ISSUES AND REQUIREMENTS FOR CYBERSECURITY IN NETWORK CENTRIC WARFARE

Martin R. Stytz, Ph.D.

WPAFB, OH

Sheila B. Banks, Ph.D. Calculated Insight Orlando, FL

sbanks@calculated-insight.com

Introduction

• "The battlefield is the computer"

- The bad guys have many motivations for attacking computational resources
 - Psychological, military, and financial
 - Their advantage
 - Threat will increase
- Need to redress the balance

Motivation

- Network Centric Warfare (NCW) increases effectiveness by information-based empowerment
- Increased power from information leads to increasing reliance on information
 - Unspoken tenet of NCW is that information is accurate
 - The growing threat brings this assumption into question because information will be attacked
 - Growing sophistication and effectiveness of cyberbattlespace offensive activity
- Technical sophistication required to manage/conduct defense
- Increasing expertise offshore
- Increased vulnerability as software application size increases
 - Compounds the defensive problem

Motivation

- Current defenses are costly
 - Computationally
 - Financially
- Difficult to test current defenses
- Cyber security required across the entire cyberbattlespace
 - Networks, software, data
 - Broad variety of threats to each must be addressed
- Our goal
 - Understand and characterize the problem space
 - Foundation for work to redress the imbalance between defense and offense

Cyber Battlespace Arena - Scenario

- System launches multiple false attacks
 - Maximal havoc and confusion
- Under cover of false attacks, main attack thrust is unleashed
 - Stealthily penetrate network defenses
 - Aimed at a target software application
- When arrive at target application, obtain copy
- Rapidly analyze application, understand defenses, and penetrate target
- Make desired changes to target application
- Return target application to execute in place of original
- Back out of main attack thrust and gradually ramp down diversions

Cyber Battlespace Arena

- Events occur at high speed, much faster than human thought processes
- Rapid change in attack vectors
- Need for technical expertise for command and control
- Difficult to develop and maintain situation awareness
- Current lack of metrics to measure defense effectiveness
- Difficult to predict future activity in cyberbattlespace
 - No predictive battlespace awareness
- High degree of vulnerability to intended and unintended effects of cyberspace actions

Cyber Battlespace Background

- Traditionally have relied upon network and operating system defenses to protect software
- This dyad is not sufficient
 - Dyad does provide the basis for protecting software
 - Moving to triad
- Protection triad includes software protection
 - Protect decades of investment in high performance software and the research results they embody
 - Critical to every aspect of military activity, from training to operations
 - Protected software is the foundation for high confidence computing
 - All cyber attacks are, at their core, software attacks
 - This insight is the <u>basis</u> for our analysis and conclusions

Current Project Goals

- Address need for inherent cyber security
- Develop seamless web of protection
 - Extensible and responsive protection technologies
 - Protects all cyber resources
- Insure secure interoperation
- Provide inherent protection and inherent capability to determine if an application/resource is under attack or compromised
- First step determine the attacks and document them
 - Learn the "terrain" of this new battlefield
 - Provide a framework for analysis to identify threats
- Result Highly trusted data and applications that enable NCW paradigm

Stytz & Banks

Attack Identification - Framework for Analysis

- Goals, effort, vector
- Goals of attacks
 - Reverse engineering all or parts of a code
 - Allowing limited or unrestricted execution
 - Tampering with the code

• Type of effort needed for successful attack

- Human effort (from expert to ordinary skills)
- Generic tools (COTS, open source)
- Specialized tools (what is possible by skilled adversaries?)
- Number of allowed executions
- Time and availability of code required for attack
- Vector for attack
 - Specific vulnerability exploited; means for delivering attack payload

Attack Identification Methodology

- Identify each type of attack/exploit category
 - Web and literature survey
 - Narrative description
- Convert each narrative into UML threat case and sequence diagrams
 - Threat case diagrams to document threats; XML for annotations(s)
- Parallel development
 - Tests, scenarios, and experiments to validate uncovered attacks
- Testing and analysis of identified attacks and included major and minor threat cases
- Refinement
- Feedback

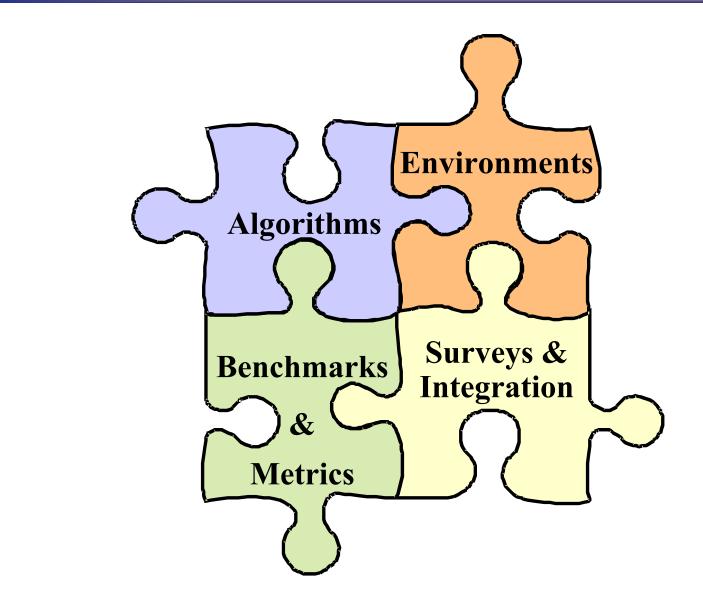
Attack Analysis Results - Overview

- No generally accepted classification
 - Developed classification based upon extensive research and correlation of literature
- Literature shows it is broad and growing
- Three basic attack strategies
 - Fault injection via environment
 - Fault injection through source
 - Fault injection via errors

Specific Attacks

- 1- Block Access to Libraries
- 2 Redirect Access to Libraries
- 3 Manipulate application registry values
- 4 Force the application to use corrupt files or databases
- 5 Manipulate and replace files that the application creates, reads, writes, or executes
- 6 Force the application to operate in low memory, disk-space, and network-availability conditions
- 7 Overflow input buffers
- 8 Attack through application switches and options
- 9 Use escape characters, different character sets, and commands to get malformed input
- 10 Try common default and test names and passwords
- 11 Look for and test unprotected application APIs
- 12 Connect to all ports
- 13 Fake the data source
- 14 Create loop conditions in an application that reads script, code or other user supplied macros or logic
- 15 Look for and use alternative execution routes through an application to accomplish its task(s)
- 16 Force the application to reset its values
- 17 Get between time of check of a value and time of use of a value
- 18 Create fake files with the same name as protected files
- 19 Force all error messages
- 20 Look for temporary files for an application and examine their contents for sensitive or exploitable information
- 21 Force invalid outputs to be generated
- 22 Attack through shared data

The Attacks - Requirements


- In light of the types of attacks, what response is necessary?
 - Preserve integrity/functionality of network
 - Control system use
 - Prevent extraction of software subsets (piracy)
 - Protect data
 - Protect network access
 - Insure correct and accurate software
 - Insure computations are correct and accurate
- Far from achieving these objectives
 - No methodology for development or maintenance
- Current strategies for defense are not effective
 - Separable
 - Not mutually supportive

A New Cyber Security Strategy

- Continue to apply defense in depth
- New philosophy for defense in depth
 - Paradigm that recognizes differences between physical and cyber worlds
 - Physical world makes defense in depth viable since attacks are sequential due to physicality
 - Cyber world has no counterpart
 - Independent and sequential attacks can occur in any order
 - Defeat defenses piecemeal
 - Defense in depth should be an interwoven set of defenses
 - Mutual support, mutually reinforcing, inseparable
 - Independent
 - Multiple simultaneous challenges

Stytz & Banks

Research Requirements

Additional Requirements

- Implement new cyber defense in depth
- Benchmarks, metrics, and test suites
 - Autonomous cyber red team
- Ontology and lexicon
- Black box application of protection technologies
- Cross authentication of components
- Autonomous, secure assembly and verification of security capabilities
 - Truly composable protection techniques
- Data protection
- Inherently secure programming languages
- Process to maintain secure software

- The transition to NCW brings with it an increased imperative for secure, trustworthy data
- Current capabilities do not address the challenge
 - New cyber defense strategy and research requirements
 - Need for NCW cyber security discipline
- Wide variety of attacks to be addressed
- Need to employ and devise new techniques for network, software, and data protection against attacks
 - New strategy
 - Several development needs

- Need ability to test and evaluate defenses
- Need to measure effectiveness of defenses
- Need new approach for software development from requirements to maintenance
 - Entire lifecycle
- Need integral cyber security
 - Present in all software, network systems, data
 - Designed in and not patched on
- Need science of cyber protection
 - Especially as related to NCW

• "The battlefield is the computer"

- NCW makes software, networks, and data ever more tempting targets
- Wide variety of attacks to be addressed
 - Currently increasingly effective and sophisticated
- Need to accelerate development of defensive technologies to change the protection balance of power