
MITRE

Information Management

Application QoS Based
Time-Critical Automated Resource Management
in BM/C2 Systems

E. Douglas JensenE. Douglas Jensen
The MITRE CorporationThe MITRE Corporation

jensen@jensen@[mitre,real[mitre,real--time].orgtime].org
http://http://www.[realwww.[real--time, time, mitre].orgmitre].org

Revised 9 June 04Revised 9 June 04

2

MITRE

Summary
This presents a novel paradigm for expressing, enforcing, and
formally reasoning about time-criticality of machine-to-machine
resource management in battle management (BM) and C2

systems
Such systems are largely dynamic and asynchronous, and
have time-critical actions in the O(10-1 – 103) seconds
Thus they fall into a neglected gap between traditional static
periodic “real-time” systems, and traditional “any time”
scheduling/planning systems (e.g., for logistics)
The paradigm uses application-level QoS (AQoS) metrics (such
as track quality, circular error probable, etc.) to derive utility
functions for completing tasks,
and then uses those utility functions for resource management
This paradigm has been successfully employed in several
experimental BM/C2 demonstration systems
It is the topic of active research in academia and industry

3

MITRE

Many important time-critical systems
(such as for BM/C2) have significant dynamic actions

Many important time-critical
control systems do not fit the
“real-time” stereotype of

• small scale

• static

• periodic

• centralized

• performing monitoring and
control of simple devices

• time frames in the
microsecond and millisecond
range

Instead, they are
• large scale in various

dimensions

• dynamic

• “mesosynchronous”

• distributed

• performing closed loop
machine-to-machine control at
any level(s) of an enterprise

• operating in the second to
minutes time frame

4

MITRE

Priorities have severe limitations,
especially in dynamic systems

Priorities are widely used in time-critical systems, but they
have major disadvantages, including

• priority assignments are not modular – they require global
knowledge of all other priority assignments (whereas time
constraints, such as deadlines, do not)

• the granularity of time constraints is typically much finer than
that of priority ranges, and mapping time constraints to priorities
is NP-hard

• semantics are associated with priorities by the users, the system
and application software, and the hardware

sometimes priorities (artificially) denote urgency
sometimes priorities denote relative importance
sometimes priorities denote execution precedence

Managing the assignments and changing of priorities is one of
the most notoriously difficult and time-consuming activities in
the life cycle of systems

5

MITRE

Priorities are a Procrustean Bed
Priorities are the primary mechanism offered in COTS (and
application) software for managing timeliness, so designers
and users must try to force-fit time constraints into priorities

6

MITRE

Deadlines are an explicit time constraint
but have limited expressiveness

Deadlines, as popularly spoken of in “hard” real-time computing,
are only binary: an action either meets or misses it

but in most real world cases, lateness is the actual criterion
Scheduling theory deals with lateness, but deadlines have only

• linear timeliness metric, lateness = completion time - deadline
• single inflection point metric, tardiness = max[0,lateness]

7

MITRE

“Hard” deadlines and general deadlines can be
represented by utility as a function of time

A “hard” deadline is a binary unit-valued downward step

A general deadline in terms of lateness and negative lateness

u
t
i
l
i
t
y

meet ≡ u = 1

miss ≡ u = 0
td

t

0

τ ∝ td

td

u
t
i
l
i
t
y

t

- ∞

0

τ ∝ -td

td

u
t
i
l
i
t
y

t

∞

8

MITRE

The two keystone concepts in our paradigm are
time/utility functions and utility accrual scheduling

Time/utility functions (TUF’s)
• express the utility to the

system (derived from AQoS
metrics) of completing an
activity (e.g., service) as an
application- or situation-
specific function of when it
completes

Example

t = completion time

now0

u
t
i
l
i
t
y

General time/utility functions

Expected or max execution time

9

MITRE

The two keystone concepts in our paradigm are
time/utility functions and utility accrual scheduling

Time/utility functions (TUF’s)
• express the utility to the

system (derived from AQoS) of
completing an activity (e.g.,
service) as an application- or
situation-specific function of
when it completes

Utility accrual (UA) scheduling
algorithms

• schedule activities according
to optimality criteria based on

accruing utility – such as
maximizing the sum of
the utilities

satisfying dependencies
such as resource
constraints, etc.

Schedule to maximize
U = ∑ui

Example

t = completion time

now0

u
t
i
l
i
t
y

General time/utility functions

Expected or max execution time
Example scheduled completion times

10

MITRE

Worked examples using TUF/UA scheduling

This paradigm has been applied in significant size BM/C2

demonstration systems
Next we illustrate the paradigm in the context of an air
surveillance tracking application
Then we show one facet of the paradigm’s use – not employed
in the surveillance tracker – in a cruise missile defense
application
Another major demonstration application is currently being
constructed but cannot be discussed here

11

MITRE

TUF/UA sequencing paradigm worked example 1:
AWACS air surveillance mode tracker

MITRE (with collaboration from the Open Group) applied our
paradigm in a demonstration AWACS system
Implemented the AWACS air surveillance mission
It is easy and common for there to be so many sensor reports
that the system becomes computationally overloaded, which
causes sectors of the sky to “go blank”
Currently, operators have knowledge-intensive manual work-
arounds for certain overload situations
Our objective was to improve graceful overload handling by
automatically

• applying the right computational resources
• to the right tracks
• at the right times

12

MITRE

Tracking system:
original and adaptive

TRACKING SUBSYSTEM

SENSORS

Gating
and

Clustering

Association
&

Smoothing
DISPLAYS

TRACKING SUBSYSTEM

Gating
and

Clustering

Tracker
AQoS

ManagerSENSORS Association
&

Smoothing

DISPLAYS

13

MITRE

The AWACS sensor properties imply a general utility
function for the association computation

Association is the most computationally demanding part of
tracking, so we focus on that in this presentation
There are two sensors (radar and IFF) sweeping 180º out of
phase with a 10-second period,
which suggests the TUF has

• a “critical time” at the 10-second period length
• at least two distinct non-zero utilities before the critical time
• a third distinct, lower, utility after the critical time

action completion time
critical time (sweep period length)

U1

U2

U3

?

?

?

u
t
i
l
i
t
y

14

MITRE

Determine the thread TUF shape
prior to the critical time

Prior to the critical time
• processing a sensor report for one of these tracks in under five

seconds (half the sweep period) would provide better data for the
corresponding report from the out-of-phase sensor
so the utility decreases with time

• the TUF had to decrease linearly due to an implementation artifact
in this experimental system –
the OS (OSF/RI’s MK7.3A) TUF scheduling algorithm allowed only
one critical time

• the slope was derived empirically

15

MITRE

Determine the thread TUF shape
after the critical time

After the critical time
• utility is zero, because newer sensor data has probably arrived
• if the processing load in one sensor sweep period is so heavy that

it couldn’t be completed,
probably the load will be about same in next period, so there will
be no capacity to also process data from the previous sweep

• a tracker that could process older as well as current data would
be significantly more complex
probably delay the track update

16

MITRE

That established the TUF shape
for the tracker’s association threads

A critical time at the sweep period length
Linearly decreasing utility until the critical time
Zero utility after the critical time
Next, the utility value U1 had to be determined

u
t
i
l
i
t
y

action completion time

critical time (sweep period length)

U1

U2

U3

?

0

17

MITRE

Tracker domain experts’ preferences in terms of
track QoS metrics imply the thread utility values

Don’t drop tracks, because they are expensive to re-create
User-identified “important” tracks receive preference
User-identified “important” geographic regions receive
preference
Maneuvering tracks need to be updated more frequently than
non-maneuvering tracks
Potentially high threat tracks receive preference
High speed tracks receive preference
Tracks with poor state estimates receive preference

18

MITRE

Three application-level QoS metrics for an AWACS
surveillance tracking application were chosen

Quality – 0 to 7
• traditional measure of the amount of recent sensor data

incorporated in a track record
• incremented or decremented after each radar scan

Accuracy – “high” or “low”
• a measure of the uncertainty of the estimate of a track’s position

and velocity
• derived from traditional Kalman filter processing

Importance – “high” or “low”
• traditionally, operator-identified based on geography, threat, and

other characteristics

19

MITRE

Track Accuracy

High Low

Low
1 - 2

Medium
3 - 4

High
5 - 7

Track
Quality

High/Low
ImportanceTrack state

OK

Track state
marginal

Track state
poor

We established 12 combinations of track AQoS metrics

What are the relative utilities of these 12 cases of tracks?

t

U1

20

MITRE

Track Accuracy

High Low

Low
1 - 2

Medium
3 - 4

High
5 - 7

Track
Quality

High/Low
ImportanceTrack state

OK

Track state
marginal

Track state
poor

The initial utility U1 of an association for a track report is
derived from track AQoS metrics by gedanken experiments

Domain experts judgment on the relative utilities of these 12 cases of tracks

5500

910

700
30

53
10

6000

1000

800
40

65
20

t

U1

21

MITRE

Track Accuracy

High Low

Low
1 - 2

Medium
3 - 4

High
5 - 7

Track
Quality

High/Low
ImportanceTrack state

OK

Track state
marginal

Track state
poor

The initial utility U1 of an association for a track report is
derived from track AQoS metrics by gedanken experiments

5500

910

700
30

53
10

6000

1000

800
40

65
20

E.g., completing
an association for
a high
importance, low
accuracy, low
quality track
yields 600 times
more utility than
for a low
importance, high
quality, high
accuracy track

t

U1

Domain experts judgment on the relative utilities of these 12 cases of tracks

22

MITRE

The association (and other) threads are scheduled
based on their utility functions

For the association threads, the tracking application selects the
established TUF from the OS scheduler’s library of shapes
The tracking application does a look-up in the utility U1 table for
each association thread before calling the OS scheduler
A utility-based processor-scheduling policy in the OS schedules
threads according to a heuristic that attempts to maximize total
accrued (in this case, summed) utility

23

MITRE

Utility-based scheduling provided better AQoS
than traditional FIFO and priority scheduling

 Avg. # Dropped Tracks versus Association
Capacity For FIFO Priority

0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1
Association Capacity

Av
g.

 #
 D

ro
pp

ed

Tr
ac

ks more
important
less
important

Avg. # Dropped Tracks versus Association
Capacity For Fixed Priority

0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1

Association Capacity

Av
g.

 #
 D

ro
pp

ed

Tr
ac

ks more
important
less
important

Avg. # Dropped Tracks versus Association
Capacity For Dynamic Priority

0
2
4
6
8

10
12

>11 10 9 8 7 6 5 4 3 2 1

Association Capacity

Av
g.

 #
 D

ro
pp

ed

Tr
ac

ks more
important
less
important

Track Quality versus Association Capacity
For FIFO Priority

0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1

Association Capacity

Tr
ac

k
Q

ua
lit

y

more
important
less
important

Track Quality versus Association Capacity
For Fixed Priority

0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1

Association Capacity

Tr
ac

k
Q

ua
lit

y

more
important
less
important

Track Quality versus Association Capacity
For Dynamic Priority

0

2

4

6

8

>11 10 9 8 7 6 5 4 3 2 1

Association Capacity

Tr
ac

k
Q

ua
lit

y

important
track
unimportan
t track

Key:
Track Quality: 0-7 (7 = Ideal)
Association Capacity = # Tracks
Processed under Constraint

High Priority Tracks Were
Dropped and have Bad TQ

Drop Low Priority Tracks to Get
Better TQ on High Priority Tracks

FIFO Priority Utility-Based

No High Priority Tracks
Dropped. Overall Better TQ

24

MITRE

TUF/UA sequencing paradigm worked example 2:
cruise missile defense with guided interceptors

Plot
CorrelatorSensors

Track
Hdlr

Track
DB

ID
Data

Threat
Assessor

Track
ID

Stores
Mgr

Weapon
Ctlrs

Threat
Data

Distributable Threads: a programming model for end-to-end
timeliness in distributed systems – created by Jensen’s CMU
Alpha OS team and now in Real-Time CORBA 1.2 (née 2.0)

25

MITRE

u
t
i
l
i
t
y t = completion time

TUFmidcourse
TUFintercept

TUFlaunch

After launch of the interceptor, the guidance control threads must
issue timely repetitive course updates to ensure a successful intercept
The required timeliness of these updates, and the importance of
completing the course corrections at the desired time, change as the
distance decreases between the interceptor and the cruise missile, and
between the cruise missile and its expected target

The timeliness requirements for the interceptor missile
control threads vary over the course of an engagement

This effect is very difficult to achieve by manipulating priorities

adaptation

26

MITRE

u
t
i
l
i
t
y t = completion time

TUFmidcourse
TUFintercept

TUFlaunch

After launch of the interceptor, the guidance control threads must
issue timely repetitive course updates to ensure a successful intercept
The required timeliness of these updates, and the importance of
completing the course corrections at the desired time, change as the
distance decreases between the interceptor and the cruise missile, and
between the cruise missile and its expected target

The timeliness requirements for the interceptor missile
control threads vary over the course of an engagement

This effect is very difficult to achieve by manipulating priorities

adaptation

27

MITRE

u
t
i
l
i
t
y t = completion time

TUFmidcourse
TUFintercept

TUFlaunch

After launch of the interceptor, the guidance control threads must
issue timely repetitive course updates to ensure a successful intercept
The required timeliness of these updates, and the importance of
completing the course corrections at the desired time, change as the
distance decreases between the interceptor and the cruise missile, and
between the cruise missile and its expected target

The timeliness requirements for the interceptor missile
control threads vary over the course of an engagement

This effect is very difficult to achieve by manipulating priorities

adaptation

28

MITRE

u
t
i
l
i
t
y

t = completion timetcritical

1

2
3

The TUF’s for the missile and interceptor control
updates change dynamically during the mission

1. Variable critical (best) times –
course corrections are needed
more often as the distance between
target and interceptor decreases

2. Variable “hardness” – it
becomes more important to use the
most recent position information as
the distance between target and
interceptor decreases

3. Dynamic maximum – the utility of
successfully completing an
intercept corresponds to the
perceived threat of the target being
intercepted They also have variable

importance depending on the
threat potential of the target,
independent of their timeliness

29

MITRE

TUF/UA scheduling can be very cost/effective
in adaptively achieving superior AQoS

TUF time constraints have been shown to be very natural,
expressive, and powerful for the designers and programmers
of the BM/C2 applications we have experimented with
But this paradigm does impose costs

• TUF’s are more complex than priorities
• UA scheduling is more complex than priority dispatching

Various application-specific engineering techniques can be
used to trade off costs vs. effectiveness

30

MITRE

A proof of concept software tool is being produced
along with methodology and formalism

MITRE and our academic collaborator Virginia Tech are
developing a proof of concept software tool for

• creating and manipulating TUF’s
• plugging in various application-specific UA (and other)

scheduling algorithms
• simulating and analyzing the resulting schedules

One version of this tool is being done in the context of an
extant COTS real-time timing analysis product –
the vendor is interested in the commercialization of our work
We are also creating, simulating, implementing, measuring,
and proving properties of, new UA algorithms –
published and pre-published papers are available

31

MITRE

Conclusion
Application designers often think in terms of what we refer to
as AQoS metrics, but not in a general and methodological way
Instead, they consider certain metrics and use their domain
expertise to attempt to aggregate these into the proper
“tuning” of the system
Thus, they’ve had few incentives to use their knowledge to
understand and express behavioral options in the face of
dynamic uncertainties (i.e., gracefully handling overloads) to
facilitate automated resource management
Time/utility functions are more natural, expressive, and
realistic for dynamic systems, than priorities and deadlines
AQoS metrics can be used to derive TUF’s
UA scheduling optimality criteria are powerful and adaptive
TUF/UA based resource management has been shown to be
very promising for dynamic systems such as BM/C2

