

Effects-Based Design of Robust Organizations

Sui Ruan Candra Meirina Haiying Tu Feili Yu Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut Contact: <u>krishna@engr.uconn.edu</u> (860) 486-2890

Command and Control Research and Technology Symposium June 16, 2004

Outline

Introduction

- Modeling Mission Environment
- Markov Decision Processes for Mission Environment
- Monte Carlo Control Method
- Robust Organization Design

Illustrative Example

Summary and Future Work

Effects-Based Design of Robust Organizations

Objective:

Design robust organizational structures and strategies to account for a *dynamically changing mission environment*

Methodology:

- Mission Model: Finite-state Markov Decision Process
- Methods:
 - Robust strategies
 - Monte Carlo Control Methods
 - Robust structures
 - Mixed Integer Nonlinear Programming

Dynamic Stochastic Mission Environment:

- **Effects:** the desired effects, with some serving as the end goals
- Exogenous events: uncontrollable random events
- Actions: controllable influences to achieve the desired effects, and minimize the adverse effects of exogenous events

Organization:

- A team of Decision Makers (DM)
 - Human or automated system
 - Limited resource handling capability (workload threshold)

Ownership of Platforms

Markov Decision Process for C2 Mission Environment

States:
$$S = \{s_1, s_2, ..., s_z\}$$

Status of effects and exogenous events:

 $s_i = (M_i, E_i)$ $\left\{ egin{array}{c} M_i \subseteq M & \mbox{Achieved effects} \\ E_i \subseteq E & \mbox{Unmitigated exogenous events} \end{array}
ight.
ight.$

Actions: $A = \{a_1, a_2, ..., a_k\}$, Platform to task allocation

Transition Probability Matrix:

$$\sup_{ss'}^{a} = pr(s_{t+1} = s' | s_t = s, a_t = a)$$

Reward Mechanism:

- **Reward:** *desired* end effect is reached $r(s_e) > 0$
- ▶ Penalty: *undesirable* end effects are reached $r(s_h) < 0$
- **Cost** : action is pursued $C(a_i) > 0$

Optimal Action Strategy:

► Mapping from *states* to *actions*, maximizing the expected *net reward*

Illustrative Example

Platform	Name	Number	ASUW	STK	SOF	Cost
P ₁	F18S	3	0	2	0	100
P ₂	FAB	5	1	0	0	80
P ₃	FOB	3	1	1	1	160
P ₄	SOF	2	0	0	1	60
Reward (Win)			5000			
Penalty (Lose)			-3000			

Task	Name	ASUW	STK	SOF
M ₁	Naval Base	2	0	2
M ₂	Air Base	0	6	0
M ₃	Sea Port (final)	2	2	0
T ₁	SCUD – missile	1	1	0
T ₂	Hostile ship	1	0	1
T ₃	TSK –complex group task	0	1	1

TSK

Cosjectige: decention decent dece► Mapping from states Ato is in a similar the expected net reward

> Sea (M₃) Port

Air (M₂) **Base**

Exploration method for finding a start state:

State	Action	S-A Value	
	a ₁ (<2P2+2P4> →m1)	1560	
S ₁ (T ₂)	a ₂ (<3P1> →m2)	2000	
	a ₃ (<p3> →T2)</p3>	1320	

10

Converged state-action values

State	Action	State-Action Value
	a ₁	2115
T ₂	a ₂	1780
	a ₃	930
M ₂ ,T ₂	a ₁	323
	a ₃	1356
	a ₄	1454
	a ₅	3020

Optimal Strategy

	State	Optimal Action		
	ϕ	P ₁ +P ₂ +P ₃ +3P ₄		
	M ₁	3P ₁		
	M_2	2P ₂ +2P ₄		
	T ₁	P ₁ +2P ₂ +P ₄		
	T ₂	2P ₂ +2P ₄		
	T ₃	P ₁ +P ₄		
	T ₁ , T ₂	P ₁ +P ₂		
	M ₂ , T ₂	$P_2 + P_3 + P_4$		

Optimal Strategy: Mapping from states to actions

Illustrative Example - Revisit

- Modeled the mission environment as a finite state Markov Decision Process
- Applied Monte Carlo control methods to obtain a near-optimal action strategy
- Utilized mixed-integer optimization technique to design organizational structure congruent to the strategy

Future Work

Modeling Parameters:

- Incorporate more realistic mission environments into MDP model
 - Task locations
 - Platform locations, velocities

Space Reduction in Learning:

- Generalization (Function Approximation)
- Abstraction (Factored Representation)

Organizational Design:

- Include additional organizational structure elements into the design process
 - Command structure
 - Information flow structure

Thank You