

An Exposé of Autonomous Agents in Command and Control Planning

Presented by: Christopher Matthews Claw.Matthews@us.army.mil

U.S. Army RDECOM CERDEC Fort Monmouth, NJ

Talking Points

- Army Program
- Mission need
- Autonomous agents
 - Motivation
 - Employment
- Agent development framework
- Prototype Maneuver Sustainment Planner
- Design & implementation of agents
- Summary

Motivation

- Logistics Command & Control (LogC2) Advanced Technology Demonstration (ATD)
 - Integrate logistics and maneuver planning
 - Faster OPTEMPO & reduced logistics footprint
 - Shorten Combat Service Support (CSS) planning times
 - Achieved through the research, development and transition of:
 - Collaborative, cross-functional planning tools
 - Optimization tools for increased maneuver sustainment efficiency
 - Adaptive, predictive consumption models and demand generation functionality
 - Near real-time running-estimate decision aid software
 - Dynamic re-planning and execution-monitoring software capability

Agent Development Framework

Cognitive Agent Architecture (Cougaar)

- Darpa initiative
 - Advanced Logistics Program (ALP) (FY96 FY01)
 - UltraLog Program (FY01 FY04)
- Features
 - Distributed, large-scale workflow engine
 - Open source Java software
 - Multi-Resolutional Logical Data Model (LDM)
 - Built-in dynamic re-planning & executionmonitoring capability
 - Asynchronous communication protocol
 - Classic publish/subscribe blackboard
 - Domain independent

ALP Goals

- Distributed agent architecture research
- Distributed information management research
- Real-time information fusion research
- Functional Goals:
 - Automated logistics plan generation
 - Real-time logistics situation assessment
 - End-to-end movement control
 - End-to-end rapid supply

UltraLog Goals

Expanding the ALP vision:

- Military logistics domain
- Enhance the Cougaar framework
 - Security trusted systems under information warfare attacks
 - Scalability stability for large, distributed network of agents
 - Robustness high state of survivability in chaotic environments
 - System integration combining all of above to achieve desired systemic effects

Allocates tasks to other agents/assets.

Decomposes tasks into more manageable

Cougaar – Logical Data Model (LDM)

Requirements

- Support over 6 million items
- Support efficient transport and distribution of objects
- Support modification and extension during execution

Principles

- Based on the <u>properties</u> of objects and not what they <u>are</u>
- Represent all the properties of assets needed to reason about them
 - Over a range of granularities
 - Supporting their time-varying nature
 - Refering to specialized properties of assets
- Implementation
 - Use prototypes and delegation to reduce classes needed
 - Prototype classes determine the required properties of all instances
 - Related properties are collected in Property Groups
 - Asset instances delegate properties to their Prototype instances

Maneuver Sustainment Planner (MSP)

Goals

Develop proof-of-concept prototype

- Integrate logistic-planning impacts into the maneuver planning process
- Develop a detailed logistics plan to support maneuver operations
- Model maneuver activities and generates expected logistics demand as a function of platform, posture, and optempo
- Provides dynamic re-planning & execution-monitoring capability
- Evaluate Cougaar and agent benefits for C2 planning

Core planning capabilities included

Dynamic replanning/execution monitoring
Resource management (asset scheduling)

Rapid software development

- Leverage existing logistics software components
- Agents map elegantly to military force structures
- Digitization of reusable, intricate, and highly complex business models
- Easy to introduce external data into agent society

MSP - Approach

Functional analysis & design

- Agent Enumeration
- Role/Relationship Analysis
- Plugin Enumeration
- Task Grammar
- Asset/Property Requirements Analysis
- Execution Monitoring and Dynamic Replanning Analysis
- External system interfaces
 - Databases
 - Maneuver Command & Control (MC2) application
 - MSP Plan Viewer (GUI)
- Cougaar Plugin development

MSP – Constraints

No control over the maneuver plan (read only)

- Maneuver Command & Control (MC2) system
 - Stove-piped system
 - Rigid, closed plan representation
 - Large, unwieldy XML plan data
- Atypical Cougaar use
 - Driven by MC2
 - Short-lived vs. 24x7
- Demand generation (simulate consumption)
 - CASCOM Equipment Usage Profiles (EUP)
 - Equipment type
 - Optempo
 - Same as MC2

In Summary

- Pros
 - Rapid software development
 - Provides logical roadmap for application design & development
 - Ideal for military planning systems
 - Domain independent
 - Open source software
 - Core planning & information management functionality
 - Well documented architecture & developer guides
- Cons
 - Large overhead
 - Bandwidth intensive
 - Steep learning curve
 - Poorly documented software (sparse Javadocs)
 - Frequent Architecture upgrades

Backup Slides

RDECOM

Plan Element - Allocation

Plan Element - Expansion

Cougaar – LDM Asset

MSP – Military Agents

MSP – Asset Class Hierarchy

References

- Barger, Mark, & Wong, Jason. (2004). Cougaar Training Slides.
- BBN Technologies. (Version 10.0). (2003). Cougaar Architecture Document.
- BBN Technologies. (Version 10.0). (2003). Cougaar Developer's Guide.
- Berliner, Jeffrey, Thome, Michael, & Cerys, Daniel. (2003). Multi-Resolutional Knowledge Representation Using Prototypes and Properties.
- "Cougaar Open Source Web Site", http://www.cougaar.org.
- "UltraLog Web Site", DARPA, http://www.ultralog.net/.

