

Proposing a C4ISR Architecture Methodology for Homeland Security

presented by

Monica Farah-Stapleton

Program Director for M&S HQs CERDEC

monica.farahstapleton@us.army.mil

TRAC WSMR

Agenda

- System of Systems Construct
- Analyses Methodologies
- Ties to Experimentation
- Challenges

Systems Engineering

•Develop Architecture-Based Investment Strategies

•Develop Science and Technology Roadmap

•Collaborate With Army/DoD/other Organizations to Provide C4ISR Representation (Models and Simulated Architectures) to M&S Community

•Perform Constructive, Virtual, and Live Experimentation

TRAC WSMR

SoS Analysis Approach Using M&S

Problem Statement: Develop a Methodology To Enable Analyses of Current and Future Force System of Systems, Across the Spectrum of ACR, RDA, TEMO, Experimentation and Test Environments.

Approach: Perform Detailed C4ISR SoS Engineering Analyses; Populate Architecture Framework Products With Synergized Data; Translate Into Simulated Architectures; Represent Composition of Entities To Be "Played" in SoS Simulation; Integrate Virtual Simulations With Live Test Range and Experimentation Assets Over Highly Distributed Networks.

Payoffs: Synergy Between Different Acquisition Programs of Record; Identification of Gaps/Overlaps to Help Reshape R&D Investment Strategies, AND Operational Concepts; Coupling Virtual, Force, and Component Modeling Technologies With the Test Domain.

Tool Kits

DoD Architecture Framework Products:

Synergized SoS Data Populated in Framework Products (e.g. OV-3, OV-6, SV-2, SV-6), Mined Using Automated Tools (e.g. TCAT, SA)

M&S Environment (MATREX): Representation of SoS

Concepts and Technologies Derived from a SoS Analysis into a Modeling and Simulation Environment, Enabling Analysis, Technology Trade Studies, and TTP Refinement.

Virtual/Constructive/Live Experimentation:

Adaptation of Models of Varying Fidelity into Specific Experimentation Environments (e.g. CASTFOREM, JCATS, OOS/OTB, Test Community) While Maintaining Continuity and Pedigree.

Representative Example Of Employment

MITRE

TRAC WSMR

RESEARCH . DEVELOPMENT . ENGINEERING COMMAND

Define: Architecture

The Structure of Components, Their Interrelationships, and the Principles and Guidelines Governing Their Design and Evolution Over Time.

TRAC WSMR

Zoom In: Simulated Architecture For M&S Experimentation

- Perform Detailed C4ISR SoS Engineering Analyses & Populate Architecture Framework Products
- Translate Into Simulated Architecture and Identify Composition of C4ISR Entities To Be "Played" in Simulation
- Identify C4ISR Technologies to be Employed
- Identify Whether Technologies are Explored in RDEC Tech Base, or Other Venues
- Identify Whether Technologies Are Currently Represented By Models
- If Yes: Obtain/Employ Models
- -- If No:
 - Employ Surrogates
 - Create Models
- Identify Specific Experimentation Environment Needs:
 - Employ Algorithms and Performance Curves in Combat Models
 - Provide C4ISR Effects Simulations

TRAC WSMR

Zoom In: Close Fight Simulated Architecture

- Perform Detailed C4ISR SoS Engineering Analysis
- Apply Process of Previous Slide
- Include Subterranean Propagation and "Enabling Models", e.g. Power, Navigation
- Technologies and Experimentation Strategies are Directly Applicable to HLS Problem Space

TRAC WSMR

Architecture Development Methodology

TRAC WSMR

C2 and Sensor Architecture Development Methodology

TRAC WSMR

RESEARCH

OP

MENT

Communications Network Architecture Methodology

NGINEERING

COMMAND

US

TRAC WSMR

Translate OVs into SVs

TRAC WSMR

C2/ISR Information Dissemination Constraint Example

TRAC WSMR

C4ISR Effects Modeling Process: Comm

TRAC WSMR

Challenges

Continuous Adaptability

- Systems to be modeled are continuously evolving
- There is a tradeoff between the accuracy of a model and the model's capability to adapt to changes in the system that is being modeled

Model the System of Systems

- "Simulated Architecture" is Model of System
- Corresponding C4ISR Effects Cannot Be of Higher Fidelity Than Fidelity of Architecture Itself
- Not All Details of System Design are Relevant to Goals of Each Experiment.
- Ensure Translation of Data Captured in C4ISR Framework Products Reflect Architecture to Level of Fidelity Relevant to Experiment Design (Extract Appropriate Simulated Architecture)
- M&S Requirements Should Be Included During Architecture Development to Make Extraction of Simulated Architecture Comprehensive (and Easier)
- Represent Technologies Identified in the Simulated Architecture (e.g. Algorithm Design)

Design the SoS Simulation

- Software Development
- Simulation System Integration

SoS Experimentation Environments

- Design and Support Experiment
- Perform Effects Data Analysis
- Perform Operational Metric Analysis

Ensure VV&A

- For Not Only Individual Components But Also Entire C4ISR Federate, Across Varying Levels of Fidelity
- Why is it a Credible Model (i.e. Representation of Technology/Process)

RDEGOM

TRAC WSMR

Contact Info

• Monica F. Farah-Stapleton CERDEC, RDECOM, Ft Monmouth Email: Monica.FarahStapleton@us.army.mil

• **Dr. James Dimarogonas** The MITRE Corporation Email: jad@mitre.org

• **Dr. Paul J. Deason** TRADOC Analysis Center, WSMR Email: paul.deason@us.army.mil

Rodney Eaton
TRADOC Analysis Center, WSMR
Email: rodney.d.eaton@us.army.mil

TRAC WSMR