

SmartSwarms: Distributed UAVs That Think

Andrew Arcilla Armand Prieditis Mukesh Dalal Lookahead Decisions Incorporated prieditis@lookaheaddecisions.com

LDI

The Problem

The Current Approach

Our Approach

UGV Results

UAV Results

Conclusions

The Problem

How to make automatic real-time decisions for unmanned vehicles?

- **Examples:**
 - Unmanned Ground Vehicles (UGVs): how to get a UGV to its destination fastest?
 - Unmanned Aerial Vehicles (UAVs): how to avoid accidents in the air and complete the mission in the least amount of time.

The Problem

The Current Approach

Our Approach

UGV Results

UAV Results

Conclusions

The Current Approach

- Rule-based: use a fixed rule
- Examples:
 - Route UGV along shortest path to destination
 - Route UGV along the least congested route

Shortest path routing rule

The Problem

The Current Approach

Our Approach

UGV Results

UAV Results

Conclusions

LD

The Current Approach: All Rule-Based

Production Rules: if-then rules (e.g. Soar)
Finite State Machines: rules with states
Agent-Based: distributed rules
Logic-Based: theorem-proving rules
Neural Networks: non-linear rules
Genetic Algorithms: tunes rules

The Problem

The Current Approach

Our Approach

UGV Results

UAV Results

Conclusions

Problems with Fixed Rules

- **Myopic:** fail to take into account long-term ramifications
- **Far-from-Optimal:** because they are myopic
- Limited expressibility: difficult to specify uncertainty or complexity
- **Costly to develop**: requires deep knowledge of the application
- Costly to maintain:
 - New rule for each new situation
 - Results in patchwork, spaghetti code

Shortest path rule is myopic


```
The Current Approach
```

Our Approach

UGV Results

UAV Results

Conclusions

LDI

LDI's Innovation: Model-Based Decision-Making

- Simulate: effects of each decision forward in time by building a lookahead tree
- Evaluate: expected outcome of each decision sequence in that tree
- 3. Choose: decision that results in the best expected outcome

- Roadmap
- **The Problem**
- The Current Approach
- **Our Approach**
- **UGV Results**
- **UAV Results**
- Conclusions

LDI

Oasys Works Like World-Champion Chess Programs

Oasys:

- Searches decision tree more efficiently
- Takes into account uncertainty, time, parallelism
- Scales in performance with more PCs
- Learns to improve

The Problem

The Current Approach

Our Approach

UGV Results

UAV Results

Conclusions

LDI

Advantages of Our Approach

- Telescopic
- Expressively Powerful
- Real-Time
- Anytime
- Principled
- Easily Deployable
- Flexible and Easily Maintainable
- Optimal

Making Better Real-Time Decisions LDI's Oasys Conceptual Architecture: XML-Based

Roadmap

The Problem

The Current Approach

Our Approach

UGV Results

UAV Results

Conclusions

Current Results: UGVs

The Problem

The Current

Our Approach

UGV Results

Approach

Current Results: Rules vs. Oasys for UAVs

Conclusions

UAV Results

LDI

- Roadmap
- The Problem
- The Current Approach
- **Our Approach**
- **UGV Results**

UAV Results

Conclusions

LDI

Current Results: UAVs

Quantitative Results for UAVs

- 10 x 10 x 10 Grid Size
- **80 UAVs**
- 61.1% Improvement over Shortest Path

- The Problem
- The Current Approach
- **Our Approach**
- **UGV Results**
- **UAV Results**
- Conclusions

LDI

Oasys Does Better with Greater Complexity

UGV Results

UAV Results

Conclusions

The Problem

The Current Approach

Our Approach

UGV Results

UAV Results

Conclusions

.DI

Conclusions and Future Work

Model-Based Decision-Making:

- Reduces Cost of Deployment
- Improves Performance
- Reduces Cost of Maintenance
- Can Integrate with Higher-Level Goals

Future Work:

- Multi-level UAV Control System
- Goals of greater complexity (e.g. different mission types)

- The Problem
- The Current Approach
- **Our Approach**
- **UGV Results**
- **UAV Results**
- Conclusions

About LDI

- **Focus**: real-time decision-making
- **Products**: Oasys 3.0, a real-time decision-making system
- Services:
 - Simulation
 - Workflow
 - Scheduling
- Verticals:
 - Healthcare
 - Manufacturing
 - Material Handling
 - Unmanned Vehicles