
1

Research on deception in
defense of information

systems

Neil C. Rowe, Mikhail Auguston,
Doron Drusinsky, and J. Bret Michael

U.S. Naval Postgraduate School
ncrowe@nps.edu

2

The Software Decoy Project
Funded by the Department of Homeland Security and
other agencies
Tailoring classic military deception for defending
computer assets
Goal is to provide a second line of defense beyond
access controls, which is especially useful for insider
attacks
Key parts of the project:

Theory of deception for information systems
Simple testbed deceptive software and ways to
attach it to operating systems and applications
Temporal reasoning in deception
Legal issues in software deception

3

Example: A fake-directory interface

4

Example random-context data from the fake directory

5

Example simple cyber-attack plan for a rootkit
install rootkit

obtain admin status

cause buffer
overflow in port X

connect to target
machine on port X

scan local network for ports
with known vulnerabilities

learn local network topology

check for newly discovered
vulnerabilities of common software

guess password
of account on
target machine

download
rootkit

ftp to hacker
archive

decompress
rootkit

close ftp connection

test rootkit

login as admin

logout

install secure port X server

download port
X upgrade

ftp to port
X site

close ftp
connection

logoutdecompress
rootkit

6

Example ploy: Delete admin authorization + log out
5

39

25

install rootkit

close ftp

50

0.2

0.9

0.1

0.2

0.8

0.2

0.8

0.83

0.17
0.4

0.9

0

33

22 1 2 3 4

35

6

78

9

ping

pingresearch
vulnerabilities

research
vulnerabilities scan open port overflow

buffer
become
admin

become
admin

login

ftp

24

25

download rootkit

download rootkit download
secureport

download secureport

10

11

122

13

14 15 16 17 18 19

download
secureport

close ftp

decompress
rootkit

install
secureport

install
rootkit

logout

21 22 23 28close ftp

decompress
secureport

install
secureport

test
rootkit

test
rootkit

test
rootkit

test
rootkit

test
rootkit

26

close ftp

27

29

30

decompress
secureport

decompress secureport

decompress rootkit
decompress

rootkit

install rootkit

32

31

ftp

download
secureport

download
secureport

180

70

167

107

61

36

101 100
99

97

100
75

74
62

96

86
85

48
74

65

55

47 30 11

36 24 1 0

0.33

0.8

0.67 0.17

0.8
0.2

34

test rootkit

ftp

0.25 0.75

40
decompress
secureport

close
port

close
port

0.83

20

55

51

0.1

0.9

0.1

0.6

106

102

103

104
105

open port

overflow
buffer

become
admin

close port

login

7

Software wrappers for deception

For a deception defense to be effective, it is good to
distribute it across many features of an operating
system -- like "antibodies".
We are building tools to automatically modify
software to insert "wrappers" around key code; the
wrappers can apply deception when their suspicions
are aroused.

8

General decoy architecture
Attacker

Operating system Applications
software 1

Applications
software 2

Wrapper

Component 1 Component 2
Wrapper

Component 3
Component 4

Decoy supervisor Intrusion-detection system

Decoying rules

9

Example deception rule for a software wrapper
• This detects opening a file, read/write operations, and

closing the file.
• Each event cause a message to the system log file.
• The pre and post indicate whether the action is done

before or after the matching kernel call.
• $path provides values of kernel call parameters.
• Besides executing code, wrapper rules may prevent or

delay execution of a kernel call.
R1 : detect

open pre { wr_printf("open file %s", $path) ; }
(read pre { wr_printf("read file %s ", $path); } |

write pre {wr_printf("write file %s ", $path);}) *
close post { wr_printf("file %s closed", $path); }

10

Timing in deceptions

Deceptions involve sequences of activities in time.
In some deceptions, the timing of these activities is
critical.
Since people have difficulty reasoning about time, it
is helpful to formalize complex activities for
computer analysis.
We use "KTL", knowledge temporal logic.

11

Knowledge Logic
Cards Game

A,B A,C

C,B
B,C

C,A B,A

1

11 2

22

Possible Worlds Model

<A,B> |= Knows player2 player1hasCardA
Statement must be true in all
worlds possible for player2
when in <A,B>

False, because in C,B:

player1hasCardA = false

12

KTL: Monitoring – static possible worlds model

player1HasA

player2HasB

player1HasC

player2HasA ...

DBRover
Monitor

Static
model of
possible
worlds

True,
false,
true,
false,
false!

<WORLD NAME="AB">
<PL CODE="player1HasA" TRUTH="1" />
<PL CODE="player1HasB" TRUTH="0" />
<PL CODE="player1HasC" TRUTH="0" />
<PL CODE="player2HasA" TRUTH="0" />
<PL CODE="player2HasB" TRUTH="1" />
<PL CODE="player2HasC" TRUTH="0" />
</WORLD>

13

KTL: Monitoring

14

KTL: Simulation

15

Kripke model for the "Man Who Never Was"
This gives all possible worlds seen by the three agents, the British, the Germans, and

the Spanish. We define the following three Boolean propositions, which together
induce a space of eight possible worlds: H- represents possible worlds where Major
Martin episode is a deception: G- represents possible worlds where the German
coroner is in Spain and is working on the case; M- represents possible worlds where
Major Martin drowned.

Hence, for example, w1 = <H, ¬G, ¬M> is the possible world where the Major Martin
episode is a deception, the German coroner is not in Spain, and Major Martin did not
drown. This is the possible world the British considered they were in, but in fact,
they were unable to distinguish between this world and w2 = <H, G, ¬M> and could
have very well been in world w2.

H,G,M

H,G, ¬M

¬H,G, M

¬H,G, ¬M

H, ¬G,M

H, ¬G, ¬M

¬H, ¬G,M

¬H, ¬G, ¬M

D,S

B,S

D,S

D,S

B,S

B,S

B,S

D,S

S

S

D,S

16

Legal issues in software deception

Deception applied by a government is limited by law
and policy, the former of which can be represented by
mechanical rules.
The policy (latitude with which to apply the law) is
not readily amenable to full automation, but we are
developing decision-support tools for assessing
deception options.
An area in which this is critical is defense against
cyber-terrorism.
We developed THEMIS, a threat evaluation
"metamodel" for information systems that organizes a
legal case against computer network attacks.

