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Summary
This presents a novel paradigm for expressing, enforcing, and 
formally reasoning about time-criticality of machine-to-machine 
resource management in battle management (BM) and C2

systems
Such systems are largely dynamic and asynchronous, and 
have time-critical actions in the O(10-1 – 103) seconds 
Thus they fall into a neglected gap between traditional static 
periodic “real-time” systems, and traditional “any time” 
scheduling/planning systems (e.g., for logistics)
The paradigm uses application-level QoS (AQoS) metrics (such 
as track quality, circular error probable, etc.) to derive utility 
functions for completing tasks, 
and then uses those utility functions for resource management
This paradigm has been successfully employed in several 
experimental BM/C2 demonstration systems
It is the topic of active research in academia and industry
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Many important time-critical systems 
(such as for BM/C2) have significant dynamic actions

Many important time-critical 
control systems do not fit the 
“real-time” stereotype of 

• small scale

• static

• periodic

• centralized

• performing monitoring and 
control of simple devices

• time frames in the 
microsecond and millisecond 
range

Instead, they are 
• large scale in various 

dimensions

• dynamic

• “mesosynchronous”

• distributed

• performing closed loop 
machine-to-machine control at 
any level(s) of an enterprise

• operating in the second to 
minutes time frame
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Priorities have severe limitations,
especially in dynamic systems

Priorities are widely used in time-critical systems, but they 
have major disadvantages, including

• priority assignments are not modular – they require global 
knowledge of all other priority assignments (whereas time 
constraints, such as deadlines, do not)

• the granularity of time constraints is typically much finer than
that of priority ranges, and mapping time constraints to priorities 
is NP-hard

• semantics are associated with priorities by the users, the system 
and application software, and the hardware

sometimes priorities (artificially) denote urgency 
sometimes priorities denote relative importance
sometimes priorities denote execution precedence

Managing the assignments and changing of priorities is one of 
the most notoriously difficult and time-consuming activities in 
the life cycle of systems
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Priorities are a Procrustean Bed
Priorities are the primary mechanism offered in COTS (and 
application) software for managing timeliness, so designers 
and users must try to force-fit time constraints into priorities
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Deadlines are an explicit time constraint
but have limited expressiveness

Deadlines, as popularly spoken of in “hard” real-time computing, 
are only binary: an action either meets or misses it

but in most real world cases, lateness is the actual criterion
Scheduling theory deals with lateness, but deadlines have only 

• linear timeliness metric, lateness = completion time - deadline
• single inflection point metric, tardiness = max[0,lateness] 
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“Hard” deadlines and general deadlines can be
represented by utility as a function of time

A “hard” deadline is a binary unit-valued downward step

A general deadline in terms of lateness and negative lateness
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The two keystone concepts in our paradigm are 
time/utility functions and utility accrual scheduling 

Time/utility functions (TUF’s) 
• express the utility to the 

system (derived from AQoS 
metrics) of completing an 
activity (e.g., service) as an 
application- or situation-
specific function of when it 
completes

Example

t = completion time

now0
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General time/utility functions

Expected or max execution time
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The two keystone concepts in our paradigm are 
time/utility functions and utility accrual scheduling 

Time/utility functions (TUF’s) 
• express the utility to the 

system (derived from AQoS) of 
completing an activity (e.g., 
service) as an application- or 
situation-specific function of 
when it completes

Utility accrual (UA) scheduling 
algorithms 

• schedule activities according 
to optimality criteria based on 

accruing utility – such as 
maximizing the sum of 
the utilities

satisfying dependencies 
such as resource 
constraints, etc.

Schedule to maximize 
U = ∑ui

Example

t = completion time

now0
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General time/utility functions

Expected or max execution time
Example scheduled completion times
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Worked examples using TUF/UA scheduling

This paradigm has been applied in significant size BM/C2

demonstration systems
Next we illustrate the paradigm in the context of an air 
surveillance tracking application
Then we show one facet of the paradigm’s use – not employed 
in the surveillance tracker – in a cruise missile defense 
application
Another major demonstration application is currently being 
constructed but cannot be discussed here
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TUF/UA sequencing paradigm worked example 1:
AWACS air surveillance mode tracker

MITRE (with collaboration from the Open Group) applied our 
paradigm in a demonstration AWACS system
Implemented the AWACS air surveillance mission 
It is easy and common for there to be so many sensor reports 
that the system becomes computationally overloaded, which 
causes sectors of the sky to “go blank”
Currently, operators have knowledge-intensive manual work-
arounds for certain overload situations
Our objective was to improve graceful overload handling by 
automatically 

• applying the right computational resources 
• to the right tracks 
• at the right times
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Tracking system:
original and adaptive
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The AWACS sensor properties imply a general utility 
function for the association computation

Association is the most computationally demanding part of 
tracking, so we focus on that in this presentation
There are two sensors (radar and IFF) sweeping 180º out of 
phase with a 10-second period, 
which suggests the TUF has

• a “critical time” at the 10-second period length
• at least two distinct non-zero utilities before the critical time
• a third distinct, lower, utility after the critical time

action completion time
critical time (sweep period length)
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Determine the thread TUF shape
prior to the critical time

Prior to the critical time
• processing a sensor report for one of these tracks in under five

seconds (half the sweep period) would provide better data for the 
corresponding report from the out-of-phase sensor
so the utility decreases with time

• the TUF had to decrease linearly due to an implementation artifact 
in this experimental system –
the OS (OSF/RI’s MK7.3A) TUF scheduling algorithm allowed only 
one critical time

• the slope was derived empirically 
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Determine the thread TUF shape
after the critical time

After the critical time
• utility is zero, because newer sensor data has probably arrived
• if the processing load in one sensor sweep period is so heavy that 

it couldn’t be completed, 
probably the load will be about same in next period, so there will 
be no capacity to also process data from the previous sweep

• a tracker that could process older as well as current data would
be significantly more complex
probably delay the track update
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That established the TUF shape 
for the tracker’s association threads

A critical time at the sweep period length
Linearly decreasing utility until the critical time
Zero utility after the critical time
Next, the utility value U1 had to be determined
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Tracker domain experts’ preferences in terms of 
track QoS metrics imply the thread utility values

Don’t drop tracks, because they are expensive to re-create
User-identified “important” tracks receive preference
User-identified “important” geographic regions receive 
preference
Maneuvering tracks need to be updated more frequently than 
non-maneuvering tracks
Potentially high threat tracks receive preference
High speed tracks receive preference
Tracks with poor state estimates receive preference
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Three application-level QoS metrics for an AWACS
surveillance tracking application were chosen

Quality – 0 to 7
• traditional measure of the amount of recent sensor data 

incorporated in a track record
• incremented or decremented after each radar scan

Accuracy – “high” or “low” 
• a measure of the uncertainty of the estimate of a track’s position 

and velocity
• derived from traditional Kalman filter processing

Importance – “high” or “low” 
• traditionally, operator-identified based on geography, threat, and 

other characteristics
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Track Accuracy
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We established 12 combinations of track AQoS metrics 

What are the relative utilities of these 12 cases of tracks?
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The initial utility U1 of an association for a track report is 
derived from track AQoS metrics by gedanken experiments

Domain experts judgment on the relative utilities of these 12 cases of tracks
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The association (and other) threads are scheduled
based on their utility functions

For the association threads, the tracking application selects the 
established TUF from the OS scheduler’s library of shapes
The tracking application does a look-up in the utility U1 table for 
each association thread before calling the OS scheduler
A utility-based processor-scheduling policy in the OS schedules 
threads according to a heuristic that attempts to maximize total
accrued (in this case, summed) utility
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Utility-based scheduling provided better AQoS
than traditional FIFO and priority scheduling
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TUF/UA sequencing paradigm worked example 2: 
cruise missile defense with guided interceptors
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Distributable Threads: a programming model for end-to-end 
timeliness in distributed systems – created by Jensen’s CMU
Alpha OS team and now in Real-Time CORBA 1.2 (née 2.0)
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TUFmidcourse
TUFintercept

TUFlaunch

After launch of the interceptor, the guidance control threads must 
issue timely repetitive course updates to ensure a successful intercept
The required timeliness of these updates, and the importance of 
completing the course corrections at the desired time, change as the 
distance decreases between the interceptor and the cruise missile, and 
between the cruise missile and its expected target

The timeliness requirements for the interceptor missile 
control threads vary over the course of an engagement

This effect is very difficult to achieve by manipulating priorities

adaptation
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The TUF’s for the missile and interceptor control 
updates change dynamically during the mission

1. Variable critical (best) times –
course corrections are needed 
more often as the distance between 
target and interceptor decreases

2. Variable “hardness” – it 
becomes more important to use the 
most recent position information as 
the distance between target and 
interceptor decreases

3. Dynamic maximum – the utility of 
successfully completing an 
intercept corresponds to the 
perceived threat of the target being 
intercepted They also have variable 

importance depending on the 
threat potential of the target, 
independent of their timeliness
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TUF/UA scheduling can be very cost/effective 
in adaptively achieving superior AQoS

TUF time constraints have been shown to be very natural, 
expressive, and powerful for the designers and programmers 
of the BM/C2 applications we have experimented with
But this paradigm does impose costs

• TUF’s are more complex than priorities
• UA scheduling is more complex than priority dispatching

Various application-specific engineering techniques can be 
used to trade off costs vs. effectiveness
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A proof of concept software tool is being produced
along with methodology and formalism

MITRE and our academic collaborator Virginia Tech are 
developing a proof of concept software tool for

• creating and manipulating TUF’s
• plugging in various application-specific UA (and other) 

scheduling algorithms
• simulating and analyzing the resulting schedules

One version of this tool is being done in the context of an 
extant COTS real-time timing analysis product –
the vendor is interested in the commercialization of our work
We are also creating, simulating, implementing, measuring, 
and proving properties of, new UA algorithms –
published and pre-published papers are available
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Conclusion
Application designers often think in terms of what we refer to 
as AQoS metrics, but not in a general and methodological way 
Instead, they consider certain metrics and use their domain 
expertise to attempt to aggregate these into the proper 
“tuning” of the system 
Thus, they’ve had few incentives to use their knowledge to 
understand and express behavioral options in the face of 
dynamic uncertainties (i.e., gracefully handling overloads) to 
facilitate automated resource management
Time/utility functions are more natural, expressive, and 
realistic for dynamic systems, than priorities and deadlines
AQoS metrics can be used to derive TUF’s
UA scheduling optimality criteria are powerful and adaptive
TUF/UA based resource management has been shown to be 
very promising for dynamic systems such as BM/C2


