

Knowledge Management for Command and Control

Dr. Marion G. Ceruti,
Dwight R. Wilcox and Brenda J. Powers
Space and Naval Warfare Systems Center,
San Diego, CA

Command and Control Research and Technology Symposium

15-17 June 2004, Coronado, CA

Presentation Outline

- Introduction Trends in knowledge management (KM)
- Clustering and partitioning technologies and tools
- Knowledge-authoring technologies
- KM by intelligent agents
- Intelligent agents and KM in C2 to support FORCEnet
- Future research and transition applications

Introduction to Knowledge Management

- Knowledge An evolving mix of framed experience, values, contextual information & expert insight that provides a framework for evaluating & incorporating new ideas & information.
- Knowledge management (KM) The process of creating value through organizational integration of the knowledge in the organization.
- KM includes expert systems, intelligent agents, collaboration, mixed-initiative paradigms and machine learning.
- KM wave of the future for C4ISR to enhance the SIP/COP.

Current Trends in KM - 1

- Exploit and reuse existing knowledge, capture new knowledge as much as possible.
- Mixed-initiative paradigm
- Expert systems become more user friendly to SMEs who are not Kes.
- Growing need for management support and awareness of new trends.

Current Trends in KM - 2

- Loose vs. tight system control/coupling.
- Managers need to design a KM policy.
- Growing need for management support and awareness of new trends.
- Loose coupling Centralized database administrator does not control component administrators.
- Tight coupling Centralized database administrator controls components.

Monitoring Success in KM

- Importance of metrics how to define success? May have conflicting goals.
- First define success then select metrics.
- Consider user requirements & preferences, ease of system usage.
- Ex: number of new axioms entered or validated per unit time, rate of error detection, rate of knowledge reuse.
- Variables that influence success external political, economic & internal technical factors

Knowledge-Authoring Technologies

DARPA RKF program products:

- SHAKEN & KRAKEN knowledge authoring systems
- nuSketch Allows user to draw objects on screen and annotate them in KB.
- Multi ViewPoint Clustering Analysis tool
- Case Mapper analogy server
- Concept maps users can input ideas and their relationships

SHAKEN & KRAKEN

- Both knowledge-authoring systems have integrated novel KB-access technologies – nuSketch, concept maps, etc.
- KB analysis & structure improvement using MVP-CA clustering techniques.
- Automation of logical explanation of query results.
- Distributed KB connectivity for group collaboration. Ex: command center aps

nuSketch Qualitative Reasoning Tool

- Multimodal interface sketching input of spatial objects. Users input K about their sketches & system deduces other K from it
- Designed for military personnel to learn.
- Front-end input tools for both SHAKEN & KRAKEN.
- Useful for spatial representation of COEs & construction of battle-space hypotheses via mixed visual & conceptual analogies.

Analogical Processing

- Case Mapper uses qualitative reasoning novel interface for K entry via analogy.
- Architecture enables tight integration of analogical reasoning & multiple kinds of visual spatial reasoning.
- Federated reasoning system common to both Case Mapper and nuSketch

Clustering and Partitioning in Knowledge Bases

- Knowledge can be grouped into models, domains, subject areas or microtheories.
- Sometimes, an axiom that is true in one domain is false in another.
- Domains need internal self-consistency.
- Microtheory examples: Zoos, children's stories
- Clustering promotes error detection, resolution of semantic heterogeneity, and collaboration among SMEs and intelligent agents.

Multi ViewPoint Clustering Analysis Tool - 1

- Groups rules of a KB that share significant common properties from multiple perspectives.
- Facilitates structuring, validation, error correction & inconsistency resolution in the KB.
- MVP-CA a semantic mediation tool that enables KEs, SMEs to learn terms & concepts in the KB; exploit, reuse & integrate knowledge.
- Contributes to 3 major activities in the KB: development, maintenance & interoperation

Multi ViewPoint

Clustering Analysis Tool - 2

- Development Highlights overlapping contexts across clusters of axiom & concept placement in the hierarchy.
- Maintenance Helps expose syntactic and semantic, typographical errors, redundancies and inconsistencies across multi-authored axioms.
- Interoperation Discovery of similarities across different ontologies. Ex: lexically and semantically, close and distant terms.

The DARPA Agent Integration Facility (DAIF)

- Purpose to collect DARPA-funded technology onto one system to test, validate, utilize and transfer the technology to other programs.
- Examples from DARPA's Rapid Knowledge Formation program in the are: SHAKEN, KRAKEN, nuSketch, Java Theorem Prover, MVP-CA tool, Concept Maps, Case Mapper

KM by Intelligent Agents

- No standard definition of intelligent agent. "a persistent computation that can perceive its environment, reason & act alone & with other agents." Singh '98
- Intelligent agents can do the following tasks: monitor battle space, summarize observations, process alerts, collaborate.
- Process data locally reduce network bandwidth requirements.

Intelligent Agents in Network-Centric C2 Environments

- Increase network dependability.
- Improve joint-task-force capabilities monitor events continuously & generate alerts
- Provide information to staff planners
 - Analysis of threats and terrain
 - Scheduling and tracking of assets
 - Planning of logistics, fires coordination, communications, and force protection

Intelligent Agents for KM in C2 for FORCEnet

- FORCEnet the operational construct and architectural framwork for Naval warfare in the information age
- FORCEnet integrates all assets (sensors, platforms...) to provide a common, integrated operating picture & interoperable forces.
- Agents can support human-computer collaboration in dynamic, uncertain, non-deterministic C2 environments.

Sensible Agents Program 1

- Architecture was designed specifically for use in complex decision-making environments.
- Sensible agents reside in multi-agent systems.
- Agents react and respond to changing and unpredictable events.
- Agents use their autonomy & independence to determine how goals should be pursued. Ex: Battlefield situation changes, goals change.
- Agents can modify their level of autonomy a very important and essential property.

Sensible Agents Program 2

Implementation examples of some past and future application domains:

- Joint Force Air Component Commander.
- Naval C2 Call for Fire.
- Naval Radar Frequency Management Agents managed radar frequencies autonomously without human intervention during an experiment to minimize interference across multiple ships.

Future Research and Transition Applications

- Integrate the knowledge-entry capability via analogy into SHAKEN & KRAKEN for C2 and INTEL KB applications.
- Case Mapper needs enhancements of natural language, and concept-map interfaces for statement editing and predicate specification.
- Explore more ways that analogy could be used in war game simulation and training.