Military Robotics and Collateral Damage

Robert Douglass, SET Associates Alexander Kott, DARPA

Conflicting Trends?

- Emergence of Combat Robotics: armed robots with a degree of autonomy
- Growing importance of Collateral Damage control
- Is there a conflict between the two trends?

Measures and Questions

- Consider NC/C ratio: C hostile combatants killed; NC non-combatant fatalities
- What are typical historical NC/C ratios for representative human conflicts?
- How can one predict an NC/C ratio for a given set of combat robots operating under a particular command, control, and targeting strategy?
- How would the NC/C ratio characteristic of a combat robotic force compare to that of a conventional manned force?
- More broadly: how to model, predict, and *minimize* the NC/C ratio?

Show Me a Combat Robot

- DF: combat robot a (partially) autonomous unmanned platform capable (at least in principle) of applying effects
- General capabilities:
 - Persist on the battlespace
 - Plan and execute broad repertoire of actions
 - Identify and approach the enemy target
 - Apply effects, repeatedly
- Would they introduce a greater risk of fratricide and collateral damage?

A Scenario

Is This Realistic in Near Term?

- Autonomous mobility, obstacle detection and avoidance
- Perception of friendly force
- Enemy detection and targeting

Robots Could Perceive Hostile Shooters Fast and Accurate

- Perception is considered the greatest challenge of robotics
- Can be overcome by not attempting to duplicate human perception
- Shooter detection -- the most effective way of identifying hostiles
- Far more reliable than human visual
- Difficult for humans: "Took fire many times never could pin-point the source." (MG Garrett)
- Shock-wave sensors can be accurate

NEST experiments: shooter located within 1m accuracy, at 100m distance

Shooter detection – the silver bullet for the perception challenge

Robots Could Aim and Shoot Well

- Strike pattern at 100m from a randomly rotating shooting platform
- Red circles are laser hit locations
- Dotted blue circles are actual laser beam size at 100 meters away (0.003 radian divergence)
- Bright green is actual size of the reflective target
- Courtesy of Dr. Omead Amidi, CMU

CEP 34 cm – Firing on the move at 100m

Robots Could Save Lives of Blue Warriors

Reduced blue human losses due to:

- Robots can bring fire support much faster, closer
- No need to rescue the crew of a downed robot

Scenario of the wargame:

- Dense environment: agricultural and suburban
- Red irregulars and civilians
- Blue dismounted Co attacks along 2 AAs
- Conventional: 6 teams of 2 Apaches
- Robots: 7 teams of 2 armed robo-helos

But what will such robots do to non-combatants?

Robots Could Minimize Collateral Damage

- <u>Non-humanoid tactics and C2</u> can make a difference
- Robots can use restrictive "sacrificial" ROEs (too dangerous for human soldier):
 - Draw fire, detect shooter location, then return fire
 - Use exchange of data on dynamically changing no-fire locations
- Robots can come closer, use smaller weapon

Robots can reduce collateral damage, as compared to human forces

Some Historical Data

Conflict	Dates	NC-Low	NC-Hi	NC-Mean	C-Low	C-Hi	C-Mean	Source
WW1	1914-1919			13,000,000				13
							8,500,000	10
							7,734,300	6
	Overall Mean			13,000,000			8,117,150	
wwii	1939-1945						12,948,300	6
				13,000,000			20,000,000	13
				13,000,000			15,164,300	10
Korea	1950-1953			1,633,000			1,890,000	10
		400,000	3,000,000	1,700,000	582,000	2,000,000	1,291,000	8
	Overall Mean			1,666,500			1,590,500	
Vietnam	1960-1975	486,000	840,000	1,330,000	663,000	1,140,000	1,235,000	8
Iraq-Gulf War	1001		2.664	2 500	20,000		22.000	1
•	1991	2 500	3,004	3,500	20,000	26,000	23,000	
Chaobaya		2,500	3,000	2,750				C
Russia	1999-2002			30,000	17,817	22,117	19,967	7
Kosovo	1999	500						2
Afghanistan	Oct-Dec 2001	3,073	3,597	3,335				4
		1,000	1,300	1,150			3,602	2
				3,500				7
	Overall Mean			2,662				
Jenin and								
Nablis	Apr-02	64	76	70	73	105	89	11
Iraq-OIF	Mar-May2003	3,200	4,300	3,750	7,600	10,800	9,200	1
		5,951	7,590	6,771				12
Baghdad	Mar-May2003				1,700	2,120	1,910	1
		1,990	2,357	2,174	2,224	3,531	2,878	1

NC/C Ratio

A Near Constant NC/C Ratio?

Can We Estimate Collateral Damage?

	Robotic	Unmanned 1	Unmanned 2
Range To Target (m)	106	300	300
Pd	0.8	0.3	0.3
<u>Pfa</u>	0.0016	0.006	0.006
Target Location Error (m)	1	3	3
	small	medium	small
Weapon	rocket	missile	rocket
Blast Radius (m)	3	6	3
CEP of weapon (m)	1	1	1
Density of NC (NC/Km ²)	175	175	175
Prob. Kill (P _{k)}	0.69	0.28	0.15
Prob. Collateral Dmg (Pknc)	0.05	0.68	0.05
NC/C Ratio	0.07	2.45	0.34

Outline of the Model

Number of munitions required (N_w) to achieve C: $N_{w} = C/P_{k}$

Then: $NC = N_W * P_{knc} = C * P_{kn} / P_k$

 $P_k = Pd^*(0.5^*P_{keq} + 0.45^*P_{keq})$

The values for killing a target in the CEP:

 $P_{keq} = P_b \approx 10 \qquad \text{if } W_b \ge CEE_0$ = $P_b^* (W_b / CEE_0)^2 + (1 - (W / CEE_0)^2)^* (1 + P_s(CEE_0))/2 \qquad \text{if } W_b < CEE_0$

The function P_s(R) is the probability of kill as a function of range, R, from the weapon impact point.

The probability of killing a target outside the CEP₅₀: $P_{\overline{kep}} = (P_s(CEP_{g_0}) + P_s(CEP_{g_0}))/2 \qquad \text{if } W_b < CEP_{g_s}$ $= P_b \approx 1.0 \qquad \text{if } W_b \ge CEP_{g_s}$

CEP95 is calculated using a Gaussian fit to the CEP50 values.

CEP₅₀ - function of the flight accuracy of the weapon, the target location accuracy, the weapon's platform's pointing accuracy, and the weapon's platform's own location accuracy including both INS and GPS errors.

The probability of killing a non-combatant:

 $P_{kac} = P_k * P_{fa} / P_d + P_b * W^2 * \pi * D + P_k * W_{max}^2 * \pi * D$

Risk of Non-Combatant Fatalities Robots vs. Manned

Historical Range vs. Model-based Estimates

Robots vs. Manned Warriors: Critical Assumptions

- Robots can afford to come closer to the enemy:
 - more accurate fires and smaller weapons (with smaller blast radius)
 - with less risk of affecting nearby non-combatants.
- Robotic ROE is the revenge fire:
 - locate the sources of hostile fire more accurately and rapidly
 - reduces the probability of fire at a misidentified noncombatant

Summary

- Combat robots are coming
- With the right ROEs and C2, robots could be great fighters
- Robots could save lives of Blue humans
- Robots could also save non-combatants!
- NC/C ratio is useful and historically stable metrics
- NC/C can be modeled, estimated
- Robots could affect dramatically lower NC/C than humans!

