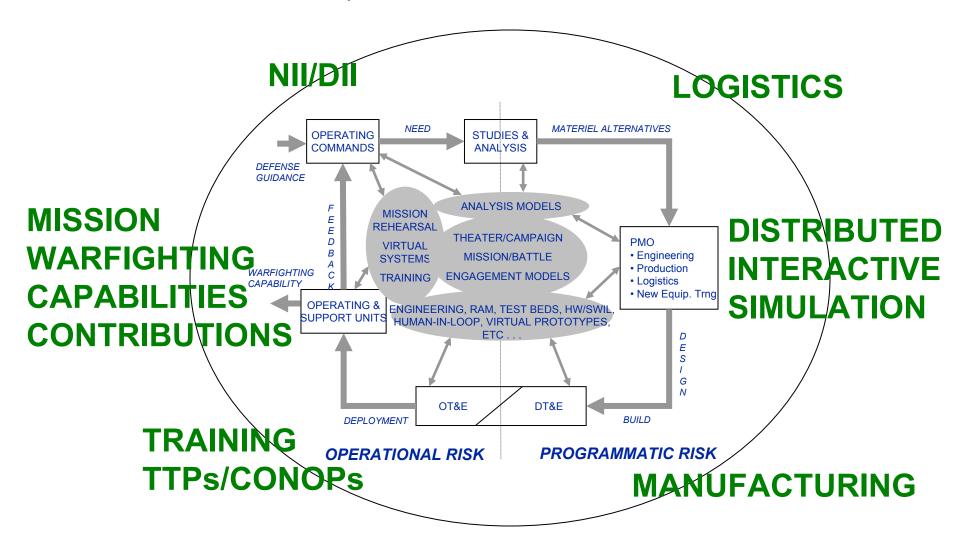


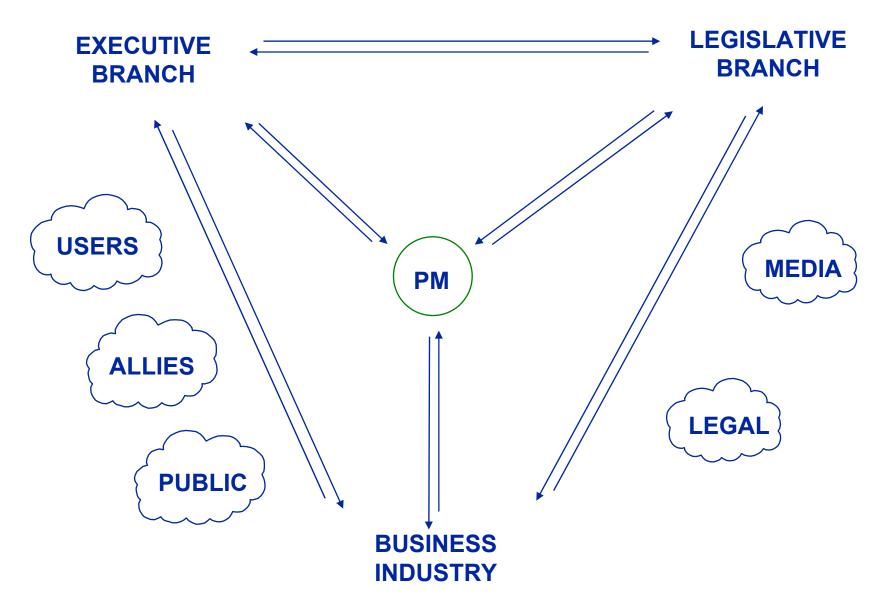
MANAGEMENT AND INTRODUCTION OF TECHNOLOGY
- AN OSD
OFFICE OF TECHNOLOGY TRANSITION PERSPECTIVE
FOR EFFECTS BASED SUPPORT
IN THE NEW SECURITY ENVIRONMENT




## **OUTLINE**

- EVOLUTION TO OPERATIONAL ENGINEERING
- PROGRAM MANAGER, OSD, AND RESOURCES
  - WHERE IS TECHNOLOGY IN RMA
  - OTT & PROGRAMS NAVAL EXAMPLES
    - SUMMARY & RECOMMENDATIONS
      - THE 'SO WHAT' FACTOR

### **TAKE AWAYS**


- WORK ENVIRONMENT REMAINS CHALLENGING, YET TOOLS ARE AVAILABLE
- WITHOUT 'BIG PICTURE' CONTEXT, ANY PATH MIGHT BE 'TOO LONG A PATH' FOR DELIVERY
- DEVELOPMENT AND SUSTAINING TOOLS ARE AVAILABLE
- OTT (DUSD(AS&C)) 'FAMILY OF TOOLS' ADDRESSES
   MULTIPLE STAGES OF LIFE CYCLE TOTAL OWNERSHIP
   COSTS
- EXAMPLES NAVAL AND COMMERCIAL
- HOW THE TOOLS ARE USED HAS FUTURE IMPACT

## SYSTEMS ACQUISITION PROCESS CYCLE



## **EVOLVING TO OPERATIONAL ENGINEERING**

## THE TORTURED / IRON TRIANGLE



### THE OSD ENVIRONMENT

- DOD WILL RELY ON THE PRIVATE SECTOR TO PROVIDE MUCH OF THE LEADERSHIP IN DEVELOPING NEW TECHNOLOGIES. THUS, THE DEPARTMENT HAS EMBARKED ON . . . THIS "QUIET REVOLUTION" [WHICH] WILL TAKE ADVANTAGE OF SCIENCE AND TECHNOLOGY AND CONTINUE TO PROVIDE U.S. FORCES WITH TECHNOLOGY SUPERIORITY. (QDR, p. 41, 30 September 2001) (Emphasis added.)
- AT&L OBJECTIVES
  - ACQUISITION AND LOGISTICS SUPPORT PROCESS
  - DOD AT&L WORKFORCE
  - DEFENSE INDUSTRIAL BASE
  - WEAPON SYSTEMS AND INFRASTRUCTURE RATIONAL
  - HIGH LEVERAGE TECHNOLOGIES FOR FUTURE WARFIGHTING
- DEFENSE (S&T) . . . TO ENSURE THE WARFIGHTERS TODAY AND TOMORROW HAVE SUPERIOR AND AFORDABLE TECHNOLOGY TO SUPPORT THEIR MISSIONS, AND PROVIDE REVOLUTIONARY WAR-WINNING CAPABILITIES. (Aldridge & Etters Congressional testimony 26 June 2001)

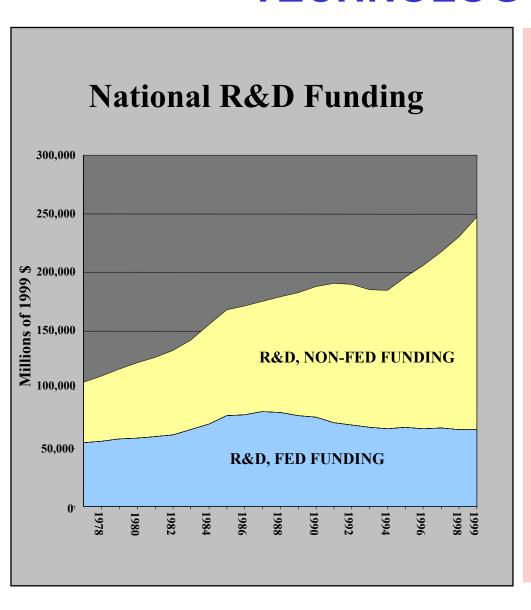
## **EVOLVING OSD POLICY**

**QDR: Sep 2001** 

USD(AT&L) Goals

**DDR&E Priorities** 

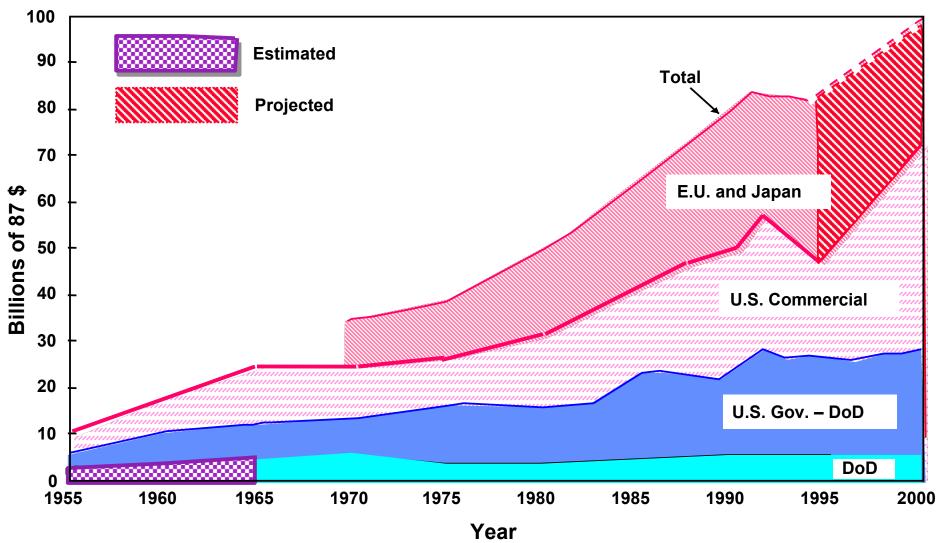
- Move From "Threat-Based" to "Capabilities-Based" Planning
- Key Military-Technical Trends of Adversaries
- Exploit R&D to
  Maintain Decisive
  lead in
  Technologies
- Develop & Exploit
  Technologies
- Reduce Cycle Time


- Achieve credibility & effectiveness in the acquisition & logistics support process
- Revitalize the quality and morale of the AT&L workforce
- Improve the health of the defense industrial base
  - Rationalize the weapon systems and infrastructure with the defense strategy
- Initiate high leverage technologies to create warfighting capabilities, systems, & future strategies

- Enable future DoD capabilities through an integrated technology program
- Accelerate technology transition to the warfighter
- Enhance near term technical support
  - Revitalize the DoD laboratories
  - Develop, attract and retain a quality national security technical workforce

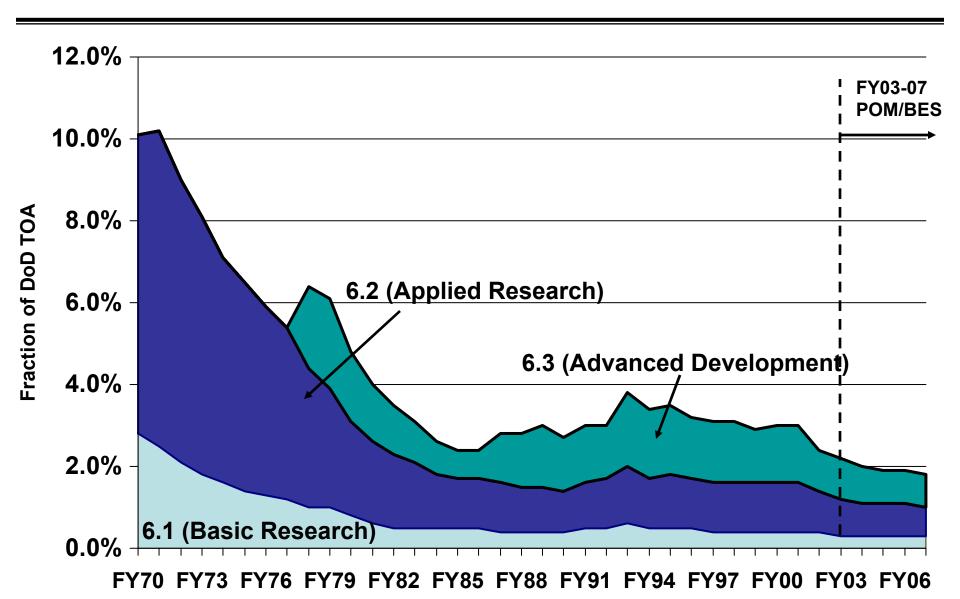


Issues Requiring Attention to Improve the Technology Transition Process

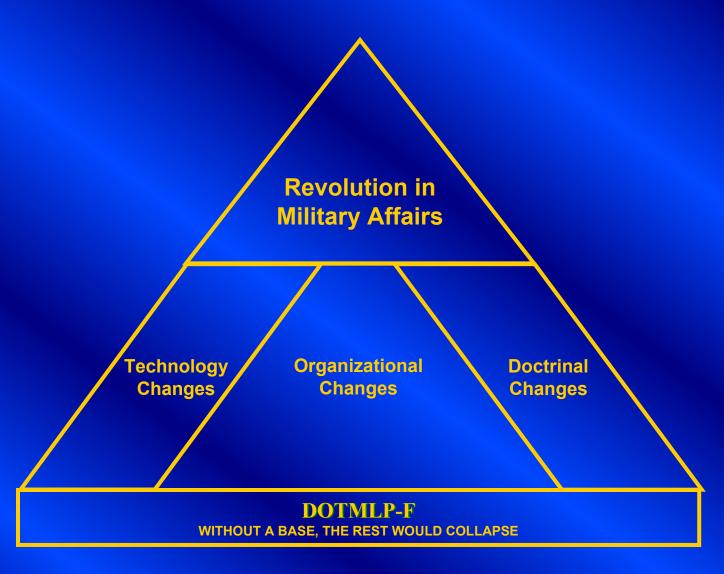

## **TECHNOLOGY TREND**



#### DoD facing:


- A changing threat
- An explosion of technological advances around the globe
- An ever increasing growth in commercial R&D compared to defense spending
- These changes demand new ways for the DoD to develop and acquire technology
  - Greater exploitation of commercial technology investment
  - Ability to more rapidly transition technology investments

# U.S. AND WORLDWIDE RESEARCH BASE SINCE WWII




Source: Report of the Defense Science Board Task Force on the Technology Capabilities of Non-DoD Providers; June 2000; Data provided by the Organization for Economic Cooperation and Development & National Science Foundation

# DOD SCIENCE & TECHNOLOGY FUNDING HISTORY RELATIVE TO DOD TOA



# WHAT MAKES RMA?



## **OTT PROGRAM CHARACTERISTICS**

- Statutorily Based (Title 10)
  - Annual Reports to Congress Activities of the Office of Technology Transition and associated Programs
- DoD 5000-Series Emphasis on Evolutionary Defense Acquisition & Technology Maturation
- Participation on Multiple IPTs or IPT-Like Groups
  - OSD, DoD-wide, Industry, Other Gov't Agencies
- Sponsor Conferences, Workshops, & Symposia

**Enable Technology Transition & Transfer Between DOD and Industry** 

### The Need for Transformation



"The United States will ... transform America's national security institutions to meet the challenges and opportunities of the twenty-first century."

President George W. Bush, September 2002

"The Department currently is pursuing transformational business and planning practices such as adaptive planning, a more <u>entrepreneurial</u>, <u>future-oriented capabilities- based resource</u> <u>allocation process, accelerated acquisition cycles built on spiral development, out-put based management</u>, and a reformed analytic support agenda."

Secretary of Defense Donald Rumsfeld, Transformation Planning Guidance April 2003

## DoD Leadership's Intent For DoD 5000 Revision

"....create an acquisition policy environment that fosters efficiency, flexibility, creativity, and innovation."

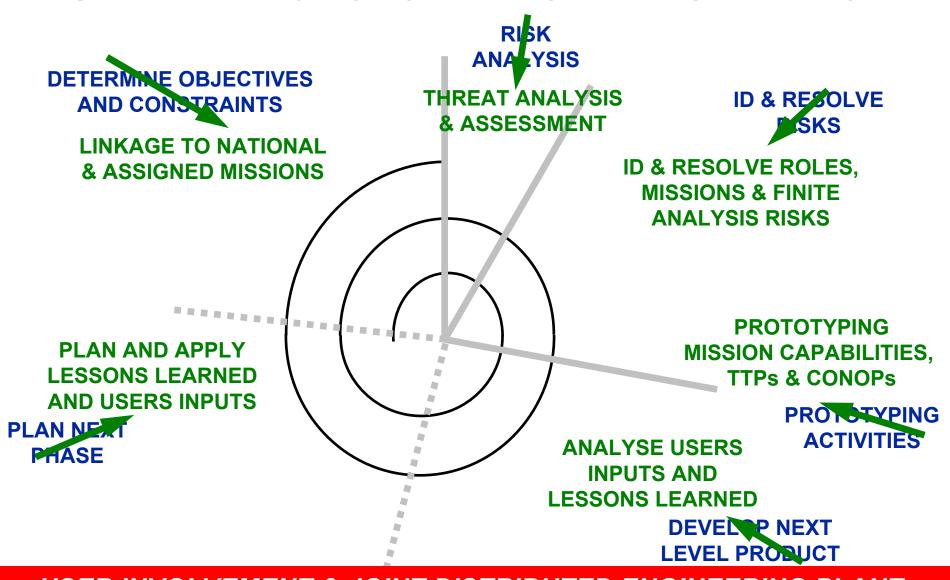
**DEPSECDEF Paul Wolfowitz, 30 Oct 2002** 

## **Revised Policy Objectives**

- Encourage innovation and flexibility
- Permit greater judgment in the employment of acquisition principles
- Focus on outcomes vice process
- Empower PM's to use the system vice being hampered by over-regulation

# DDR&E / DUSD (AS&C) Transition Programs

http://www.dod.mil/ddre/ http://wwwosd.acq.osd.mil/asc/


Transition Across the Product / Process Life Cycle **Pre-Systems** Systems Acquisition (Engineering Development, Sustainment & **Demonstration, LRIP & Production)** Acquisition Maintenance IOC **Production & System Development & Concept & Tech** Support **Development** Demonstration **Deployment** Initial Product/ Product/Process Product/Process Product/Process Improvement & Sustainment **Process Capability** Development Insertion **ACTDs** Joint Warfighting Program (JWP) Technology Transfer Initiative (TTI) Defense Acquisition Challenge Program (DACP) Foreign Comperative Testing (FCT)) Dual Use Science & Technology - DUS&T Independent Research & Development Tech Link **Quick Reaction Fund (QFR)** Manufacturing Technology - ManTech Title III / Defense Production Act Small Business Innovative Research - SBIR

# DDR&E / DUSD (AS&C) Transition Programs

http://www.dod.mil/ddre/ http://wwwosd.acq.osd.mil/asc/

Transition Across the Product / Process Life Cycle **Pre-Systems** Systems Acquisition (Engineering Development, Sustainment & **Demonstration, LRIP & Production)** Acquisition Maintenance IOC **Operations & System Development & Production &** A Technology∠ Concept **Development** Demonstration **Deployment Support** Refinement Initial Product/ Product/Process Product/Process Product/Process **Process Capability Development** Improvement & Sustainment Insertion **ACTDs** Joint Warfighting Program (JWP) Technology Transfer Initiative (TTI) Defense Acquisition Challenge Program (DACP) Foreign Comperative Testing (FCT)) Dual Use Science & Technology - DUS&T Independent Research & Development Tech Link **Quick Reaction Fund (QFR)** Manufacturing Technology - ManTech Title III / Defense Production Act Small Business Innovative Research - SBIR

#### SPIRAL METHOD OF OPERATIONAL ENGINEERING



USER INVOLVEMENT & JOINT DISTRIBUTED ENGINEERING PLANT CAN REDUCE THE FIELDING CYCLE TIME TO FIELD OPERATIONAL WARFIGHTING CAPABILITY

### **TECHNOLOGY TRANSFER**

**Objective:** To ensure full use of the result of the Nation's Federal investment in R&D - Office of Technology Transition established to encourage, coordinate DoD technology transfer.

#### **Program Attributes**

- Mechanisms: CRADA, PLA, EPA, and partnering
- Normal contracting rules do not apply
- Joint development for military and commercial applications

#### **Example: Watertight Hatch Gasket**

- Newly developed, improved, and patented Si rubber gasket with new cross-section.
- Suitable for use in watertight, airtight, and even firezone application closures.
- Adopted by entire Navy Fleet AND USCG
- Impacts: 90% labor savings on install; cost savings ~\$18/linear foot; >1,000,000 ft installed; development cost (with testing) ~\$18,000.
- Increased service life and ship / vessel survivability.



# COMMERICAL OPERATIONS & SUPPORT SAVINGS INIATIVE (COSSI)

#### **Background:**

- Established by FY98 Authorization Act
- Uses Other Transaction Authority
- Endorsed by DSB Study on "Preserving a Healthy & Competitive Defense Industry"
- O&S savings in excess of \$5 billion

#### Purpose:

- Provide funding for the nonrecurring engineering, testing, & qualification needed to insert a commercial technology into a legacy system
- Increase readiness and reduce operations and support costs of legacy systems

Example: Helicopter Integrated Mechanical Diagnostic - Health & Usage Monitoring System



- <u>Issue:</u> Current Diagnostics are Done Manually - Labor Intensive, Inexact, Leading to Unnecessary Removals
  - **Solution:** Adapt Commercial System that Automatically Collects & Analyzes In-Flight Data

## **DUAL USE SCIENCE & TECHNOLOGY (DUS&T)**

**Objective** - Partner with Industry to Jointly Fund the Development of Dual Use Technologies Needed to Maintain DoD's Technological Superiority on the Battlefield & by Industry to Remain Competitive in the Marketplace

#### **Key Tenets:**

- Cost sharing between the Military Services & Industry (Traditional and Non-Traditional)
- Use of "Other Transactions" in lieu of standard contracting to attract commercial firms
- Formation of partnerships with industry to develop dual use technologies

Example: Thermal Spray Nanostructured Coatings For Wear, Corrosion, and Erosion Resistant Applications





To Date: Over 300 Projects Initiated and Close to \$1B Invested and More than 400 companies, universities, and nonprofit organizes participating

## INDEPENDENT RESEARCH & DEVELOPMENT (IR&D)

#### **DoD/Industry Interaction**

#### DoD

Provide information on DoD's R&D activities & plans, mission needs, & operational requirements



Plan, fund, and conduct IR&D

Review IR&D activities and provide feedback to contractors



Provide technical information about IR&D

Review IR&D database to identify IR&D of interest



Provide IR&D project descriptions

# Example: Inertial Measurement Unit

- Project Cost: ~\$10 Million
- Performance demonstrated in > 20 Systems
- Increased sales > 10-fold; Unit price reduced > 2/3s
- HG1700 annual Sales: ~\$100 Million
   & rising



Potential Joint Development Efforts Through Joint Identification of Mutual Interest Areas

## MANUFACTURING TECHNOLOGY (ManTech)

**Objective:** Improve Affordability of DoD Systems by Investing in New & Improved Manufacturing Processes Across The Weapon System Life Cycle

#### **Program Attributes**

- Improve Cycle Time & Process Capabilities
- Demonstrate Key Information Technologies
- Adopt Commercial Practices for Military Applications

#### **Example - Enhanced Manufacturing Processes for Body Armor Materials**

Plate Forming:
Siliconized Silcon Carbide

Plate Forming:
Boron Carbide



Interceptor Body
Armor Jacket

#### Benefits:

- Stops Rifle & Machine Gun Fire
- 55% Lighter, 60% Lower
   Cost Compared to Armor
   Plates
- Cost Avoidance: \$193M

#### • Implementation:

- Over 50K Plates Delivered & Fielded; 140K Plates on Contract
- Supports "Operation Enduring Freedom"

### TITLE III / DEFENSE PRODUCTION ACT

Purpose: Create, expand, modernize, and maintain domestic production capacity for essential items and industrial resources needed for national defense

#### Incentives to Industry:

- DoD shares cost of capital investments Material qualification
- Process improvements

- Purchase commitments

Example – Power Semiconductor Switching Devices



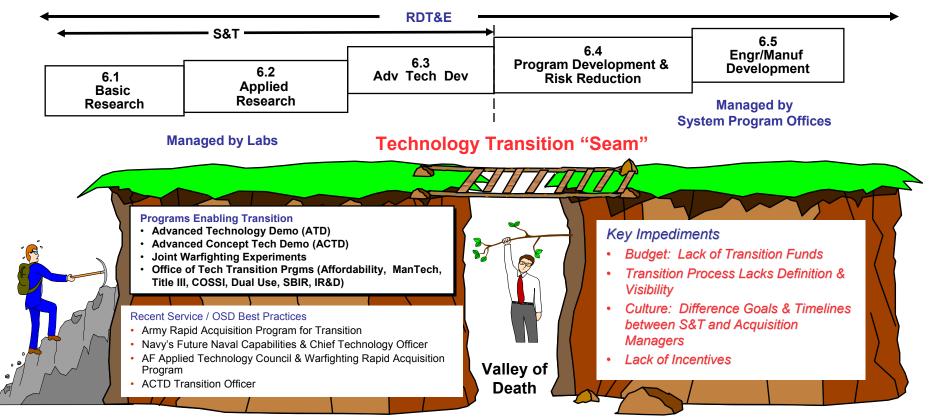
## **SMALL BUSINESS INNOVATION RESEARCH (SBIR)**

- Stimulates Technological Innovation
- Increases Small Business Participation in Federally Funded R&D
- Encourages Commercialization of Technology

#### FY01 Funding

- Federal Agencies: \$1.1B
- DoD: >\$500M
- DUSD(S&T): \$26M
  - Cognitive Readiness
  - Advanced Distributed Learning
  - Smart Sensor Web
  - Biomedical Programs

#### **Program Phases**


- Phase I: Six months/\$100,000 (feasibility study)
- Phase II: Two years/\$750,000 (prototype development)
- Phase III: Commercialize for military & private sector markets
- Example: Acoustic Mouthpiece Using Terfenol-D
  - Low Voltage Transducer Embedded Inside a SCUBA Diver's Mouthpiece
  - Allows Diver to Hear Through Dental Sound Conduction
  - Capability Will Be Available for Special Forces Divers Without Full Face Masks



# AFFORDABILITY & TRANSITION - THE CHALLENGE -

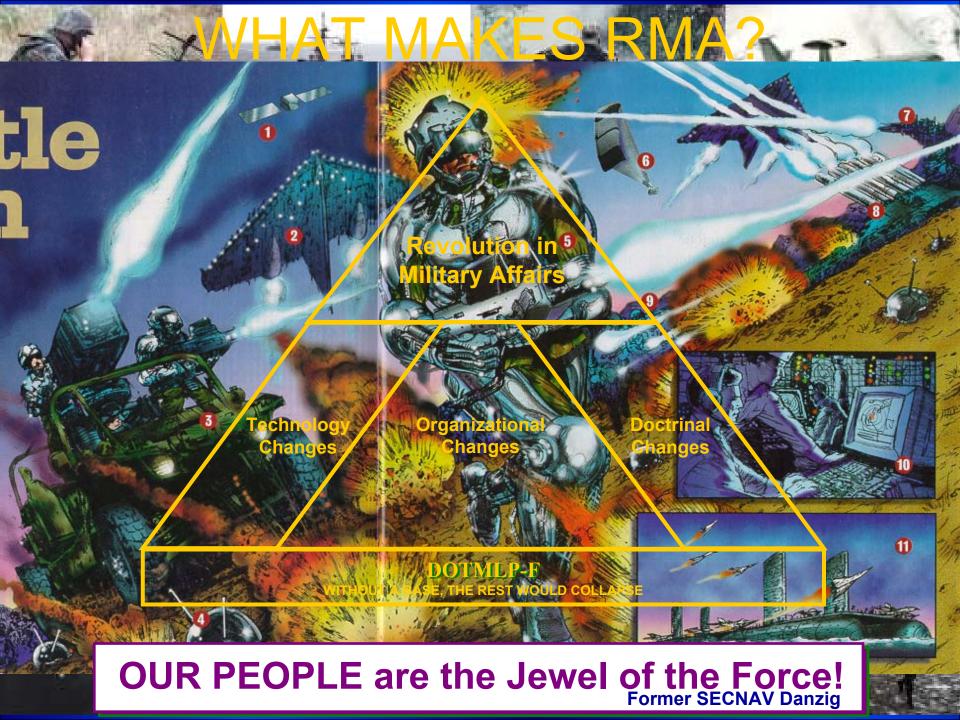
#### **Acquisition Community - "Perceptions" of the S&T Community**

- S&T's job is complete at the tech development stage
- Implementation of the technology is the customer's (problem) responsibility
- Development cycle for S&T is too long
- Focus only on the technology and not on the business rationale for implementation



Source: April 2000 PEO SYSCOM Workshop

## RECOMMENDATIONS


• Establish a Skunkworks Champion and use some Skunkworks within the organization work force.

Have a Director of Revolution for shifting organization personnel.

 Make submissions of proposals for technology transition programs a performance factor.

 Have Warfighters and Combatant Commanders evaluate Program Managers and Program Manager Organization.



