GENERAL DYNAMICS Advanced Information Systems

Rethinking Defensive Information Warfare

Geoffrey S. French

Overview

- Current state of DIW
 - Doctrine
 - Theory
 - Practice
- Fundamental Flaws in Information Assurance (IA)
 - Technical and logical shortcomings
 - Limits of cyber risk management
- New Basis for DIW

DIW Defined

Joint Pub 3-13

The integration and coordination of policy, personnel, and technology to protect information and information systems.

IA, physical security, OPSEC, counter-deception, counter-psyops, CI, EW, and special information operations.

Ensure access while denying adversaries the opportunity to exploit friendly information and information systems for their own purposes

DIW Explained

- OPSEC and risk management
- Protection, detection, restoration, and response

DIW Expanded

- Defensive counterinformation
- Counter propaganda and public affairs
- Protection of any information-based process in military activity

DIW Doctrine

- Emphasis is on passive monitoring and basic OPSEC procedures
- Generic risk management methodology
- No guidance for
 - preparations for improving defense prior to an attack
 - response to a cyber attack in wartime conditions

DIW Theory: NCI Focus

- 1996 NDU Study
 - Addressed defense of national critical infrastructure (NCI) as well as military
 - Acknowledges that poor ability to identify which assets are critical
 - Recommends raising level of defense to meet the sophistication of the attack

DIW Theory: DII-Focus

- 1999 RAND study
 - Addressed Defense Information Infrastructure
 - Called for definition of "minimum essential"
 - Acknowledged that "just about everything must be included"
 - Set up six-step risk management process

Defense Science Board Studies

1996 Report

- Looked at both DII and NCI
- Called for improvements in basic functions (warning, damage assessment)

2001 Report

- Looked at DII
- Called for stronger architecture in the Global Information Grid, better intrusion detection, and increased R&D

DoD cannot today defend itself from an Information Operations attack

Defense Science Board, 2001

Current State of Practice

- Expansion of term, focus on day-to-day operations and computer network defense (CND)
 - Monitoring for intrusions
 - Identifying malware
 - Installing patches
 - Incident response
- Emphasis on IA

Is IA a Solid Foundation?

Based on ideals

- Flawless software
- Flawless implementation and configuration
- Up-to-date patches and signatures
- Access limited to authorized users
- Users have appropriate privileges
- No one undermining security

Hardware and Software

- In reality
 - Operating Systems (e.g., Windows)
 - Fundamental Services (e.g., BIND)
 - Applications (e.g., IIS)
- Flaws exist
 - Not just announced and patched vulnerabilities
 - Undiscovered flaws

The patch model for Internet security has failed spectacularly.

Caida, 2004

Signature-Based Defense

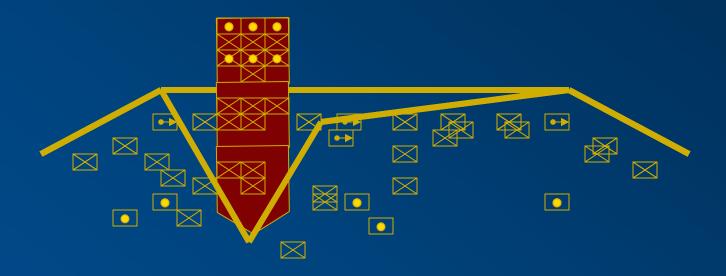
- Anti virus, intrusion detection, firewalls
 - Rules are set up to identify known characteristics of existing exploits or malware
- By definition, reactive
- Cannot stop the zero-day exploit or the latest worm

Authentication

- Most networks require simple authentication
 - Username
 - Password
- Passwords are notoriously insecure
- Moving toward "single sign-on"
- Poor verification of authorized use of network

The Reality of Complexity

- In theory, network security should be straightforward
- In practice, it is complex
 - Interactions of hardware, software
 - Mobile users
 - Personal equipment
- There are individual solutions to each problem, but each solution has its own vulnerabilities and problems


Implications for Risk Management

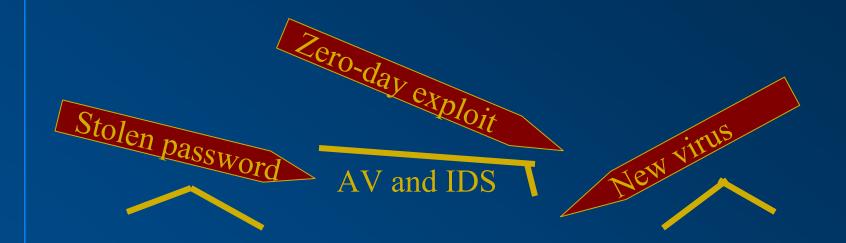
- Poor definition of "critical" assets
 - May be no differentiation
- In peacetime, risk may be acceptable
 - Time to investigate intrusions
 - Personnel to respond to incidents
- In wartime, the risk is unacceptable
 - Against a sophisticated adversary, IA certain to fail
 - A small amount of wrong of unavailable data can have a large impact on military decisions

New Basis for DIW

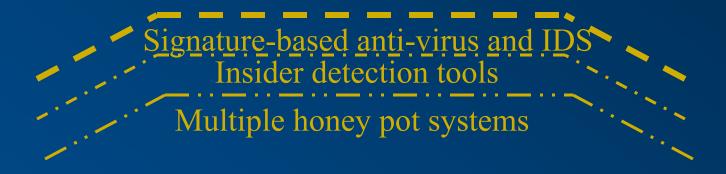
- Examine military history
- Draw analogies
 - Perimeter defense unlikely to succeed
 - Limited ability to counterattack
- Historical examples
 - German defense in depth from WWI
 - American active defense from Cold War
 - Serbian defense of NATO Kosovo air campaign

WWI Perimeter Defense

WWI Defense in Depth


Lessons Drawn

- Even with forward-deployed forces, perimeter will be penetrated
- Detection and reaction are part of defense

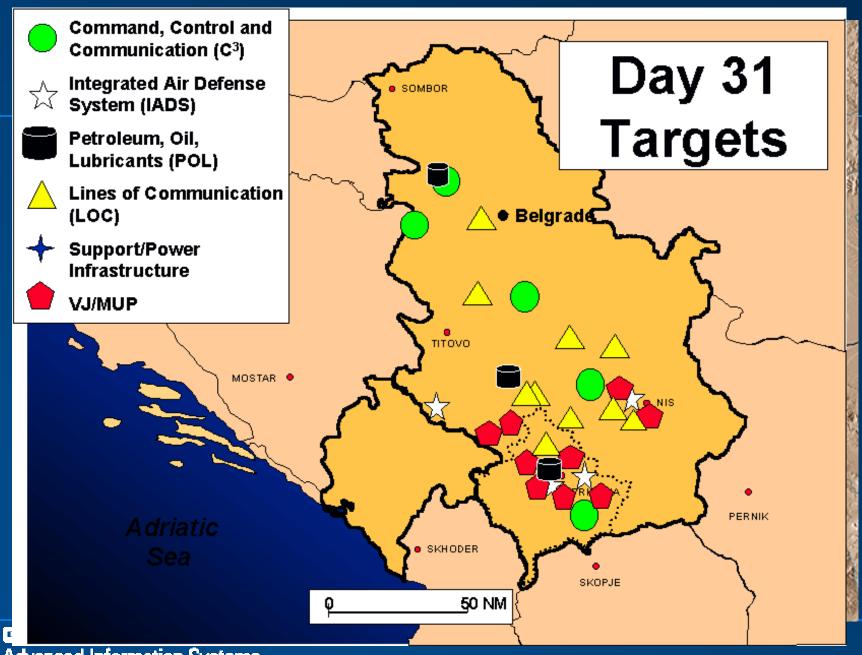

Network Perimeter Defense

Network Perimeter Defense

Network Defense in Depth

From Forward Defense to Active Defense

- US faced numerically superior foe
- Active Defense
 - Firepower disadvantage
 - Knew forward positions would be overrun
 - Response: hardening combined with mobility


Cold War: European Defense

GENERAL DYNAMICS
Advanced Information Systems

Active Network Defense

- Hardening
 - Locked down operating system
 - Rigid execution control
- Mobility
 - Countering adversary reconnaissance
 - Changes in
 - IP addresses
 - Configuration (including DNS and BGP)
 - Equipment

Advanced Information Systems

Source: Global Security

Lessons drawn

- Deception and denial
 - Neutralize enemy firepower advantage by countering intelligence, surveillance, and reconnaissance

Network-based Deception

- Not necessarily honeypots
- Targeted at adversary reconnaissance
 - Simulated responses
 - Diverted traffic to real networks
- Should be tailored
 - Could draw in adversary
 - Could discourage adversary
- Should be centrally controlled

Integration

If combined

- Counter pre-crisis adversary reconnaissance with mobility
- Counter reconnaissance during crisis or war with deception
- Detect insider threat and network penetration
- Harden certain systems to better protect critical systems
- Prepare DoD systems for war

Summary

- IW has lost emphasis on war
- DIW has lost any concept of escalation for crisis or conflict
- Military history can illustrate adaptations in the face of adversity
- DIW needs to look to military history to reinvigorate review of strategic needs