Systems Engineering in the Information Age: The Challenge of Mega-Systems

Renee Stevens 15 June 2004

Operation Enduring Freedom: an Early Glimpse at the Future

Unprecedented Collaborative Engagement with Networked Forces

- SOF forces request Close Air Support
- F-14 providing Close Air Support out of weapons
- F-14 crew employ onboard sensors to mensurate target
- Crew passes target data <u>via voice</u>
 to AWACS
- B-52 enabling successful target kill with precision munitions
- Time to Target 18 Minutes

MITRF

- No requirement or architecture anticipated it
- Not achieved by any single system

•May never happen again in exactly the same way

Demand for Agile, Adaptive Responses

- Convergence of multiple trends
 - Uncertainty of strategic environment demands agile/adaptive response
 - Seek to leverage information as a competitive source of power
 - Information revolution provides tools to interconnect a wide range of elements
 - Computing/Storage
 - Networking
 - Wireless
 - Assurance...
 - Moving from bottom-up requirements to top-down capability-based acquisition approach
- Leading to growing emphasis on large-scale, richly interconnected "systems" that bridge traditional organizational. functional and programmatic boundaries... "Mega-systems"

Same logic applies in defense, government agencies and commercial worlds

Charles Darwin 1809-1882

"It is not the strongest of the species that survive, nor the most intelligent, but the ones most adaptable to change"

MITRE

The Challenge for Systems Engineering

- Trend away from stand-alone component systems (platform-centric) to richly interconnected and increasingly interdependent systems that cross traditional boundaries
 - System of Systems, Family of Systems...
 - Enterprise and "extended enterprise"-wide systems
- The systems we are being called on to help acquire appear to be *qualitatively* distinguishable from those that have been traditionally and successfully addressed using "traditional" system engineering.
 - To what extent do the SE practices and processes that evolved in post WWII era apply to this new class of systems?
 - Where they might not apply, what new practices and processes might be required?

Δ

A Working Definition

- Mega-systems defined as "large scale, potentially complex systems that are formed by the integration of separately developed systems to provide functionality beyond that achievable by its component systems"
- Cross traditional boundaries (organizational, functional, programmatic...)
- Significant human dimension which contributes to
 - Complexity of behavior
 - Continued evolution

Framework for Exploring Mega-Systems

© 2003 The MITRE Corporation. All rights reserved

Examples of Mega-Systems

Air Operations Center

- 1000-2000 people working around the clock in 2 shifts; ~70K ft² of space
- 100+ workstations
- ~\$50M of planning & decision aids and infrastructure
- 30-80 apps being continually refreshed and occasionally upgraded and augmented; ~25 BIG apps
- Generates and manages 24 hour schedules for the application of airborne assets; 1 AOC per theatre.

Federal, State & Local Info Sharing

- Federal + ~18,000 state & local police organizations, majority ≤10 staff
- ~680,000 law enforcement officers
- ~100 different systems of which
 >30 are commercial
- Mutual distrust particularly about sharing case information
- Some successes (fingerprint file, national criminal information file)
- Growing privacy concerns

Engineering "Mega-systems" is Messy

- Ambiguous boundaries
- Continuously changing expectations, including new opportunities not originally envisioned
- Technology obsolescence and emergence
- Shifting mix of cooperation and competition among participants and stakeholders

What Seems to Work Well... And Not So Well

The enablers

- (Some) architectures, visions, engineering master plans...
- Continuous, broad-based involvement
 - Representatives from different organizations actively involved
 - Visible senior leader support
- Consensus around infrastructure and tenets
 - Open standards
- Guided, incremental developments
- Integration facilities (virtual and real)
- Experimentation, early field trials
- Response to real crisis
 - Overcome "tribal" tendencies
- Charismatic "champion" that can overcome process limitations

- Requirements and specs
 - Difficult to articulate how parts will work in context of the whole – lack lexicon
 - Desire for global specificity and completeness
- Multiple stakeholders, overly complex organizations
 - Separate agendas, distrust...
 - Process takes precedence
- Dealing with uncertainty
- Grand design
- Too long a horizon
 - Technology changes, expectations change, users change...
- Too narrow a view
 - Ignoring some key stakeholders
 - Technical solutions for nontechnical issues (e.g. privacy)
- Acquisition across boundaries

Implications for Engineering Mega-Systems

- Implication #1: Less emphasis on comprehensive, detailed requirements and specifications at the onset and more emphasis on incremental experimentation and trial
- Implication #2: Consensus around the enabling infrastructure and design tenets is the structured piece of the unstructured problem
- Implication #3: Make maximum use of existing collaborative engineering tools and practices and encourage the evolution of new techniques
- Implication #4: Capabilities that are deemed useful should be spiraled off the use
- Implication #5: Encouraged to evolve in situ

Concluding Thoughts Intended to Provoke

NCO entails thinking differently about the process; we should also think differently about how we structure and implement solutions

Military Transformation*

- What's In?
 - Joint and Expeditionary mindset
 - Ad hoc fight in flat organization
- What's Out?
 - Long cycle times
 - Deliberate planning
 - Non-joint Conops, doctrine, or operations

Self-synchronizing forces based on commander's <u>intent</u>

IT-Based "Mega-Systems"

- What's In?
 - Complex adaptive systems mindset
 - Capability evolution in response to unanticipated events
- What's Out?
 - Long acquisition times
 - Grand design
 - "Local" requirements, design, or operations

Self-synchronizing developments based on <u>agreed-to goals, infrastructure</u>