and
respond in real-time to a dynamically changing battlespace with counteractions. Complex
technical challenges exist in developing automated processes to derive hypotheses about future
alternatives for mission scenarios. The military conducts combat operations in the presence of
uncertainty and the alternatives that might emerge. It is virtually impossible to identify or
predict the specific details of what might transpire. Plans and strategies, which result in COAs,
are evaluated to determine the necessary steps to meet the overall strategic objectives. COA
analysis is the process of performing “what if” analysis of actions and reactions and is designed
to visualize the flow of the battle and evaluate each friendly COA. Due to the dynamic nature of
military campaigns, COAs are continuously generated, developed and analyzed prior to
execution. For each mission, thousands of COAs could be automatically generated. Clearly, it is

mailto:Duane.Gilmour@rl.af.mil
mailto:zhongfei@cs.binghamton.edu

neither possible nor necessary to analyze or execute all of the COAs. Also, it is time prohibitive
in current fast paced campaigns to evaluate COAs that don’t achieve commander’s intent.
Instead, prior to analysis and execution of a COA, it must be determined whether a particular
COA is in alignment with the commander’s intent and objectives for the mission. This capability
is extremely important and plays a critical role in dominating the battlefield and consequently
succeeding in the campaign. This research addresses the investigation of developing this
capability.

There are five fundamental issues that must be considered when developing COAs. A valid
COA should be suitable, feasible, acceptable, distinguishable and complete [1]. A COA is
suitable if it is in alignment with commander’s intent and will accomplish the mission when
carried out successfully. A COA is feasible if it can be achieved with the given resources. A
COA is acceptable if it balances cost and risk with advantage gained through execution. A COA
is distinguishable if it is significantly different from others and a COA is complete if it
incorporates major operations and tasks to be accomplished to accomplish the desired end state.
The first issue, suitability, relates to the semantic inference on whether the COA matches the
commander’s intent and will be the focus of this paper.

2.0 Background

A commander’s intent is defined in terms of the goal and the end state. The goal is what the
military campaign is expected to achieve. The end state is what the conditions are expected to be
after the military campaign is over. Due to the existence of a typical military administrative
hierarchy in command of a specific military campaign, a commander’s intent may also be
represented in different levels of a hierarchy, from the strategic level through the operational
level to the tactical level.

The strategic level of the commander’s intent refers to a high level commander’s intent, such as
the president’s intent. An example of the strategic level intent is shown in Figure 1.

Figure 1: An example of a strategic level commander’s intent.

We will liberate Orangeland, restore power and control
to her rightful government, and then punish the
aggressor nation for its unlawful attack and
occupation by significantly reducing his ability to
wage war such that he is no longer a regional threat.

The operational level commander’s intent refers to the actual execution commander’s intent, i.e.,
the intent of the commander in charge of the specific military campaign. At this level, the
commander’s intent may be represented in several ways, such as end state, purpose, method, and
risk. An example of an operational level commander’s intent is shown in Figure 2.

Figure 2: An example of an operational level commander’s intent.

End state: a. freedom to operate forces starting with
pre-deployment activities; b. no Weapons of Mass
Destruction (WMD)/Theater Ballistic Missile (TBM) or
terrorist threat to region/US
Purpose: regional stability and US security
Method: Global Strike Task Force initial strikes
followed by Air and Space Epeditionary Task
Force/Carrier Battle Group persistence forces
Risk: low to US forces; medium for collateral damage.

The tactical level of commander’s intent refers to the specific objectives that the staff of the
commander in charge of the military campaign has outlined in terms of the operational level
commander’s intent. An example of the tactical level commander’s intent is shown in Figure 3.

Figure 3: An example of the tactical level commander’s intent.

Disrupt enemy TBM Command & Control (C2) systems.

On the other hand, a COA actually represents a specific possible option in order to achieve a
military mission, and therefore, it may also be represented in a hierarchy at different levels of
execution. For example, a higher level COA may be “attack WMD and TBM power” while a
lower level COA may be “move FA-18 at speed 500 through route 21”. Consequently, a COA
may consist of several lower level granularity COAs in sequence.

This research only addresses the suitability issue of COA analysis. In other words, given a
commander’s intent and a COA, the problem is to determine whether the COA is in alignment
with the commander’s intent, and if not, how far the COA diverts from the commander’s intent.
The challenge is that typically there are always semantic uncertainty and fuzziness for both
commander’s intent and COAs. This semantic uncertainty and fuzziness demand that not only
natural language be correctly understood, but also the semantic meaning of each word be
correctly understood, given the different context in different application. For example, referring
to Figure 1, what do “control” and “ability significantly reduced” exactly mean? Due to this
semantic uncertainty and fuzziness, there is a semantic gap between the commander’s intent and
a COA; the challenge is to develop a solution that overcomes this semantic gap.

In order to address the semantic uncertainty and fuzziness, we developed a fuzzified approach to
semantic inference for COA analysis, called CAFSIN, which stands for COA Analysis based on
Fuzzified Semantic INference. We demonstrated the effectiveness of the CAFSIN method
through preliminary testing and evaluations, and present the results here.

3.0 Related Work

COA analysis has received attention in recent military campaign research for years. COA
analysis was studied through computer-generated forces in simulation using cognitive modeling
[2]. Based on individual cases, they used cognitive modeling to attempt to develop a generalized
strategy for COA analysis using simulations. In a joint research project on COA analysis
between Army Research Laboratory (ARL) and Ohio State University (OSU), the multi-criterial

decision tool developed at OSU was used to mine ARL combat simulation data in order to gain
the battle-planning insights into understanding the COA space [3]. The approach taken in this
work is more related to data mining and visualization through user interaction to develop such
insights. In a related work, as reported in [4], an effort was accomplished to survey several
existing tools for visualizing COA analysis results, including the OSU developed tools. In
addition, researchers combined the existing tools together using coevolution and Pareto
optimization for COA analysis.

Situation assessment and COA selection were studied [5] using a Commander Model under the
Joint Warfare System environment [6]. Fuzzy rules are used due to the typical fuzzy nature of
the commander’s intent, and users are provided with the ability to modify both the input
parameters and the underlying rules. A software system for COA development and analysis was
reported on in [7] based on colored Petri Nets [8]. The colored Petri Net model is used in this
study to specify the execution and analysis of tasks in a COA.

Recently, COA analysis has been investigated in the context of real-time decision support at the
Air Force Research Laboratory (AFRL). The current status of COA analysis was reported on in
[9, 10] as well as the approaches AFRL is taking on real-time COA analysis. Preliminary
simulation results are reported using high performance computing facilities to achieve real-time
COA analysis. A data representation ontology was reported on in [11] and the related schema
developed for the COA analysis at AFRL.

It is well-observed [12] that in many real-world problems, classic symbolic reasoning [13, 14]
may not work, and consequently, the research on uncertainty reasoning [12, 15] has received
intensive attention.

While much of this work relates to COA development and analysis, it fails to address the issue of
COA suitability that was mentioned previously.

4.0 CAFSIN Solution

Due to the great challenge of the semantic gap between the commander’s intent and a COA, as
for the first phase of this investigation, we have made the following assumptions to simplify the
solution:

1. The commander’s intent is given at the tactical level. This allows a restrictive syntax to be

used.
2. The COA is also given in a lower, more specific level. This also allows a restrictive syntax

to be used.
3. A domain ontology must be given.

Based on these assumptions, we developed the CAFSIN solution. This solution models the
determination of the alignment problem between a commander’s intent and a COA as a fuzzified
language matching problem. This is a general approach to COA analysis and reasoning because
it addresses the uncertain and fuzzy nature of the problem using fuzzy logic analysis, and
consequently, the solution leaves a user to define what is considered as a compliant or a diverting

COA. Even though CAFSIN is developed under the assumptions made above, it may also work
when the assumptions are relaxed if reliable information extraction (IE) tools are available.

4.1 Ontology Construction

In order to facilitate the search in CAFSIN, the following issues were considered when
constructing the ontology:

1. Synonymy: all the synonyms are hard-wired together in a node in the ontology (e.g., “the

Pentagon” and “DoD” are wired together as the same word and are represented as a single
node).

2. Polysemy: words in different meanings in the ontology are represented in different nodes
(e.g., “chair” as a department chair and “chair” as a piece of furniture are represented and
located as separate words).

3. Special names: special names and phrases are coined as single words in the ontology (e.g.,
“WMD support system” as one word).

Given an ontology with these requirements satisfied, a standard hashing function may be used to
directly identify a specific node in the ontology.

4.2 Fuzzified Word Similarity

Given two words w1 and w2 and an ontology Ψ, the similarity function f is defined as a Gaussian
function:

22

2)1}2,1(max{

22
)|2,1(σ

πσ

−
−

=Ψ
wdwd

ewwf p (1)

where dw1 and dw2 are the depths of w1 and w2 from a nearest common ancestor in Ψ; if they do
not share a common ancestor, they are set as ∞; p is the normalization factor; and σ is the
standard deviation.

Based on the definition of this fuzzified word similarity function, given an ontology, the
similarity between two words depends on two things: (1) the relative depth difference between
the two words in the ontology; and (2) the depth from the nearest common ancestor in the
ontology.

Thus, two words have a strong similarity if they are synonyms, or siblings sharing a common
parent, or one is a parent of the other. The similarity decreases if the depth difference between
the two words increases in the same ontology tree; and/or their nearest common ancestor moves
away. The similarity becomes 0 if the two words do not have a common ancestor, i.e., they are
located in different ontology trees.

4.3 Language Models

Since we have assumed that the commander’s intent is represented as a tactical level command,
and since at the tactical level, commands may be represented in a well-defined syntax, we use the
following grammar as the language model for the commander’s intent:

T = <verb> <noun>*+ (2)

Similarly, a COA may be represented as a language sentence with the following grammar:

C = {<verb> <attribute value>*}+ (3)

4.4 CAFSIN Similarity Function

Now we are ready to define the CAFSIN similarity function based on our CAFSIN design
principle. Let t ∈ T, t = v n*; let c ∈ C, c = {u m*}+. Then the CAFSIN similarity function is
defined as:

),()|,()|,(mnHuvfcth u ΨΣ=Ψ α (4)

where H(n*,m*) is a fuzzified maximum substring matching function between word string n*
and word string m* using the fuzzified word similarity function f(n,m|Ψ); α is a normalization
factor.

Now the next question is how to compute the fuzzified maximum substring matching function H.
It is well known that the substring matching problem is NP-complete, and an optimal solution
may be found using dynamic programming. Since the actual t and c typically only have a very
few words, the complexity is not an issue.

Assume that there are N words for the string n*, and that there are M words for string m*. Using
the dynamic programming technique, we create a table of H[N+1, M+1], and the table H is
initialized as H[0, j]=0 for j=1, … , M+1; and H[i, 0]=0 for i=1, … , N+1. Thus, the rest of the
entries in H are computed based on the following recurrence:

⎩
⎨
⎧

−−
−−>

=
otherwisejiHjiH

jiHjiHjminfjminf
jiH

]),1,[],,1[max(
])1,[],,1[max(])[],[(]),[],[(

],[(5)

5.0 Proof-of-Concept Testing

The CAFSIN method has been tested with a hand-crafted ontology, which is shown in part in
Figures 4 and 5.

Military Order

Conduct Demonstrate Lose Maintain Operate Deter Plan Secure Give

Develop Deploy Attack (deny, strike) Move Engage report

Disable (disrupt, disable)

Bomb Shoot

Air Bomb

Figure 4: Part of the ontology used in the preliminary testing.

Enemy Systems

C2 Systems Support Systems

Control
Systems

Communication
Systems

TBM C2
Systems

WMD Support
Systems

B13
Figure 5: Another part of the ontology used in the preliminary testing.

As a first example, assume that we have a commander’s intent as “disrupt enemy’s WMD
support system” and a COA as “engage FA-18 target B13”. After the standard text processing,
we have the two strings for the commander’s intent and the COA, as represented in Figure 6.

t = {<disrupt>,(<enemy>,<WMD support system>)}

c = {<engage>,(<FA-18>,<target>,<B13>)}
Figure 6: The commander’s intent and the COA strings after text processing.

Based on the ontologies shown in Figures 4 and 5, we have obtained the distances between the
relevant word pairs which are shown in Table 1.

Assuming the parameters of σ=1, p= , α=1; from Eq. 1 we compute the fuzzified similarity
values for the relevant word pairs as shown in Table 2. Finally, the H function is computed
using dynamic programming based on Eq. 5 as denoted in Table 3, and the final similarity
function value between the pair of commander’s intent and the COA is determined based on Eq.
4 as 0.607.

π2

Table 1: Ontology distances between the words in the example.

d<disrupt> = 2 d<engage> = 1

d<enemy> = ∞ d<FA-18> = ∞

d<enemy> = ∞ d<target> = ∞

d<enemy> = ∞ d<B13> = ∞

d<WMD support system> = ∞ d<FA-18> = ∞

d<WMD support system> = ∞ d<target> = ∞

d<WMD support system> = 0 d<B13> = 1

Table 2: Similarity values between the words in the example.
f(<disrupt>, <engage>) = 0.607

f(<enemy>, <FA-18>) = 0

f(<enemy>, <target>) = 0

f(<enemy>, <B13>) = 0

f(<WMD support system>, <FA-18>) = 0

f(<WMD support system>, <target>) = 0

f(<WMD support system>, <B13>) = 1

Table 3: The dynamic programming table for computing H in the example.
 enemy WMD support system

 0 0 0

FA-18 0 0 0

target 0 0 0

B13 0 0 1

As another example, we have the same commander’s intent as in the first example, but the COA
has one more action “bomb target B13” in addition to the original action in the first example.
After standard text processing we have the strings specified in Figure 7.

Figure 7: Another example of commander’s intent and COA specified as strings after text
processing.

c = {<engage>,(<FA-18>,<target>,<B13>);
<bomb>,(<target>,<B13>)}

t = {<disrupt>,(<enemy>,<WMD support system>)}

The similarity computation for the pair between the commander’s intent and the first action
{<engage>,(<FA-18>,<target>,<B13>)} of the COA is identical to the one computed in the
first example, and is equal to 0.607. In order to compute the similarity for the pair between the
same commander’s intent and the second part of the COA, we first determine the ontology
distance based on the ontology described in Figures 4 and 5, as reported in Table 4. The word
pair similarity values are then computed using Eq. 1 and shown in Table 5, and finally the H
function is computed using dynamic programming based on Eq. 5 shown in Table 6. Thus, the
final similarity value between the commander’s intent and the COA is the summation of the two
parts which becomes 1.607. Clearly, due to the addition of the second part in the COA, the
similarity of this COA to the commander’s intent is much higher than the one in the first
example, which indicates that the second COA is more in alignment with the commander’s intent
than the first COA.

Table 4: Ontology distance between the words for the second pair in the second example.

d<disrupt> = 0 d<bomb> = 1

d<enemy> = ∞ d<target> = ∞

d<enemy> = ∞ d<B13> = ∞

d<WMD support system> = ∞ d<target> = ∞

d<WMD support system> = 0 d<B13> = 1

Table 5: Similarity values between the words for the second pair in the second example.

f(<disrupt>, <bomb>) = 1

f(<enemy>, <target>) = 0

f(<enemy>, <B13>) = 0

f(<WMD support system>, <target>) = 0

f(<WMD support system>, <B13>) = 1

Table 6: Dynamic programming table for computing H for the second pair in the second
example.

 enemy WMD support system

 0 0 0

target 0 0 0

B13 0 0 1

As yet another example, let’s stay with the same commander’s intent used in the previous two
examples but the COA now becomes “lose target B13”. After the standard text processing, we
have the strings specified in Figure 8.

Figure 8: The strings specified for the commander’s intent and the COA after standard
text processing in the third example.

c = {<lose>,(<target>,<B13>)}
t = {<disrupt>,(<enemy>,<WMD support system>)}

Now the same CAFSIN method is applied to this example and reported in Tables 7 – 9. The
final similarity value between the commander’s intent and the COA in this example is 0.135,
assuming the same parameters are used as in the first two examples. This similarity value is
lower than the first two examples (0.607, 1.607). This indicates that the COA does not align
with the commander’s intent as well as the first two COAs. It may also indicate that the COA
diverges from commander’s intent and should not be considered further.

Table 7: Ontology distance between the words in the third example.
d<disrupt> = 3 d<lose> = 1

d<enemy> = ∞ d<target> = ∞

d<enemy> = ∞ d<B13> = ∞

d<WMD support system> = ∞ d<target> = ∞

d<WMD support system> = 0 d<B13> = 1

Table 8: Similarity values between the words in the third example.
f(<disrupt>, <lose>) = 0.135

f(<enemy>, <target>) = 0

f(<enemy>, <B13>) = 0

f(<WMD support system>, <target>) = 0

f(<WMD support system>, <B13>) = 1

Table 9: Dynamic programming table for computing H in the third example.
 enemy WMD support system

 0 0 0

target 0 0 0

B13 0 0 1

The above three examples demonstrate the effectiveness of using CAFSIN method to determine
the alignment between a pair of given commander’s intent and COA, and showcases the proof of
the concept for the CAFSIN method. Using the ontology we have hand-crafted shown in Figures
4 and 5, we have tested numerous examples for different commander’s intent and COAs and the
experiments all show that CAFSIN is a very effective method to serve the purpose of
determining whether a COA is in alignment with a commander’s intent and by how much
relative to comparable COAs.

6.0 Conclusion and Future Work

In this research, we have reviewed the relevant literature regarding the problem of determining
the alignment of a course of action with a commander’s intent, and have found that the solution
to this problem must address explicitly the uncertainty and fuzziness issues in the reasoning
process. Consequently, we have concluded that the classic symbolic reasoning does not work.
Instead, we developed a specific but general solution to the problem that is based on fuzzified
semantic inference called CAFSIN. We demonstrated that CAFSIN is an effective method to
solve the problem through proof-of-concept testing.

CAFSIN has the following advantages:
• It is independent of the ontology; we can apply it to any domain to solve the problem.
• It is independent of specific words; the similarity between the words is only dependent on the

relative locations between the words in ontology.
• It is always relative; this allows users interaction based on their experience and expertise.

The future work includes:

• Large scale evaluation: Large scale evaluation is necessary in order to actually turn

CAFSIN method into a real world technology. However, there are several issues that we
must address before we are able to conduct large scale evaluations. The first is the
construction of the ontology for a specific application domain. How to construct such a
reasonably large ontology is always a question. We may use the existing general domain
ontology such as Wordnet. But how to tailor the general ontology to the specific application
domain also becomes an issue. Finally, even if we have an ontology and a data set ready for
the evaluations, how to define the evaluation metrics is another issue.

• Relaxing the assumptions: There are two directions that we can go for relaxing the current
assumptions of CAFSIN. The first one is to apply CAFSIN to higher level of commander’s
intent and COA. In this case we need tools for natural language processing. If we have

reliable IE tools available, the direct extension of CAFSIN to this scenario is not a problem;
the problem now becomes how to interface the IE tools into the CAFSIN method. The
second direction is to relax the syntax of the COA to incorporate constraints into the COA.
This involves revising the CAFSIN strings matching function.

• Improving the computation complexity: There are two bottlenecks to the complexity of
the CAFSIN method. The first is the fuzzified substring matching to compute the H
function. Though we claim that typically the strings are not very long and so the complexity
would not be a problem. However, in case the strings become very long, we may need to add
heuristics into the matching to expedite the substring search. The second bottleneck is the
ontology tree search for identifying the correct location of the word. Given the typical
scenario that the words in a given COA may be located “close enough” in the ontology, we
may be able to add some locality analysis into the ontology tree search for reducing the tree
traversal search time.

7.0 Acknowledgements

This material is based on research sponsored by the Air Force Research Laboratory under grant
number FA8750-05-1-0234. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation thereon. The authors
would like to acknowledge the contributions to this project made by Mr. Martin J. Walter and
Mr. William E. McKeever (Air Force Research Laboratory, Information Directorate).

References

[1] Joint Publication 5-00.2, “Joint Task Force Planning Guidance and Procedures”, January

1999.

[2] Chandrasekaran and Josephson, “Cognitive Modeling for Simulation Goals: A Research

Strategy for Computer-Generated Forces”, Proceedings of the 8th Conference on Computer
Generated Forces and Behavior Representation, 1999.

[3] Kaste, O’May, Heilman, Chandrasekaran and Josephson, “From Simulation to Insights:

Experiments in the Use of a Multi-Criterial Viewer to Develop Understanding of the COA
Space”, Proceedings of US Army Research Laboratories Collaborative Technology
Alliances Symposium, 2003.

[4] Hillis, Barnes, Suantak, Schlabach, Chandrasekaran, Josephson and Carroll, “Collaborative

Visualization Tools for Courses Of Action (COA) in Anti-Terrorist Operations: Combining
Coevolution and Pareto Optimization”, Proceedings of US Army Research Laboratories
Collaborative Technology Alliances Symposium, 2003.

[5] Vakas, Prince, Blacksten and Burdick, “Commander Behavior and Course of Action

Selection in JWARS”, Proceedings of the 2001 Winter Simulation Conference, 2001.

[6] Joint Warfare System Commander Behavior Model, Phase I TechReport, Joint Warfare
System Office, CACI, 2001.

[7] Zhang, Kristensen, Janczura, Gallasch and Billington, “A Coloured Petri Net Based Tool for

Course of Action Development and Analysis”, Proceedings of the Workshop on Formal
Methods Applied to Defence Systems, 2002.

[8] Jensen, Coloured Petri Net: Basic Concepts, Analysis Methods and Practical Use, Volumes

1 – 3, Springer Verlag, 1992 – 1997.

[9] Gilmour, Hanna, Koziarz, McKeever and Walter, “High-Performance Computing for

Command and Control Real-Time Decision Support”, AFRL Technology Horizons®, vol 6
no 1, February 2005.

[10] Gilmour, Hanna, McKeever and Walter, “Real-Time Course of Action Analysis”,

Proceedings of the 10th International Command and Control Research and Technology
Symposium, June 2005.

[11] Hanna, Reaper, Cox and Walter, “Course of Action Simulation Analysis”, Proceedings of

the 10th International Command and Control Research and Technology Symposium, June
2005.

[12] Kyburg, “ ”. Proceedings of the 12

Conference on Uncertainty in Artificial Intelligence, 1996.
Uncertain Inferences and Uncertain Conclusions th

[13] Fikes, Jenkins and Zhou, “Including Domain-Specific Reasoners with Reusable

Ontologies”, Proceedings of the International Conference on Information and Knowledge
Engineering, 2003.

[14] Fikes, Frank and Jenkins, “JTP: A System Architecture and Component Library for Hybrid

Reasoning”, Proceedings of the 7th Multi-Conference on Systems, Cybernetics, and
Informatics, 2003.

[15] Harrington, Banks and Santos, “The PESKI Intelligent User Interface”, TechReport,

Department of Electrical and Computer Engineering, AFIT, 1996.

http://www.cs.rochester.edu/u/teng/uncertain/pubs/hekuai96.html

	1.0 Introduction
	3.0 Related Work
	4.0 CAFSIN Solution
	4.1 Ontology Construction
	4.2 Fuzzified Word Similarity
	4.3 Language Models
	4.4 CAFSIN Similarity Function

	5.0 Proof-of-Concept Testing
	6.0 Conclusion and Future Work
	7.0 Acknowledgements
	References

