

Multi-Agent Simulations for Assessing Massive Sensor Deployment

Captain Sean Hynes, USMC sehynes@nps.edu Dr. Neil Rowe nrowe@nps.edu

Outline

- Problem Space
- Sensor Coverage
- Sensor Deployment

Small and Mobile

Problem Space

Next-generation Web and network-centric warfare Counterintelligence Expeditionary sensor networks Coverage, minimal exposure, and cost Efficient deployment algorithms for autonomous sensor vehicles

Research Project

- A sensor network simulation
- Coverage and deployment issues for mobile and non-mobile sensors
- An expeditionary sensor network multiagent simulation designed and implemented
- Novel search, coverage, and deployment algorithms implemented, tested, and compared to known methods

Coverage in Sensor Networks

We address distribution of multiple homogeneous sensors for detecting targets.

- We assume a large enough number of sensors that a human operator cannot manage each.
- Much literature on search in operations research.

Some literature on area coverage. Not much literature on traversal detection.

Which Deployment = Better Coverage?

Area Coverage Deployment (More Area Covered) Barrier Coverage Deployment (More Likely Traversal Detection)

Application Preview

Dimensions of sensor networks

- General sensor mechanism
 - Radial
 - Distance-directed
 - Line-of-sight
- Coverage type (sweep, area, traversal)
- Presence/absence of obstacles
- Mobility
- Localization

Deployment Algorithms: Constraints

- Should be efficient, de-centralized, fault-tolerant, and scaleable
- Communications
- Geographical Knowledge
 Localized Decisions

A grid for detecting traversal: calculate worst-case path

Probability of detection = 87%

Placement Complexity

Consider
N – # Sensor Nodes
A – environment area
D – length of grid square

Consider •N – 10 •A – 100 m² •D – 10m

of Configurations

Mobile Sensor Model

Deployment Algorithms: Methods

- Global or centralized
 - Best-first, greedy, genetic, simulated annealing,
- Local or autonomous
 - Potential forces, vector field, local direction,

 Coevolution of evasion and detection with neural networks

Average barrier coverage (%) with multistage random deployment

	2			
Coverage %, no obstacles	4	41	64	85
Coverage %, with obstacles	6	25	39	55

Cost of achieving 80% coverage with multistep deployment of sensors

Number of sensors each step

Algorithm comparison, no obstacles

Algorithm comparison, with obstacles

Number of Sensors

Some Pics

Free Detection Probability = 1-Exposure = 0.3432 Obstructed Detection Probability = 1-Exposure = 0.9949 Free Avg Detection Probability = 1-Exposure = 0.0751 Obstructed Avg Detection Probability = 1-Exposure = 0.0824

Some Pics

Some Pics

Some Pics

