

Framework for Measuring the Impact of C4ISR Technologies and Concepts on Warfighter Effectiveness Using High Resolution Simulation

Dr. Isaac Porche

Col. Lewis Jamison (Ret.)

RAND 201 N. Craig Street Pittsburgh, Pennsylvania (412) 683 2300 x4904 porche@rand.org RAND 1700 Main Street Santa Monica CA (310) 393 0411 x7890 punch@rand.org Tom Herbert

RAND 1700 Main Street Santa Monica CA (310) 393 0411 x7225 herbert@rand.org

2004 Command and Control Research and Technology Symposium June 15-17

Motivation: Address "Value of Pound of C4ISR" Question

1. Need to capture marginal impact of technology options

How much better is C4ISR performance given:

- Additional bandwidth, new technologies (e.g. radios, antennas, etc.) ٠
- More (or less) sensor data ٠
- More (or less) frequent COP update •
- **Enhanced connectivity**

2. Need to quantify C4ISR benefits into combat outcomes

What are effects on warfighter?

Source: Fisher, 2003

Approach: Capture Technology and Scenario-Specific Detail

- Network performance highly sensitive to technology detail and scenario specifics
 - Technology options and combinations of options are numerous
 - Terrain/scenario has a large impact
 - Vehicle characteristics (e.g., mobility) affects network performance, reliability, etc.

Qualnet Simulations Used To Develop Performance Curves

Why a Meta-Model?

- 1. Communication network simulation is complex and time consuming
- 2. Meta-models allow flexibility while not adding large overhead time to combat simulations
- 3. Regression analysis can be used to generate a model "off-line"

Terrain/Scenario Being Studied

- Network performance
 inside individual boxes is
 modeled
- Boxes vary in size and terrain roughness

RAND

Elevation Data for Terrain Box for UA #1

Elevation Data for Terrain Box for UA #3

Elevation Data for Terrain Box for UA #2

LON

Elevation Data for Terrain Box for UA #4

<= 609.375

<= 1078.125

<= 1546.875

<= 2015.625

> 2250.000

Example Of Simulation Experiments (Area #1)

Experiment:

- Bn-light dispersed across Terrain
- Data multicasted out to nodes at varying rate
- Performance captured as function of frequency, mobility, UAV usage, etc.

Data out to all

Factors of Interest and Responses

RAND

Design of Experiments: Simulations Run at Various Levels of Each Factor

Design Matrix

Sim run	freq	# UAVs	Pwr	Density (nodes)	Radio Cap	Ant. Hgt	Deli very	Delay
1	2GHz	0	20W	145	6Mbps	2.5m	%	sec
2	1 GHz	8	20W	72	6Mbps	5 m		
3	.4 GHz	4	20W	36	2Mbps	10 m		
4	2 GHz	0	20W	145	2Mbps	2 m		
5	1GHz	8	20W	72	2Mbps	5 m		

1000-3000 Experiments Run for each Area

Closed Form Expression Developed to Capture Performance as Function of Demand for UA level

Logit (pdr) = β_0 +

$$\beta_{1}(Frequency) + \beta_{2}(UAVs) + \dots \begin{cases} Other \\ First-Order \\ Terms \end{cases}$$
$$\beta_{3}(Frequency \times UAVs) + \dots \qquad \begin{cases} Other \\ Second-Order \\ Terms \end{cases}$$

Other Higher Order Interactions

Evaluating The Fit For One Measure

Logit(p)=f(frequency, # UAVs, density, data traffic, distance..) $pdr = \frac{exp(\log it(p))}{(exp(\log it(p))+1)}$

RAND

Evaluating The Fit (Cont.)

Table: Evaluating the fits for 2-way parameter interaction

Area/ Equation	Adjusted R- Square Value for PDR	Adjusted R- Square Value for Delay
1	0.715	0.755
2	0.749	0.817
3	0.725	0.813
4	0.706	0.800

Note: The fits can be improved by representing more than two-way parameter interaction in the model.

Evaluating The Fit (Cont.)

Table: Evaluating the Fits for 4-way Parameter Interaction

Area Equation	Adj. R- Square Value for PDR	Adj. R- Square Value for Delay	Adj. R- Square Value for PDR, LOS	Adj. R- Square Value for Delay, LOS
1	0.72	0.78	_	_
2	0.75	0.84	0.77	0.85
3	0.73	0.84	0.78	0.86
4	0.71	0.82	_	_

Some Analysis Results Using The Metamodels

Benefit of UAVs Depends on Density of Forces

Area 3 Performance

Area 2 Performance

Results are Robust Across Terrain

Example Analysis Facilitated by M&S: Impact of UAVs Quantified

Performance with 0 UAVs (packet delivery ratio) given distance and line-of-sight measure for Area 3

RAND

Performance with 8 UAVs (packet delivery ratio) given distance and line-of-sight measure for Area 3

Plot of Packet Delivery Ratio Between Nodes as a Function of Line-of-Sight and Distance

UAVs Improve Performance Across Data Rates

Observation from Model: A Large Number of Verticle Nodes Needed to Ensure 25km x 25km Area (For Certain Frequency Channels)

But Greater Gains Achieved At Better Propagating Frequencies

"Better"Channel allocation Requires Fewer UAVs to Maintain High performance **RAND**

Better still: High Radios (6 Mbps) JTRS Radios Provide Big Performance Enhancement

For example:

High Throughput Radio Performance at 10 kilometers (Area 1)

Model of Area 1 Used Above

Observations from Modeling Effort

- High bandwidth tactical radios will help (> 5 Mbps user throughput)
- Near future radios (1-2 Mbps user throughput) will require significant UAV presence to ensure reliable C2/SA network
 - Depending on force size
 - Information dissemination requirements
 - Spectrum to support them a big issue
- Frequency agile, cognitive radios have potential to be advantageous

Next Step: QUALNET Derived Data Communication Model Inserted in Combat Simulator

Back-ups

Line of Sight (LOS) Was Useful Factor

 $LOS_A = Avg (LOS_{AB} , LOS_{AC} , LOS_{AD}) = 2/3$

Why Are Packet Requirements So Critical?

Likelihood COP Update Received

Message Completion Rates Highly Sensitive to Packet Delivery Ratios

Sample of Results From Experiments

Area	# of UAVs	Density Nodes/km ²	Frequency	90% PDR Data Rate
2 (25 x25)	8	.12	2.5 GHz	270 Kbps
2 (25 x25)	4	.12	2.5 GHz	255 Kbps
2 (25 x25)	0	.12	2.5 GHz	240 Kbps
2 (25 x25)	8	.12	0.4 GHz	320 Kbps
2 (25 x25)	4	.12	0.4 GHz	345 Kbps
2 (25 x25)	0	.12	0.4 GHz	375 Kbps
2 (25 x25)	8	.06	2.5 GHz	110 Kbps
2 (25 x25)	4	.06	2.5 GHz	40 Kbps
2 (25 x25)	0	.06	2.5 GHz	-

RAND