
DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 1 of 20

2004 Command and Control Research and Technology Symposium

The Power of Information Age Concepts and Technologies

“The DoD AF Views As Requirements Vehicles
in an MDA Systems Development Process”

Authors: Michael P. Bienvenu (The MITRE Corp.), Keith A. Godwin (The MITRE

Corp.)
Working with the Joint SIAP Systems Engineering Office (JSSEO)

POC: Dr. Mike Bienvenu
The MITRE Corp

7515 Colshire Dr., MS H305
McLean, VA 22102
voice: 703-883-6253
fax: 703-883-1379

bienvenu@mitre.org

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 2 of 20

2004 Command and Control Research and Technology Symposium

The Power of Information Age Concepts and Technologies

“The DoD AF Views As Requirements Vehicles

in an MDA Systems Development Process”
Authors: Michael P. Bienvenu (The MITRE Corp.), Keith A. Godwin (The MITRE Corp.)

Joint SIAP Systems Engineering Office (JSSEO)

POC: Dr. Mike Bienvenu
The MITRE Corp

7515 Colshire Dr., MS H305
McLean, VA 22102
voice: 703-883-6253
fax: 703-883-1379

bienvenu@mitre.org

Abstract:
The C4ISR Architecture Framework was developed in the 1990’s and has been revised as the
DoD Architecture Framework, Ver. 1.0 [DoDAF]. Their use has become required on many
DoD projects, and similar frameworks have been developed for use in commercial and other
government agencies. However, the integration of these architecture products into the systems
engineering process has been debatable.

We present a (hopefully) new and unique approach to this problem, one that uses the
architecture views as “vehicles” for capturing and providing context for the operational and
system requirements of the system under development. In addition, through the use of an
integrated suite of COTS tools, we demonstrate that requirements at the software level can be
imported into the software development environment and thereby attached to software design
elements.

The architecture views are not developed as stand-alone products, but are developed on demand
from the databases maintained in the COTS toolsuite.

Requirements are developed and attached to the architecture views at any of a number of
different levels of abstraction: the operational level, the system level, or (a special case for our
project), the distributed system level (a cooperating ensemble of system instantiations).
Architecture views serve to place requirements in context.
Traceability between levels of requirements is done directly between requirements at those
levels. Rather than the current C4ISR AF/DoDAF SV-5 mapping product, we maintain a much
richer and rigorous correlation between requirements at different levels of the architecture.

This overall process has several significant advantages: Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 3 of 20

(1) There exists a single, integrated database of both requirements and architecture view
elements, and there exists traceable ties between the two.

(2) The architecture views are relevant to the systems engineering process, and become de
facto living documents with the evolutionary system design.

(3) The process relies on only minimal modification of existing COTS products, so that its
utility across the community is enhanced.

Examples of the requirements and their accompanying architectural views are presented. The
traceability from operational requirements to software requirements will be demonstrated.

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 4 of 20

1. Introduction

Section 1 of the paper discusses the overall purpose (Sect. 1.1), the scope (Sect. 1.2), the
background (Sect. 1.3), and the intended audience (Sect. 1.4). The overall problem statement is
presented in Section 2, which addresses the role of both architectures and requirements
traceability within our particular project. The Technical Approach is presented in Section 3,
which presents both our particular design objectives, the underlying theory, and the tool
adaptations which were performed to accomplish this work. Future work is discussed in
Section 4, and the paper closes with Conclusions in Section 5.

1.1. Purpose of the Paper

As part of the systems engineering task force for the Single Integrated Air Picture (SIAP)
effort, we realized that the technical and managerial aspects of the program would be best
served by re-examining how requirements, architecture, and design were interrelated. This
motivation led us to re-examine and broaden our considerations of how the architecture
representation would be related to the requirements traceability issue and the software
development iterations. This paper is a report on the initial version of the toolsuite and process
which was developed as a result.

This paper presents a framework and methodology for linking the architecture views (based on
the views from the DoD Architecture Framework v1.0 [DODAF]) and requirements within a
toolsuite. This methodology is currently being used to support the Joint DoD software
development project for an Integrated Architecture Behavior Model (IABM). Within this
methodology, the DoD AF is used as a systems engineering tool, bridging the operational-to-
system-to-software architecture gaps which are much of the source of interoperability
difficulties today.

Specifically, this paper presents an approach for linking requirements to discrete elements
within architecture views created according to the guidelines of the DoD AF. Both the
architecture views and the requirements model the desired system – but from different
perspectives. If either model is incorrect or incomplete, there will be unacceptable program
risk and a future cost to fix the errors. The traceability approach described in this paper helps
to mitigate the risk of these errors by creating a mechanism to have both the architecture views
and the requirements correlate to define the system.

The motivation for this approach represents somewhat of a difference from what is commonly
believed with regard to the DoD AF architectures – namely, that these architecture descriptions
intentionally are not supposed to be tied to the system designs or software development
portions of a program. Too often DoD AF views are created merely to satisfy administrative
requirements and are not perceived as a critical part of the system engineering effort. They
typically do not provide genuine insight into system design or required capabilities. This issue
is discussed further in the Conclusions section of this paper.

1.2. Scope

The primary focus of the paper is on techniques for attaching requirements to AF view
elements. We do not address the overall process for requirements validation or analysis. While

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 5 of 20

this is obviously a key and crucial part of any system/software development effort,
requirements analysis and validation are not addressed here. Basically, we assume for the
purposes of this paper that the requirements are either “draft” (not yet validated or approved) or
“valid”, i.e., they have been approved by project management. The point here is not on the
validation process – it is acknowledged there must be one – but on the impact of that process on
the architecture/requirements traceability toolsuite – the toolsuite will be required to track these
differences, and the progress of individual requirements through the overall process.

The paper also describes a proof-of-principle implementation, using COTS products with their
inherent flexibility, to support the architecture and requirements traceability. The process
presented here has been implemented within the JSSEO using Popkin’s System Architect
[Popkin SA] and Telelogic’s DOORS [DOORS Ref]. We refer to these two tools operating
together (a file-exchange based interaction) as “the toolsuite”. There is also a bi-directional file
exchange linkage of requirements into the JSSEO software development environment, the
Kennedy-Carter iUML tool [KC iUML].

These tools can report on requirements status, produce traceability trees, and can generate
documents in a variety of formats (html, word, etc). The goal is to provide integrated
management for the architecture (what we’re building) and the requirements (how good).

This paper does not address requirements validation or analysis. The requirements are assumed
to be correct and have supporting rationale independent of their relationship with the
architecture views. Also, while this paper describes an approach for recording traceability of
requirements with the architecture, it does not discuss the analysis necessary to identify this
traceability. While the methodology does not prove that a specific requirement is appropriate
or good, it does support identifying the status of each requirement in the overall “approval”
process.

A much more detailed discussion of the scope of the JSSEO Integrated Architecture can be
found in the JSSEO IA v2.0, AV-1 Overview and Summary Information [JSSEO IA].

1.3. Background

The SIAP development effort puts tremendous stress on the relationship between requirements
and architecture. The program has adopted Agile software development and the Object
Management Group’s (OMG) Model Driven Architecture (MDA) [OMG MDA] approach to
constructing an Integrated Architecture Behavior Model (IABM) in executable UML. One of
the consequences of this approach is that there is concurrent development of requirements,
architecture framework views, and the deliverable system. The overall development schedule
is very ambitious, calling for successive IABM “Configurations” to be produced at 2 year
intervals.

The following definition of SIAP is found in the TAMD CRD: “The SIAP (the air track
portion of the Common Tactical Picture (CTP) consists of common, continual, and
unambiguous tracks of airborne objects of interest in the surveillance area. SIAP is derived
from real time and near real time data, and consists of correlated air object tracks and
associated information (such as Combat Identification (CID) information). The SIAP uses

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 6 of 20

fused near real time and real time data, scaleable and filterable to support situation awareness,
battle management, and target engagement”1.

1.3.1. Requirement Sources

There is no single source for SIAP operational requirements. As noted in the JSSEO Integrated
Architecture (IA) AV-1, there are a number of CRDs (Capstone Requirements Documents)
which bear on the objectives of the SIAP, but there has been no prior work to actually design
the SIAP as it is now conceived. All requirements are not known at beginning of development.
Even the desired “capabilities” are somewhat vague and subject to modification. Also, there is
no single system that the IABM is replacing. The envisioned mode of “deployment” will be to
integrate the IABM into existing host systems [JSSEO Config05]. Since it will be distributed
across many systems, there is no single system architecture that will implement the IABM.
Once requirements are elucidated and validated, they are addressed in the architecture and in
the software design,

1.3.2. System Development

The managerial structure of JSSEO – the task force itself – presents a variety of interesting
differences from “traditional” DoD acquisition programs and from commercial software
development projects as well. JSSEO is composed of government, contractor, FFRDC, and
university personnel, all operating together in a co-located facility, working all phases of the
IABM development. There are no prime contractors or integrating contractors as the terms are
normally used. JSSEO itself is responsible for the requirements refinement and derivations, the
architecture development, and the IABM development. Changes in requirements do not require
changes in contract costs.

However, JSSEO is also responsible for interacting with the eventual host systems to determine
the specific steps necessary for integration. Thus, JSSEO acts as its own prime contractor, and
cooperates with the host system program offices to achieve the goals of the integration
contractors.

SIAP will be developed in a sequence of iterative development, and multiple planned
deployments of increasing capability. The major deployments are known as “Configurations”,
and are scheduled at 2 year intervals. Within the development timeline of a Configuration, the
developers work within a sequence of Timeboxes, each of approximately 8 weeks. At any
given moment, two Timeboxes are running concurrently, in a staggered fashion. Requirements
allocated to an overall Configuration are divided and allocated to Timeboxes for sequential
implementation.

1.3.3. System Characteristics

The technical Nature of the SIAP software product does drive the overall development process
and the tools required to support that process. Basically, the SIAP software product is a
Platform Independent Model (as per MDA) intended to be integrated (as the IABM
Implementation) within multiple, heterogeneous existing and in-development combat systems.

1 Theater Air and Missile Defense (TAMD) Capstone Requirements Document (CRD), March 2001.

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 7 of 20

The software element is referred to as the Integrated Architecture Behavior Model, or, more
accurately, the IABM Implementation. The objective is not to simply develop the IABM, but
to deploy a distributed system composed of a large number of these IABM Implementations
that has desirable behavior, interfaces and operational/system requirements, and that should
appear, in certain aspects, as transparent to the multiple users.

Note that this system-level objective, a distributed system – to be more accurate, a distributed
system composed of replicated components embedded in heterogeneous hosts –requires a
variety of “system views” in a way that do not map cleanly to the standard DoD AF System
Views. Requirements and architecture views can be specified for the operational, distributed
system, and system (software application) views. This requires two levels of system views for
this project – one for the distributed system, and how it interacts with externals, and between
nodes of itself, and another for the software, and its immediate interfaces and required
behavior. The other combat systems, into which a version of the software element will be
integrated, are referred to as host systems.

System views can extend to lower levels of detail, within the xUML development environment,
showing package (domain) and class structure, however, this is not within scope of this paper.

1.4. Intended Audience

This paper is written to assist systems engineers involved in programs where both the DoD AF
and requirements traceability are important. It may also be read by technical managers of these
programs, who may see applicability of the capabilities described here.

2. Problem Statement

The Operational, System, and Technical Views contained in the DoD Architecture Framework
seek to accurately reflect the relationships between the various elements of the system and
between the system and other systems. However, as currently defined, the architecture views
do not directly identify the specific system requirements addressed by features within the
architecture. Since architectures are an artifact of design, there are requirements which drive
the selection of particular architecture choices. In order for the architecture to correctly model
the desired system, all requirements must be addressed. Without traceability into the
architecture, there is no practical method for determining if the architecture completely
addresses system requirements.

Within the context of the JSSEO IABM development there are several aspects to the problem
that bear upon the viability and feasibility of the approach (i.e., requirements that the process
must satisfy in order to support the project):

• A product (the IABM) designed to be implemented in numerous host systems, with
different peripherals, yet with the goal of consistent behavior across the eventual
distributed system

• Iterative nature of the development, using OMG’s MDA. Within JSSEO this results in
a monthly cycle of product development – monthly ‘timeboxes’ Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 8 of 20

• Unique nature of the IABM “system” means that operational and other high level
system requirements have never been developed within DoD for a similar system. This
requires that we develop these requirements concurrently with the initial configurations
of the IABM.

• The IABM must be easily sharable with other organizations. There are essentially no
issues of proprietary software, since this work is being performed entirely with JSSEO
oversight by teams composed of government, industry, and academic personnel.

3. Technical Approach

The discussion of our technical approach is divided into the following subtopics: the objectives
of our technical approach (Sect. 3.1), a summary of architecture development (Sect. 3.2), the
approach selected for requirements management (Sect. 3.3), the adaptation of selected
engineering tools (Sect. 3.4), the technique for linking requirements to the architecture (Sect
3.5), and the use of the tools to support analysis and produce reports.

3.1. Objectives of the Process

One of our primary cornerstone concepts is that the architecture views must serve as “vehicles”
for the requirements. This is one of the key foundation concepts for this work: There should
be no element of the architecture for which there is not a requirement (either originating
or derived), and all requirements should be attachable to some element in some view of
the architecture. To put it another way, the views present a context, sometimes graphical,
sometimes not, for the various requirements of the system. Also, sometimes the graphical
elements themselves should be interpreted as requirements, for instance, the simple existence of
a data entity or class on the SV-11 Logical Data Model should be interpreted as a requirement
that these classes must exist in the implemented system.

It is important to understand the programmatic and technical requirements that the process set
out to satisfy:

• “One Fact – One Place” The project is an ambitious one, in terms of both scope and
schedule. This requires an efficient engineering process, which includes the
architecture, the requirements, and the documentation. Thus, efforts to maintain
redundant documentation could not be afforded.

• DoD AF views would be required by program management. They would also be
products expected by the program offices of the host systems.

• The SIAP system was expected to come up with operational alternatives that were
modifications of current practices – thus, operational issues were involved, not just
software interfaces. Yet, the linkage between operational procedures and the software
requirements could be clearly seen – some procedures required alternate messages and
software processes, so these aspects of design were not independent. Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 9 of 20

Thus, we set out to design a toolsuite and accompanying process that will handle the needs and
challenges of this rather unique project:

• Requirements in development, refinement, and flux at essentially every level of design

• Need to track Timebox-based implementation of requirements at a consistent timescale
(i.e., monthly)

• Link and monitor the volatile requirements from top to bottom, without excessive
manual labor in database maintenance when changes occur

Our basic goal was to construct a toolsuite in which we would construct the architecture with
requirements traceability, which would be able to generate a spectrum of documentation
directly from the toolsuite, maximizing the power of current information technologies. The
intended documentation include not only the “standard” architecture views, but design
documents, requirements traceability analyses and reports, and requirements implementation
reports.

3.2. Architecture Development

The DODAF structure for architecture views helps to maintain the integrity of the system’s
design. They serve as the framework for identifying system relationships and functions. As a
result, they inherently address system requirements. However, given their graphical nature, it
is not easy to discern which requirements are addressed by each element of the architecture.

The DoDAF identifies six steps in the successful construction of an architecture – in a sense,
we are constructing an architecture here – an infrastructure and process that will be used to
capture the SIAP operational and system architecture views and the associated requirements.
So the six steps are also valid for this process.

To answer the 6 steps outlined in the DODAF:

“Step 1: Determine Intended Use of Architecture”:
The architecture will be used for the following purposes:

• Capture and relate of the operational and system requirements to the OVs and SVs.
(i.e., link requirements to diagram elements, and establish traceability between
requirements)

• Operational, distributed system, and top level software architecture and requirements
will be represented.

Architecture repository (diagrams, requirements) will be used to produce System Specification-
like documents, as well as the products fulfilling the same purposes as the DoD AF views.

The toolsuite must also respond rapidly to the iterative cycles of the software development
process (the monthly timeboxes). Implementation of requirements in a specified timebox may
or may not be successful, can be deferred to later timeboxes, or could be completed via several
timeboxes (not necessarily sequential).

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 10 of 20

“Step 2: Determine Architecture Scope”:

• Subject Area – is the SIAP embedded computer software program, and the operational
activities of the host systems involved in the aerospace picture

• Timeframe – spans near-term (2005), through 2010, out to 2020.

• Intended Users and Uses – include both the internal SIAP Systems Engineering Task
Force (which includes the developers of the IA Behavioral Model), as well as external
interested parties, including JTAMDO, JROC, and the host systems’ program offices.

• Dimensionality – The architecture shall encompass the operational level to the software
system specification level. This is acknowledged to be an usually wide dimensionality,
however, we felt it was required by the nature of the SIAP program.

“Step 3: Determine Data Required to Support Architecture Development”:
Interpreting this to mean the data required as inputs to the architecture development process,
then we begin with the relevant documents that bear on the SIAP development process,
including:

• Numerous Capstone Requirements Documents

• Existing host system ORDs, system requirements documents, and specifications

• Existing and planned standards that affect either the existing systems, near-term
systems, or the SIAP product itself.

However, this step points out a difference between what may be an underlying assumption of
the DoD AF and our process – the DoD AF seems to assume that the design of the system
under consideration has already been accomplished, and that this design material is then used to
develop the architecture views. However, our process is based on a different assumption – the
architecture views ARE the design and the requirements in an integrated repository.

“Step 4: Collect, Organize, Correlate, and Store Architecture Data”:

Again, the naming of this step indicates a difference in underlying development assumptions.
Our architecture views, being that they are the operational and high level design of our system,
are in flux, and continually under development. Many of the activities assumed here occur as
part of the continual design process within our system engineering task force. The architecture
views and the requirements are all contained in an integrated toolsuite repository by the JSSEO
Engineering Architecture Branch.

“Step 5: Conduct Analyses to Support Architecture Objectives”:
Analyses are conducted within JSSEO at a number of levels, to support design trade-offs,
sizing analyses (communications bandwidth, dynamic memory, etc.). These are conducted
essentially continually throughout the iterative development cycles. However, as stated earlier,
these analyses are outside the scope of this paper.

“Step 6: Document Results in Accordance with the Architecture Framework”:

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 11 of 20

Again, a difference between the assumed DoD AF procedures and the process within JSSEO.
Our integrated toolsuite is designed to produce a varieties of reports based on user needs.
Separate efforts to maintain the documentation are not conducted, rather, documentation is
produced from the toolsuite when required. Maintenance of the architecture/requirements
repository is in fact the same as maintenance of the documentation.

3.3. Requirements Management

Operational requirements describe how the system will satisfy users needs. These requirements
are the justification for all subsequent requirements. System requirements specify the behavior
of the system in context with other systems. Subsystem/Software requirements describe the
characteristics of subsystems and processes that work together to satisfy system requirements.
The requirements traceability process must achieve traceability between different levels of
views: both from the operational to the system and also from the system to the subsystem. A
requirement that does not trace upward indicates development of an unnecessary capability. A
requirement that does not trace downward highlights an incomplete solution.

We employ a comprehensive, yet manageable requirements tracking system. Instead of
tracking blocks of requirements in a (version controlled) specification, each requirement is
individually managed. This aids in supporting the rapid development cycle of the JSSEO
timeboxes. The requirements database supports more than requirements traceability. It is the
source of data for monitoring progress of systems development from a requirements point of
view. Requirements traceability is only concerned with the requirement statement. Additional
attributes of each requirement are characterized to facilitate traceability to other requirements
and traceability into architecture views. The criteria and rationale that support the requirement
are managed in other documentation.

Although DOORS has internal requirements linkage features, there is a need to be able to trace
requirements when using other tools (such as SA and iUML). This is accomplished by
assigning a unique identifier to each requirement. To simplify the discrimination of
requirements at the various levels (operational, system, domain) three identifier prefixes are
used.

Figure 1: Detailed Attributes of a Requirement.

The detailed attributes of a requirement are
illustrated in Figure 1. Several of these deserve
additional discussion.

TRL_ID: the unique identifier assigned
to the requirement. This is used
when managing traceability
across the various tools. In our
management system three
prefixes are used: ORL for operational, SRL for system, and TRL for the
technical/domain requirements.

Deleted: 20

Requirement
TRL_ID : Integer
IABM Technical Requirement : String
TB Deferred From : Integer
TB Assigned To : Integer
Part icipation : Object
Requirement ID : String
Domain : String
Implementation Status : String
Requirement Status : String
Notes : String
Test Status : String

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 12 of 20

TB Deferred From: The timebox in which this requirement was initially planned to be
implemented, but it was not completed. (Note: a timebox development cycle is
currently four weeks)

TB Assigned To: The next timebox that will be used to implement capability against
the requirement. May be the current timebox or a future one.

Participation: This is a list of the timeboxes in which work was done to implement this
requirement.

Domain: The overall behavior model is subdivided internally into “domains”, which
are similar in concept to UML packages or software modules. The assignment
of the requirement to the overall domain is recorded here. Domains directly
correlate with domains in the KC- iUML tool.

Test Status: This attribute records the most recent test status of the requirement. This
feature has not yet been fully exercised in the infrastructure.

+sourceRequirement

Requirement

Archived
Requirement
geneology0..1

1

+ArchiveParent

0..1

1 +ArchiveChild

Requirement
Linkage

Current
Requirement
revision num10..1

+child+parent

0..1

1..n

1..n

1..n

1..n

1..n

1..n

+linkedRqmnt 1..n

1..n

1

Figure 2. UML Representation of the internal metastructure of requirements.

Figure 2 presents a UML class model illustrating the relations between requirements and
requirements linkages in our process. Messages that should be read from Figure 2:

• Requirements are of two kinds: Archived requirements and Current Requirements.

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 13 of 20

• Only Current Requirements are “linked” to each other, in the sense of requirements
traceability. However, archived links are not removed from the database. They are
made dormant once the requirement is no longer valid. There is no need to manually
remove links for an inactive requirement.

• When requirements are superseded or cancelled, they become Archived Requirements.
The “genealogy” of this history is maintained between the Current Requirement and its
most recent ancestor Archived Requirement, and between all prior Archived
Requirements.

Pending Under
Review

Approved
(Current)

Cancelled Superceded

creat ion

Requirement
found

unnecessary
New version of

requirement created

Figure 3: Notional Statechart for a requirement’s lifecycle within the traceability system.

In Figure 3, a Statechart presenting the notional lifecycle of a requirement within the
traceability infrastructure is presented. Note that Current Requirements (as referenced in
Figure 2) must be in the “Approved (Current)” state. Requirements which have been archived
(as per Figure 2) will be in either the “Cancelled” or “Superseded” states of Figure 3. It is
intentional that there is no “end state” symbol on the diagram – a requirement, once created
within the overall traceability system, is never destroyed. They can be cancelled or superseded,
but they never leave the overall system.

Note that the assignment to an architecture diagram element is not a data field. This is due to
the use of SA to graphically associate diagram elements to requirements. There is not a manual
entry to make the association. It the architecture is modified, the requirement association is
modified at the same time. This greatly reduces the risk of traceability errors in the mapping of
requirements into the architecture views.

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 14 of 20

3.4. Tool Adaptation

Two readily available COTS tools were selected to support the methodology – Telelogic’s
DOORS for managing requirements and Popkin Software’s System Architect (SA) for building
the architecture framework views. In addition to having many standard features, both tools
were easily modified to support our methodology.

DOORS is the main management tool for all our requirements. It serves as the repository for
requirements at the operational, system, and domain levels. DOORS is used to maintain the
formal traceability between requirements (operational to system and system to domain).
Within our methodology SA is only used to show requirements traceability into the architecture
views.

In addition to having features for requirements management and traceability, DOORS also has
the ability to exchange requirements information directly with the IABM development tool.
Requirements in DOORS can be assigned to domains within the The Kennedy-Carter iUML
software and the KC tool can export requirements status to DOORS. In our methodology, the
domain level requirements are exchanged between these tools.

System Architect has a default configuration for developing DODAF architecture view
diagrams. This default configuration was modified to accommodate diagrams developed using
UML notation. SA also has an extensible internal metadata structure. Although SA has a
single default addressable for requirements, we customized it to have operational, system, and
domain requirements. (This customization was made by modifying the SA usrprops.txt file.)
The requirements exported from DOORS (in tabular Comma Separated Value – CSV format)
are imported into the appropriate addressable in SA. The overall flow of requirements data
between tools is illustrated in Figure 4.

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 15 of 20

System
Architect

DOORS

Kennedy-
Carter
iUML

Requirements
Generation

Process Scope of this paper

Requirements database
Traceability

Architecture and Design
documents

.html, .doc reports

Requirements
Traceability Reports Domain List

SW Domain
Requirements

Requirements database
Traceability linkages

Requirements

System
Architect

DOORS

Kennedy-
Carter
iUML

Requirements
Generation

Process Scope of this paper

Requirements database
Traceability

Architecture and Design
documents

.html, .doc reports

Requirements
Traceability Reports Domain List

SW Domain
Requirements

Requirements database
Traceability linkages

Requirements

Figure 4 Schematic of the overall Architecture/Requirements Process

Additional modification were made to SA to enable the requirements to be associated with
symbols on all the diagrams. As necessary, the SA diagrams, symbols, and definitions for each
OV and SV were modified to accept requirements as addressables. These modifications were
made in the SA usrprops.txt file. Corresponding to the three levels of requirements, three sets
of requirements addressables were identified: Requirements-Operational, Requirements-
System, and Requirements-T/IABM.

SA was also modified to use UML notation as part of the DODAF working template. By using
UML we are able to directly correlate the system views with the IABM design architecture
which is also in UML (within the K-C tool). SA was modified to add UML drawings to the
default C4ISR framework working template.

All three tools have HTML reporting capabilities. Hypertext linkages were made between the
reports using the unique identifier assigned to each requirement. This feature permits review
and analysis of the architecture views and associated requirements without requiring expertise
with each tool. It should be emphasized that the HTML reports can be constructed solely by
the running of automated processes within the tools themselves and by Visual Basic scripts.
No hand-coding or manual modifications of these files is required. Once the diagrams have
been built in Systems Architect, and the requirements have been imported and linked (a manual
process), the report generation is done solely through utilities and scripts. Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 16 of 20

3.5. Associating Requirements to Architecture Views

As is obvious from the IDEF1X representations of the various architecture views presented in
the DoD AF Vol. II, there are a great number of different types of elements within the different
views. We use the term “elements” to encompass all of the different graphical items which are
used to compose the different diagrams. Elements can be symbols and the interconnecting
lines between the symbols. Individual elements and the relationships between elements satisfy
requirements and in some cases cause the generation of requirements. Multiple requirements
can be allocated to a single diagram element. Also, a single requirement may be addressed by
elements on multiple diagrams.

As the architecture matures and diagrams decompose to greater levels of detail, the
requirements can be moved to more appropriate elements. The association of requirements to
architecture views is dynamic. The intent is to always have the requirements address the
current state of the architecture.

Figure 5 shows the basic concept. Requirements are attached to any diagram element. The set
of diagrams to which we currently attach requirements, and the relevant diagram elements, are
listed in Table 1.

Our methodology enables the development of architecture views and the derivation of
requirements to occur in parallel. Neither has to be complete for the other to occur. The
process of associating requirements to the architecture views assists in identifying the set of
requirements necessary for each phase of IABM development.

Requirement

Diagram

Diagram
Element

1..*1..*

1..*

1

+rqmt

rqmt alloc
+destination element

1..*

1

Figure 5. Requirements allocation to Diagram Elements.

Table 1: Current Views and Elements To Which Requirements Can Be Attached

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 17 of 20

DoD AF View Diagram Elements
OV-2 Operational Node Connectivity Description Operational Node

Needline/IER

OV-5 Operational Activity Model (IDEF0 Format)

Operational Activity

ICOM Line (Input, Control, Output, Mechanism)

OV-6b Operational State Transition Description State

Transition

OV-7 Logical Data Model (UML Class Diagram Format)

Class

SV-1 Systems Interface Description (UML
Class/Instance Diagrams, systems level)

(UML Class Diagram Format – modified)

Class/Instances

Association/Interfaces

SV-10b Systems State Transition Description
(UML Statechart Diagrams, for specific
Object Classes)

(UML Statecharts – Kennedy-Carter iUML implementation)

SV-11 Physical Schema (UML Class Diagrams,
detailed level)

(UML Class/Instance Diagrams -- Kennedy-Carter iUML
implementation)

3.6. Analysis and Reports

The association of requirements to architecture views provides a mechanism for determining
the completeness of both the architecture and the set of system requirements. The iterative
assessment of requirements and the architecture aids in discovering requirements not yet
addressed by the architecture and in identifying requirements that result from the architecture
itself. These determinations are made by examining the requirements relationships contained
in the reports generated by the tools.

Although both DOORS and System Architect have an internal report generation capability, we
chose to use exported HTML files of requirements and architecture views for reviewing and
assessing requirement traceability. Using HTML presented several advantages:

• It does not require expertise in the DOORS and SA tools to analyze requirements (all
information is presented in a browser);

• Statistics can be collected by examining the unique identifier (ORL#, SRL#, TRL#)
assigned to each requirement;

• Information can be hyper-linked to HTML files exported from other tools (such as MS
Word, Excel, and KC iUML);, Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 18 of 20

• Data in the HTML files can be manipulated with standard scripting languages (such
VBA).

The set of HTML reports exported from all tools is considered a single database from which
traceability information can be extracted. Visual basic scripts are used to establish the
hyperlinking between the individual files and to collect statistics concerning traceability. A
quick review of the HTML reports highlights those architecture elements that are not yet traced
to a specific requirements. If the architecture element is driving IABM design then a
requirement should be identified.

Reports can be generated for subsets of requirements that address a single topical area.

4. Future Work

We plan to extend our use of UML as the notation for depicting all system views of the
architecture. Work has begun on a concise statement of a revised set of products (views)
needed for a project of this type, compared to the DoD AF standard SV products.

We also plan to extend the HTML links into documents that provide the rationale and other
information supporting requirements. These documents include concept papers and formal
requirement documents. The toolsuite is capable of being modified to include hyperlinks to
these various documents at the appropriate points within the architecture or the requirements.
Once this linking is added, the set of hyperlinked information will provide a comprehensive
view of the system architecture and requirements that can be effectively used by those
experienced with the program and by those new to IABM development.

We also plan to develop a capability to automatically generate requirements documents from
requirements information maintained within the toolsuite. This feature will enable JSSEO to
report on requirements in a manner similar to more traditional development efforts.

5. Conclusions

Building to the correct requirements is a key factor in the success of any program. Within our
program both functional and non-functional requirements are needed to establish the success
criteria for our product – the IABM. Traceability of requirements into the architecture views
assists in determining the completeness of the requirements. This traceability has the additional
benefit of aiding in determining the completeness of the architecture in addressing the
requirements.

One of the benefits of this approach to requirements traceability is its adaptability to any
program structure. The underlying premise is that Architecture Views should serve as the
“vehicles” for requirements, whether originating or derived; operational, system or software. If
there is no requirement for an element of the architecture, then it should not be included in the
architecture.

Our process of requirements traceability into the architecture framework enhances our overall
development process by making both the architecture and requirements more complete. Both

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 19 of 20

architecture views and requirements are needed for successful development. The architecture
views simplify the understanding of the system while requirements make it easy to test and
verify system performance. Together the architecture views and requirements give program
managers, system engineers, and software developers insight into the objectives of the system.

Deleted: 20

DoD AF Views As Requirements VehiclesBienvenu & Godwin

CCRTS 2004 Page 20 of 20

References
[DODAF] DoD Architecture Framework Version 1.0, DoD Architecture Framework Working
Group, www.c3i.osd.mil, Documents available at www.defenselink.mil/nii/doc. Volume I,
Volume II, and the Deskbook, dated 15 August 2003.

[DOORS ref] DOORS product, version xxx, Telelogic Inc. www.telelogic.com,. Product
website:

[JSSEO Config05] JSSEO Integrated Architecture Behavior Model (IABM) Configuration 05
Description Document, Version 1.0, 10 December 2003, JSSEO.

[JSSEO IA] JSSEO Integrated Architecure, v2.0, 27 Feb 2004. Joint SIAP Systems
Engineering Organization.

[KC iUML]: iUML executable UML modeling tool, Version 2.2, Kennedy-Carter Ltd.,
http://www.kc.com,. Evaluation version available on the web at
http://www.kc.com/download/index.html

[OMG MDA] Object Management Group’s Model Driven Architecture
http://www.omg.org/mda/. Description and specifications available at that website.

[Popkin SA] System Architect, version 9.1, Popkin Software . www.popkin.com

[TAMD CRD] Theater Air and Missile Defense (TAMD) Capstone Requirements Document
(CRD), March 2001, Joint Theater Air and Missile Defense Organization.

Deleted: 20

