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Important Probability Concepts

P(A, B)=P(A) P(B) (A and B are independent)
P(A | B, C)=P(A | C) (A and B are conditionally independent given C)

P(A[B)= PB[A)PA)
P(B)

Advantages of Probabilistic Belief Networks

/P(C | A,B) 5 P(C | AsNB)o
G P(C | FA,B), P(C | ~A,~B)

(4 Values)
\ 4

PE|B,C), P(E|B,~C),
(E|~B.,C), P(F [ ~B,~C)
(4 Values)

Bayes Theorem:

64 probability values are required to represent the joint
distribution of 6 binary state variables, i.c., 2° = 64

Probabilistic Network representations can reduce this
number significantly
The joint distribution is computed as e 5 )vifi)' -
P(A,B,C,D,E,F)= P(F | D,E)P(D | A)P(E | B,C)P(C | A,B)P(A)P(B)
P(A,B,~C,~D, E,F) = P(F | ~D,E)P(~D | A)P(E | ~B,C)P(C | A,~B)P(A)P(~B)

Probabilities for other 62 combinations can be found out similarlyee by pE ),
P(F| ~D.E), P(F | ~D,~E)
(4 Values)
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Bayesian Network with Noisy OR (BN20)

 Based on Independence of Causal Influences Assumption P& P© P(B)

* Required n parameters to estimate 2" conditional probabilities POIC)

P(D|A P(DJB)

* Given P(D | A), P(D | B), and P(D | C)
PIDABC)=1-P(-D|ABC) P(D | AB,C), P(D | A,B,~C),
P(D | A,~B,C), P(D| A,~B,~C),
=1-P(~D|A)P(~D|B)P(~D|C) PEDI~A,B,C§, PED‘|~A,B,~C§,

P(D ‘ NAaNB:C)a P(D | NA’NBaNC)

CAusal STrength (CAST) Logic

«  Extension of Bayesian Network with Noisy OR
(BN20) P(A) P(C) P(B)

*  Inputs have ranges from —1 to 1. e

hD\C gpic

(0.66,10.66) o

(-0.33, 0.66)

*  hp4 is analogous (but not equal) to P(D | A) while o B3
gp | a 1s analogous (but not equal) to P(D | ~A). (0.99, -0.66)

« Ifall g values are zero and all h values are positive
then CAST Logic = BN20
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Influence Nets

Probabilistic Belief Networks that use CAST Logic for model specification are
termed as Influence Nets.

The current implementation of Influence Nets assume that the parents of a node
are marginally independent.
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Timed Influence Nets

Timed Influence Nets have following additional parameters
A time delay is associated with each arc.
A time delay is associated with each node.

Each actionable event is assigned time stamp(s) at which the decision(s)

regarding the state of that action is(are) made R
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Belief Updating in Bayesian Networks

How to
compute

P(B)
3

N,
L

Singly Connected Network(SCN) Multiply Connected Network(MCN)

Exact Computation of Posterior Probability is
* Possible when the graph is singly-connected

* NP-Hard when the graph is multiply-connected
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Computation in Multiply-Connected Networks (MCN)

Step 1: Make the graph unidirectional

Step 2: Moralize the graph by adding a link between common parents
Step 3: Triangulate the graph
Step 4: Order the nodes by using Maximum Cardinality Search
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affected by the evidence are updated first.

Stepl0: [H, F, I, G, B, E, M, D, C, A]
Stepll: [H, F,I,G,B,E, M, D, C, A]
Stepl2: [H, F, 1, G, B, E, M, D, C, A]
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Stepl: [H, F, I]

Step2: [H, F, I, G, B]

Step3: [H, F, I, G, B, D]

Step4: [H, F, 1, G, B, D, E]

StepS: [H, F, I, G, B, D, E, M, A]
Step6: [H, F, I, G, B, D, E, M, A]

D cannot be updated as E is not updated yet.
Step7: [H, F, I, G, B, E, M, A, D, C]
Step8: [H, F, I, G, B, E, M, A, D, C]
Step9: [H, F, I, G, B, E, M, A, D, C]
A cannot be updated as C and D are not updated yet.

Sequencing Approach

A node will not be updated during the backward
propagation until all of its descendants that are
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Belief Propagation in Singly Connected Network

P (T)=0.90

Temperature

: Sensor
Let E = (Engine Status = Normal), T = (Temperature Status = Normal)

L = (Light On = True), D = (Product Defective = True)
C = (Plant Closed = True)

P(L|E,T)=0.01
P(L | E~T)=0.9
P(L | ~E,T)=0.85

P(D | E)=0.10
E | P(L | ~E,~T) = 0.99
P(E | D) = P(D | E) P(E) I
P(D | E) P(E) + P(D | ~E) P(~E) — b1 005
b(E | D)= 0.73 PMD)=10 P(C | ~L)=0.02
P(E)=030

P(L | D) = P(L | E,T)P(E)P(T) + P(L | E,~T)P(E)P(~T) + P(L | ~E,T)P(~E)P(T)
+ P(L | ~E,~T)P(~E)P(~T)
P(L | D)=0.31

P(C|D)=P(C|L)P(L)+P(C | ~L) P(~L)
P(C | D) =0.30
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Belief Propagation in Multiply Connected Network

P(E|F)= P(F | E) P(E)

P(F | E) P(E) + P(F | ~E) P(~E) O
P(D’) = P(D | E,F)P(E,F) + P(D | E,~F)P(E,~F) + P(D | ~E,F)P(~E,F) \

+ P(F | ~D,~E) P(~D~E)

Where

P(D | EF) = P(F | E,D) P(E)P(D) /
P(F | E,D) P(E)P(D) + P(F | E,~D) P(E)P(~D) G

Similarly, \

P(A’)=P(A |B, D)P(B,D) + P(A |B,~D)P(B,~D) + P(A | ~B,D)P(~B,D)
+ P(A | ~B,~D)P(~B,~D)
Where
P(A|B,D) = P(D|A)P(B|A)PA)
P(D|A)P(B|A)P(A)+P(D|~A)P(B|~A)P(~A)

George Mason University




Belief Updating in Timed Influence Net

P(E) =0 at time t = 20
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Conclusions

* A heuristic approach of belief revision for Timed Influence Nets is
presented.

« The approach updates the nodes in the sequential manner during the
backward propagation.

« Limitations: The algorithm works only if the time stamp of the evidence
is later than the time stamp of the last update of the evidence node
caused by the forward propagation of the effects from all of the action
nodes.

* One alternative approach is to convert a Timed Influence Net into a
Time Sliced Bayesian Network.
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