

2004 Command and Control Research and Technology Symposium
The Power of information Age Concepts and Technologies

An Empirical Assessment of the Impact of Requirements Uncertainty
on Development Quality Performance

By

Ayad Y. Aldaijy, Ph.D

Royal Saudi Air Force, RSAF
Ministry of Defense and Aviation

P.O Box 102847
Riyadh 11685, Saudi Arabia

Tel: (9665) 324-5476
Fax: (9661) 478-7064

E-mail: ayad@aldaijy.com

 2

An Empirical Assessment of the Impact of Requirements Uncertainty
on Development Quality Performance

Ayad Y. Aldaijy, Ph.D
Royal Saudi Air Force, (RSAF)

Ministry of Defense and Aviation
P.O. Box 102847

Riyadh 11685, Saudi Arabia
Email: ayad@aldaijy.com

Abstract

 System requirements are recognized as a critical step in the development of
quality software (SW) systems and an important area of research. Being the first step
in the process of software engineering, the effort has potential to shape the direction
for all subsequent project activity. The main purpose of this research is to examine
the impact of requirements uncertainty and task uncertainty on outcomes in software
development projects, limiting the attention to process and product quality. Some of
those examined projects are defense-related and aerospace-command and control
systems. A cross-sectional survey of 123 participants work in software development
in 34 U.S organizations was employed to prove my research model. Analyzed data
provided evidence of a significant negative association between requirements
uncertainty and development quality factors: process and product. Moreover, the
analyzed data showed that there is a significance positive association between
requirements and task uncertainty. In addition, the data provided evidence of a
negative significant association between task uncertainty and process and product
quality. My study pointed to areas where there was negative impact on the developed
system quality. In particular, my research focused on the uncertainty regarding user
requirements, because I believed that this had the most influenced. Findings from this
research can provide the basis on which project managers and software practitioners
can design concrete strategies that would enhance the performance of software
development to high quality ends.

Keywords: Requirements uncertainty; task uncertainty; process quality; product
quality.

1. Introduction.

 The development of software project is a complex problem-solving task made
difficult by the involvement of numerous customers and by a dynamic organizational
environment in which information needs may change rapidly. The ultimate success of

 3

a software project hinges on a clear and complete understanding of the problem to be
solved as well as a thorough definition of the user’s needs and expectations. This
understanding is accomplished through a process known as requirements engineering
(RE). Given the necessity of complete and accurate requirements for the development
of a successful SW project, it is not surprising that requirements engineering is
frequently and convincingly presented as the most critical phase of software
development [1] [2] [3] [4] [5].

 Despite continuous improvement during the past decades, controlling software
quality remains the major challenge in software development projects. Many projects
continue to experience problems or outright failures. Over the years, a set of tools
and techniques, such as CASE tools, Rapid Application Development (RAD),
information engineering, etc., have been undertaken. And yet, new products continue
to fail to meet their functional, technical, and reliability objectives, often over budgets
and late [6].

 In fact, many reports have been published and outlined concerning software
industry efforts. For example, the Chaos study, published by the Standish Group,
indicates that 26 percent of software projects are successful, 46 percent are
challenged, and 28 percent have failed [7]. Other findings, in the same study, show
that the average cost overrun is 89 percent, the average schedule overrun is 122
percent, and 45 percent of the functions provided in newly developed systems are
never used. Despite the costs, many reports suggest that project failures are occurring
with alarming frequency. In 1996, annual U.S spending on software projects reached
more than $270 billion, and 58 percent or $145 billion of this investment was a
casualty of costs overruns and failed projects [7]. One explanation for the high failure
rate is that mangers are not taking prudent measures to assess and manage uncertainty
associated with the early stages of the software development.

 Everyone is in agreement with the difficulty of defining requirements correctly
and completely; but it is equally important that the developers are solving the right
problem over time. Dean Leffingwell of Rationale software estimates that between 40
and 60 percent of software defects and failures can be attributed to requirements that
are specified incorrectly [8]. However, a great deal of the problems in software
development projects is due to uncertainty about user requirements and about the high
dynamic complexity and ambiguity of the software development task. Uncertainty is
broadly defined as the inability to specify something with precision. Uncertainty in
user requirements, however, comes in a variety of forms, such as instability, diversity,
and analyzability. These types of requirements often reflect on a poor understanding
of the business processes, insufficient details for developers to do their tasks, and
insufficient feedback from users over the life cycle of the software project.

 Therefore, based on the discussion above and on a comprehensive relevant
review of literature, the problem that I chose to address is:
There is a need to assess the software quality performance, with respect to RE, to
identify the reasons for systems failure. It is important to establish a clear link
between RE process and performance in order to provide a more integrated view of

 4

the requirements activity and their relationships to the quality of software
development projects. Moreover, the critical problem in today's practice has been a
failure to understand the problem to be solved, as well as the real needs and
requirements of users in order to build the right system.

 In an analytical context and as the level of uncertainty around user-requirements
increases, my research therefore developed and tested a theoretical model that
demonstrated the perceived impact of requirements uncertainty (RU) and task
uncertainty (TU) on outcomes in software projects, limiting the attention to the
software process and product quality. Specifically, I followed following research
process:

1. Examined the relationships between requirements uncertainty, task
uncertainty, and software development quality factors;

2. Investigated to what extent the requirements uncertainty (RU) and task
uncertainty (TU) issues shaped the performance of software development
quality;

3. Assessed whether RU and TU are reliable indicators for predicting the quality
of the development; and

4. Determined whether more practical methods could be applied in the RE
process that espouse for coping with different aspects of requirements
uncertainty (RU) and task uncertainty (TU).

2. Research model and hypotheses

2.1. Research Model

 It is well understood that there are behavioral, economic and attitudinal
outcomes associated with development projects. For reasons of scope, I limit the
attention normally to quality outcomes. The issue of product and process quality is a
success factor in most software projects. Product quality helps to ensure customer
satisfaction and acceptance, proper operation in production, and reduced maintenance
efforts over the shelf life of a system. One can assume then that the process of
identifying the real needs plus accurate and complete requirements in a timely manner
plays a role in ensuring product quality. Cooprider and Henderson [9] suggest that
examining product and process outcomes together can reveal differential impacts of
them on quality. Past research has identified some attributes of development quality,
such as effective coordination [10], project completion within schedule and budget
[11] [12], and overall quality of the development efforts [13]. Development process
quality has been defined as the degree to which the process is designed to promote
consensus among people participating in the development process, operate within
established resources parameters, and reduce waste and redundancy [14]. Software
product quality has been defined as the outcome of overall evaluation of the final
product produced by the development process. Objective criteria have been
considered, such as reliability and maintainability of the product, and subjective

 5

criteria, such as user acceptance and satisfaction, as part of the overall assessment
[14].

 The requirements process management should have a direct impact on
development quality, but it can also indirectly enhance these outcomes by controlling
such uncertainties encountered with the process. There is little empirical evidence of
the impact of requirements uncertainty on development quality. Markis et al., [15]
stated that no studies have considered requirements in the perspective of overall
product quality, e.g. usability and utility, nor have they attempted to link poor product
quality to process failings. Therefore, my research examines whether process and
product quality outcomes vary by the level of uncertainty encountered in the
requirements of a development projects. Increased levels of requirements uncertainty
add to task uncertainty, while increase in task uncertainty should negatively impact
process and product quality. The examination of these direct relationships is
complemented by an examination of the nature of the interaction between
requirements uncertainty and task uncertainty. Figure 1 illustrates my research model
derived directly from the literature, reflecting the relationships between requirements
uncertainty, the two task factors, and the dependent measures two aspects of
development quality.

2.2. Requirements uncertainty and quality oriented development outcomes

 The concept of RU has been widely studied by information systems and SW
researchers, partly because of the importance of identifying the users' requirements
for SW development projects. Proper management of the requirements can have the
single biggest impact on project performance, and frequent changes can create major
problems. Unsatisfactory requirements can make it difficult to mange SW
development process and to validate the software product; unfortunately, it is difficult
elicit information concerning organizational values and beliefs during the RE process
[16]. From an information processing viewpoint, RU refers to the difference in the
information necessary to identify user requirements and the amount of information
possessed by the SW practitioners [17] [18] [19]. Three important dimensions of
uncertainty can be identified [20]:

1. Requirements instability: the extent of changes in user requirements over the
course of the project.

2. Requirements diversity: the extent to which users differ among themselves in
their requirements.

3. Requirements analyzability: the extent to which the process of converting
user needs to a set of requirements specifications can be reduced to
mechanical steps or objective procedures.

The above argument suggests the following hypotheses:

Research Hypothesis 1:
The degree of requirements uncertainty (RU) in a development project influences the
degree of the two aspects of development quality:

 6

 Research Hypothesis 1.A: The degree of requirements uncertainty (RU) in
 development project is negatively related to the degree of process quality.
 Research Hypothesis 1.B: The degree of requirements uncertainty (RU) in
 development project is negatively related to the degree of product quality.

 H1.A, H1.B
 _ _ _ _

 H3, H4 H4 -, H5 -
 H 3 + _

 _ _

 H2.A, H2.B

Figure 1: The Research Model

2.3. Task uncertainty and quality oriented development outcomes

Task
Uncertainty

• Task Ambiguity

• Task Complexity

Requirements
Uncertainty

• Requirements
Instability

• Requirements

Diversity

• Requirements
Analyzability

Development
Quality

• Process

Quality

• Product
Quality

Interaction

 7

 Task uncertainty (TU) defined as "the degree to which work to be performed is
difficult to understand and complex" [21]. In general, high levels of task uncertainty
are associated with SW development [22] exacerbated by hard-to-predict factors in
the development process. Ongoing changes contribute to the high level of uncertainty
associated [23] [24]. Several studies support the theory that TU is a major
determinant of information processing requirements. The concept of TU has been
refined by other organization theory researchers along two dimensions [25] [26] [27],
the first being task complexity (interdependence, autonomy, variety, structurability,
intelligibility) and the second being ambiguity (predictability, controllability,
exceptions, rate of change). Perceived complexity in task is widely acknowledged to
be an important factor affecting the SW development process. Task complexity refers
to the number of inputs, input variation, number of sub-tasks, and number of
operations or procedures involved in the completion of a task [28]. For information
processing or decision-making, a task that utilizes fewer information cues is
considered as having lower task complexity than one with more cues. The higher the
complexity, the more subtasks the decision-maker must complete [29].

 Unlike task complexity, task ambiguity refers to those tasks for which multiple
acceptable solutions exist, as perceived by those with different frames of reference
[30]. Task information that is clear and directed leads to similar interpretations, while
task information that is ambiguous leads to multiple interpretations that must be
resolved in order to develop a shared understanding of how to perform the task. From
an information processing perspective, the impact of task complexity has been widely
documented, but less research has been conducted on the role of task ambiguity in the
context of SW development [31]. Nor has there been any recent empirical work
relating to influences of task complexity and ambiguity on the outcome of SW
development quality.

 Application development teams often include people with limited knowledge
about the problem domain and detailed knowledge is often provided too late to help
[32]. Inadequate information can result in decisions to delay certain steps or to
execute the development process in a trial and error fashion [33]. Despite differences
in definitions and theoretical approaches over time, the literature provides
considerable evidence that increased task uncertainty leads to decreased development
quality. This leads to the following hypotheses:

Research Hypothesis 2:
The degree of task uncertainty (TU) in a development project influences the degree of
the two aspects of development quality:

 Research Hypothesis 2.A: The degree of task uncertainty (TU) in development
 project is negatively related to the degree of process quality.

 Research Hypothesis 2.B: The degree of task uncertainty (TU) in development
 project is negatively related to the degree of product quality.

 8

2.4. Requirements uncertainty and task uncertainty

 Everyone agrees that there is difficulty in defining requirements correctly and
completely; but it is equally important that the software practitioners are solving the
right problem over time. For example, users are tempted to treat requirements-
specification as an unimportant exercise, so meeting on the 'right' solution over time
becomes an extended exercise of trial-and-error; a system this is initially intended to
support some clearly-defined business objectives may eventually meet none of them
[34]. As discussed in the previous chapter, a great deal of the problems of software
development projects is due to uncertainty about user requirements and the high
dynamic complexity and ambiguity of the software development task [35].
Uncertainty encountered with requirements is broad based. It affects every aspect of
the project development lifecycle. And it involves, to a large or small extent, every
member of the development group, from the users to testers. When requirements are
managed well and to certain standards, the requirements effort can greatly aid in the
development process tasks; when uncertainties arise, deep and significant problems
may occur. Thus, increased levels of requirements uncertainty add to task uncertainty
and this leads to the following hypotheses:

Research Hypothesis 3:
The degree of requirements uncertainty (RU) in a development project is positively
related to the degree of Task Uncertainty (TU).

2.5. Requirements uncertainty and task uncertainty interaction

 The interaction relationships were proposed to show how RU influences the
relationships between TU and development quality: the assumption being that
development performance is dependent on the organization's ability to handle
uncertainty through its information processing capability [36]. To achieve a
maximum level of performance, cooperation must occur between an organization's
information processing capability and the level of the uncertainty that it faces. This
leads to the hypotheses:
Research Hypothesis 4: The interaction between requirements uncertainty and task
uncertainty influences the process quality.
Research Hypothesis 5: The interaction between requirements uncertainty and task
uncertainty influences the product quality.

3. The empirical study

3.1. Data collection and sampling

 Data collection is the most important stage in the research design. Data were
collected from employees who worked in software development, manage software
projects, or deal with software quality issues to obtain opinions on software
development and perceptions associated with process and product quality. These

 9

types of employees had significant technical understanding of the software process
and software product, had been involved in the project from start to end, and
interacted with both upper and system management. This is consistent with the Huper
and Powell's [37] recommendation that the person(s) most knowledgeable should be
chosen as respondents. Data were collected through the research instrument, which
was designed, pre-tested, and sent to six hundred and fifty senior IS executives
located across the United States. The names of these executives and their companies
were randomly selected from the Directory of Top Computer Executives. This
random selection process was used, as I wanted to test the hypotheses using data
about projects emanating from diverse organizational and industrial contexts.

 A total of one hundred and fifty-seven of six hundred and fifty surveys were
received. The survey data has been gathered from thirty-four organizations. This
provided a response rate of approximately 24% of the total responses received.
Fourteen organizations indicated that they did not develop software in-house. Twenty
collected survey forms were discarded due to missing data or their being unusable.
One hundred and twenty-three answered survey data forms were therefore used for
the analysis. According to several researchers [38] and [14] stated that response rate
of 24% is an acceptable average rate of response. Additionally, the sample size of
123 is not small compared to other studies of requirements or quality in software
development. For example, the COCOMO model, based on one of the larger datasets,
is estimated with the data on 63 software projects [39], [14] used 95, [20] used 64,
[40] used 43, whereas [41] used 24 projects and [42] used 15. Furthermore, many of
SW practitioners and managers who participated in the survey asked for an executive
summary that I offer this if they wish. This is evident that these participants were
interested in my research topic. The use of survey methodology in this research may
raise the issue of bias, because the study required the respondents to reconstruct their
project experience. Such recall problems were reduced, to some extent; by collecting
data only on recently completed projects and ensuring that the quality scores were
cross validated by a subset of software practitioners' responses.

 I also tested to see if the sample was biased with respect to key characteristics,
such as size of development team, respondent's positions, project duration; and project
budget. Overall, the 123 projects showed a good dispersion of project context
characteristics. In addition, a Multivariate Analysis Of Variance (MANOVA) was
undertaken to determine whether differences in respondents in regard assessing the
dependent variables, process quality, and product quality. MANOVA is a statistical
technique used for assessing group differences across multiple metric dependent
variables simultaneously, based on a set of categorical (non-metric) variables acting
as independent variables. The participants were classified, according to their
positions in their organizations, into four positions: software project manger,
requirements engineer, software developer, and software engineer. The test indicated
no significance differences by the respondent's positions (Wilks' Lambda = 0.93, F =
1.49, p = 0.18 > 0.05). Thus, while the response rate was low, the series of tests did
not reveal any significant threats to the population of in-house developed software
development projects. A profile of the projects is summarized in table 1, while table 2
provides a description of the study sample.

 10

Table 1: Statistical profile of development projects

 Mean Standard Deviation Min Max

Project Duration
(months)

13.5 12.6 2 60

Project Budget
($000) $24,600 $146,000 $35 $1.2

Billion

 Full-time Emp. (#) 303 659 10 6,000

Persons-Months 49 167 2 1,200

Tech/Mgmt Hour 4,382 10,600 35 68,000

Table 2: Profile of respondents positions in their organizations

Respondent's Positions Number of
respondents Percentage

Software Project Manager 38 31%
Requirements Engineer 35 28 %
Software Developer 32 26 %
Software Engineer 18 15%

Total 123 100%

Table 3: Respondents characteristics: Software project size

Software Project Size Number of
respondents Percentage

Small
(< 100 KSLOC) 44 34%

Medium to Large
(>=100 KSLOC) 79 64%

Total 123

100%

KSLOC: Thousands of Source Line of Code

 11

Table 4: Description of study sample

Industry

Number of
respondents

SW and System Development 36
IT Services 24
Telecommunications 11
Environmental Protection 11
Insurance 10
Financial 10
Defense-related 7
Aerospace-Command & Control 6
Petroleum 5
Transportation 3

Total

123

3.2. Instrument development

A questionnaire (the survey instrument) was developed for the measurement and
operationalization of the two independent variables (requirements uncertainty and
task uncertainty) in the theoretical model as they directly or indirectly influenced the
dependent variable (quality of the resulting software project). Items for specific
constructs were drawn from established instruments. My research instrument, which
is part of research effort on software development projects, was developed through an
extensive review of the literature. The instrument consisted of three sections. The first
addressed demographic data (individual’s background and his/her organization).
Items in the second section of the instrument related to the project characteristics, the
development practices and techniques, and the nature of the development task. A
series of 9 items involved multiple choice, Likert scale questions.

 Furthermore, one question was included to assess the requirements engineering
techniques used for the specified project and another open-end question to list by
respondents the important contingencies that impacted the quality of their software
development. The third section of the instrument was about the implementation
outcome. This section listed items to measure the independent variables
(requirements uncertainty and task uncertainty) and the dependent variable
(development outcomes). A 5-point Likert-type scale that ranged from strongly
disagree to strongly agree was used for each of the items of requirements uncertainty
aspects (9 items). Another 5-point Likert-type scale that ranged from very small
extent to very great extent was used for each of the items of task uncertainty aspects
(5 items). The last 5-point Likert-type scale that ranged from very poor to very good

 12

was used for each of the items of development quality aspects (9 items). All items in
this section were derived from previous related studies.

 A pretest stage was used to validate the questionnaire items derived from prior
research. Subsequently, a pilot test was conducted using subject matter experts from
the academia and industry. At the end of this stage, a number of modifications were
made: 1) more background information on the project and company were added to the
questionnaire; 2) some items were added; and 3) less important ones were deleted.

3.3. Measures for independent variables

 I closely followed Straub's [43] suggestions for improving instrument
validation. I used previously developed and adequately validated scales. Where
necessary, I modified some of the words in the questions to suit the context of this
study.

3.3.1. Requirements uncertainty

The measurements of the sources of requirements uncertainty (requirements
instability, requirements diversity, and requirements analyzability) were assessed on a
5-point scale (1- Strongly Agree, 5 – Strongly Disagree), and derived from previous
research paper [20]:

1. Requirements Instability: It refers to the extent of change in user requirements
over the course of the project. It was measured by four items.

2. Requirements Diversity: This aspect refers to the extent to which users differ
amongst themselves in their requirements. It was measured by three items.

3. Requirements Analyzability: This aspect refers to the extent to which a
conversion process can be reduced to mechanical steps or objective procedures.
In this study, the process of converting user needs to requirements specification
was assessed by measurements of four items.

 3.3.2. Task uncertainty

 The variables used to measure the two sources of task uncertainty (task
complexity and task ambiguity) are now described below. The items for each variable
were assessed on a 5-point Lickert scale (1 - Very small extent, 5 - Very great extent).

1. Task Ambiguity: This variable was derived from previous research [31] and
refers to the extent to which multiple acceptable solutions exist, as perceived by
those with different frames of reference. It was measured by three items.

2. Task Complexity: This variable was derived from previous research [31] and
refers to the degree to which work to be performed is difficult to understand and
uncertain. It was defined in two factors: 1) The thinking time needed to solve the
problem and (2) the complexity involved in the solution process to accomplish
the task. It was measured by two items.

 13

3.4. Measures for dependent variables

3.4.1 Process quality
 This variable was used to measure the quality of development process. A 5-
item scale was used to reflect some desirable characteristics of the process, such as
the degree to which the project was completed on schedule, the degree to which the
project met cost targets, and the degree of agreement among participants. The items
used were adapted from [13], [44], and [11].

3.4.2 Product quality
 This variable was used to assess the software product quality. A 5-item scale
was used to measure SW product quality: reliability, flexibility, maintainability,
system acceptance, and user satisfaction. The items used was adapted from [13], [44],
and [45].

4. Results and discussion

4.1. Reliability Analysis

 Reliability is defined as the consistency of a test (or measuring instrument) over
time, across subjects, or within a test or scale [46]. There are four general procedures
for determining the reliability of a test: stability, equivalence, combined stability and
equivalence, and internal consistency [47]. Internal consistency measures the
homogeneity of the items of an instrument; it is assessed after one administration of
the instrument. This type of reliability typically uses the split-half method to avoid
administering the same instrument twice to the same subjects [48]. There are number
of procedures that determine the internal consistency of a test or a measuring
instrument. However, I decided to employ the Cronbach's method of Alpha
Reliability Coefficient because: (a) this method is generally the most appropriate for
survey research and other questionnaire in which there is a range of possible answers
for each item [47], (b) this method is commonly used for determining the internal
consistency of the typical Lickert scale measuring instruments [48], and (c) the effect
of this method is to produce a reliability coefficient that is approximately what one
would obtain if one were to split the measuring items into all possible halves,
calculate a split-half reliability for each split, and take the average of all the split-half
reliability coefficients [48]. Using the Cronbach's Alpha method, the reliability
coefficient of the variables of the questionnaire administered in this study was
computed by a procedure in the Statistical Package Software (S.P.S.S). All
coefficients were found to be statistically significant, indicating a high degree of
reliability on the variables. Alpha values of 0.70 or above are acceptable indicators of
internal consistency, as suggested by many researchers [49] [46]. Alpha values were
calculated for each multi-item construct. As seen in Table 5.10, all the calculated
alpha values were found to be above the 0.70 level, except for the scale for
requirements instability (which had an alpha coefficient 0.65) and the requirements
analyzability (which had an alpha coefficient 0.66). However, this scale was retained
because: 1) it was very close to guideline; and 2) the correlation among their items

 14

was significant even at level 0.001. Therefore, the data indicates the fact all the scales
are reliable (table 2).

Table 5: Description of study sample

Variable Scale reliability

Requirements Uncertainty:

- Requirements Instability
- Requirements Diversity
- Requirements Analyzability

.75

.65
.77
.66

Task Uncertainty:

- Ambiguity
- Complexity

.71

.74
.79

Development Quality:

- Product Quality
- Process Quality

.83

.80

Table 6: Correlation matrix among aspect variables (N =123 software projects)

Variable 1 2 3 4 5 6 7

Development Quality

1. Product quality 1.0
2. Process Quality 47 1.0

Requirements Uncertainty

3. Requirements Instability -.42 -.37 1.0

4. Requirements Diversity -.20 -.29 .56 1.0

5. Requirements Analyzability -.35 -.36 .19 .17 1.0

Task Uncertainty

6. Task Ambiguity -.22 -.29 .33 .34 .32 1.0

7. Task Complexity -.01 -.01 .10 .16 .10 .24 1.0

 15

4.2. Inferential analysis of the data

 Inferential analysis of the data was conducted to examine the research
hypotheses derived from a review of the literature and it was based on the following
statistical tests: (a) the simple correlation and (b) multiple linear regression analysis.
Simple correlation was used for research hypothesis 1 (A and B), research hypothesis
2 (A and B), and research hypothesis 3. Multiple linear regression was used for
research hypothesis 4 and research hypothesis 5.

 Two independent variables were shown to have significant relationship with
two aspects of software development quality: process and product. The findings were
drawn from an examination of the research hypotheses. Analyzed data provided
evidence of a significant negative association between requirements uncertainty and
process quality (r=-0.47, p<0.001). The level of requirements uncertainty in a
software project is a negative predictor of development quality; it explains about 22%
(r² =0.221) of the variance of process quality. Requirements instability, an aspect of
requirements uncertainty, appears more problematic than requirements diversity and
requirements analyzability because it has a strong negative association (r=-0.37,
p<0.001) with process quality in a software project. Additionally, analyzed data
provided evidence of a significant negative association between requirements
uncertainty and process quality (r = -0.46, p<0.001). The level of requirements
uncertainty in the software project is also a negative predictor of development quality;
it explains about 21% (r² =0.211) of the variance of product quality.

 Moreover, the analyzed data showed that there is a significance positive
association between requirements and task uncertainty (r=0.40, p<0.001), specifically,
task ambiguity (r=0.47, p<0.001). The analyzed data did not however show
statistically a significant positive relationship between requirements uncertainty and
task complexity. May be software practitioners are more concerned by task ambiguity
in software development projects rather task complexity.

 In addition, the data provided evidence of a negative significant association
between task uncertainty and process and product. The result indicated that the level
of task uncertainty in a software project is a negative predictor of development
quality; it explains about 5% of the variance of process quality (r=-0.23, p<0.001).
However, surprisingly, task ambiguity, an aspect of task uncertainty, appears more
important because it has the strongest negative association with process quality (r=-
0.29, p<0.001) in a software project; it explains about 8% of the variance of process
quality. Similarly, task ambiguity has shown a significance negative association with
product quality (r=-0.22, p<0.001), it explains about 5% of the variance of product
quality. It seems that task ambiguity has stronger impact on process quality than
product quality. Additionally, task uncertainty had a negative association with product
quality (r=-0.17, p<0.001) and less than task ambiguity; it explains about 3% of the
variance of product quality. Further, task complexity did not show any relationships
with the two aspects of development quality: process and product. Task complexity
was considered as an unrelated variable. Task complexity may impact other software
development phases and not necessarily the final phase. Based on this, my research

 16

suggests that task ambiguity is distinct variable and must be kept separate from task
complexity. Table 2 shows correlations between variables.

4.2.1. Interaction Relationships

 The interaction relationships section pertains to the impact of the interaction
between requirements uncertainty and task uncertainty on quality-oriented
development outcomes beyond the main effects of the variable themselves. The first
interaction pertains to the impact of requirements uncertainty on the relationship
between task uncertainty and process quality; the second interaction pertains to the
impact of requirements uncertainty on the relationship between task uncertainty and
product quality as suggested by research hypothesis 4 and research hypothesis 5.
To test the interaction relationship of research hypothesis 4, two equations, with one
multiplicative interaction and one without, were estimated. The results of the
regression analysis for the interaction model and the main effect model for these
variables: the interaction did not contribute to the process quality. These results reject
research hypothesis 4 and accepts the null hypothesis. The lack of significance for the
interaction term suggests that relating RU and process quality did not depend on the
level of TU and vise versa.

 Furthermore, requirements uncertainty and task uncertainty do not interact with
one another to influence the development outcomes. This means that requirements
uncertainty and task uncertainty act independently of each other. Figure 2 shows the
relationships among research model variables.

5. Conclusions and Future work

 My study pointed to areas where there was negative impact on the developed
system quality. In particular, my research focused on the uncertainty regarding user
requirements, because I believed that this had the most influenced. The study presents
practical data that points to ways to improve the development process and may lead to
practices in which engineers and managers can shape the process to measure the
quality of the process. The study also presents practical data that point out that
uncertainty associated with software projects can easily imperil project success,
threatening budgets, schedules, and down line integrity. An awareness of the sources
of uncertainty and the means of reducing it should facilitate better planning and
execution of software projects. The results of this research reveal conditions in the
practice of requirements engineering that not only identify areas of weaknesses but
also point to potential redress of the weaknesses.

While most of the previous requirements engineering research efforts were

focused on software features through laboratory testing, there was little attention has
previously been paid to measuring its effect in the field. My study showed that the
effect measurements of requirements activity in the field do exist and can usefully
contribute in the success of the software development projects if done properly. This

 17

work is probably the first empirical attempt to examine the direct relationships
between requirements activity and development quality performance. Findings from
this research can provide the basis on which project managers and software
practitioners can design concrete strategies that would enhance the performance of
software development to high quality ends.

 H1.A

 -.47**

 H2.A -.29**

 H3 +.47** H1.B -.46**

 H2.B -.22**

 +23**

** Correlation is significant at the 0.01 level (2-tailed).
 * Correlation is significant at the 0.05 level (2-tailed).

Figure 2: Relationships Found Among Research Variables

 Future research might focus on ways on how to better plan and cope with the
different aspects of requirements uncertainty. Future research can also overcome
limitation of this study on the single respondent retrospective approach by capturing
information from multiple sources internal and external to the project, and by
employing a longitudinal data collection approach to better test causality between
project characteristics and project outcomes. Additionally, a broader international

Task
Ambiguity

Requirements
Uncertainty

• Requirements
Instability

• Requirements
Diversity

• Requirements
Analyzability

Task
Complexity

Product quality

Process quality

 18

extension of this study should be conducted for future validation, since many software
development projects are occurring globally. Studying the general state of
requirements engineering in different countries and in different cultures, share their
thinking on software projects issues and its management, would be very interesting
research. Another valuable study would be a collection of methods for identifying
and measuring quality with respect to requirements engineering, improvements in
methods that predict project effort and duration based on qualities of requirements,
and creative solutions to problems in the requirements gathering process. Studies such
as these could provide industry with the data to continue its crucial examination of
this central component to the software development projects.

5.1. Limitations of the study

 Despite all the research advantages, this study is not without limitations: The
study has at least two. One is that the data-collection approach that I employed relied
on knowledgeable respondents whom were software project managers and engineers.
These respondents assessed, after project completion, issues regarding the project as
its initiation and its conclusion. Initially, I had sought to obtain a more balanced view
by soliciting information from users, particularly regarding the development quality
performance. However, considerable difficulty in collecting such information
resulted in my abandoning this effort. The second limitation in this study is the
response rate. The sample size of 123 is not small compared to other studies, but the
sample size should be seen as large enough to draw some basic conclusions allowed
by the tests, but a larger response base would have allowed for the exploration of
issues in finer and more conclusive detail.

5.2 Operation and Policy Recommendation

Based on my research, it is possible to make a number of recommendations that
should result in more effective ways of determining the real user needs and
requirements.

1. Effective communication is a key factor in successful requirements
engineering. It appears that effective communication occurs when managers
and engineers are able to:

• Identify and determine precisely and completely needs of their users
and to map needs into system requirements and

• Establish the right relationships with their users so that all parties can
develop trust and agreements that facilitate coordination of their
respective viewpoints.

Therefore, multidisciplinary training for requirements practitioners is a matter
of critical importance. The requirements engineers must posses both the social
skills to interact with a variety of stakeholders, including potentially non-
technical customers, and the technical skills to interact with system designers
and developers.

 19

2. There exists a general lack of knowledge regarding how much time should be
allocated to the requirements engineering phase. Requirements engineering is
often treated as a time-consuming, bureaucratic and contractual process. This
attitude should be changed as requirements engineering is increasingly
recognized as critically important.

3. Software project managers and engineers need to know that no two software

development projects alike. As a result, there is no single requirement
engineering technique that is applicable to all types of systems. Managers and
engineers should select the technique that is appropriate to their software
projects.

4. SW managers should regularly assess the external variables for each SW

development environment and establish a log. At the same time, they may
consider other technical and non-technical factors to be assessed in the project
according to the development context. Therefore, the log data will show how
the development projects are being managed. Additionally, this should
improve the SW process and thus improve development quality performance.

5.3 Concluding Remarks

 Requirements engineering is a process that presents many hazards to the
success of software development projects. It is my hope that the findings of my
research will help in providing better understanding of the requirements process in
order to reduce uncertainties associated with the quality outcomes. In the meantime, I
definitely agree with Osterweil and Clarke [50] who state that "the research into
requirements and specifications should be sharply accelerated." I believe that there is
a need to further explore the causes and effects of requirements related problems on
the software development process.

 Additionally, the demand for better, faster, and more usable software systems
will continue, and requirements engineering will therefore continue to evolve in order
to deal with different development environments. Indeed, I believe that effective
requirements engineering will continue to play a key role in determining the successes
or failure of projects, and in determining the quality of systems that are developed.

 20

Bibliography

[1] T. Byrd, L. Cossick, & W. Zmud, A synthesis of research on requirements
analysis and knowledge techniques, MIS Quarterly, 16(3), 1992, 117- 138.
[2] R. Bostrom, Successful application of communication techniques to improve the
systems development process, Information & Management, 16 (4), 1989, 279-295.
[3] I. Vessey, S. Coger, Learning to specify information requirements: The
relationship between application and methodology, Journal of Management
Information Systems, 10 (2) 1993, 177-201
[4] J. Whitten, L. Bentley, and V. Barlow, Systems Analysis and design methods
(Burr ridge: Irwin, 1998)
[5] G. Davis, Strategies for information requirements determination. IBM Systems
Journal, 21(1) 1982, 4-30.
[6] J. Kuilboer, N. Ashrafi,. Software process and product improvement: an empirical
assessment. Information and software technology, 42 (2) 2000, 27-34.
[7] Standish Group, The CHAOS Report, Web Report,
(http://www.standishgroup.com/chaos.html, Standish Group International, Inc., 1998)
[8] B. Abott, Requirements set the mark. Infoworld, March 5, 2001, 48-50.
[9] J. Cooprider, J. Henderson, Technology processes fit: perspectives on achieving
prototyping effectiveness, Journal of management information systems, 7 (3), 1991
67-87.
[10] R. Kraut, L. Streeter, Coordination in software development, Communications of
the ACM, 38 (3), 1995, 69-81.
[11] M. Mahmood, System Development methods - A comparative investigation.
MIS Quarterly, 11 (3), 1987, 293-311.
[12] C. Mcphee, A. Eberlin, Requirements Engineering for Time-to-Market Projects,
Proceedings of the Ninth Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Ayatems (ECBS'01), IEEE Computer Society,
2001, 252-260.
[13] M. Alavi, An Assessment of the prototyping Approach to Information System
Development, Communication of the ACM, 27(6), 1984, 556-563.
[14] A. Rai, H. Hindi, The effects of development process modeling and task
uncertainty on development quality performance. Information & Management, 37
(3), 2000, 335-346.
[15] P. Markis, A,. Sutcliffe, , & Economou, A Tracing Requirements Errors to
Problems in the RE process, Requirements Engineering, 15(4), 1999, 134-151.
[16] D. Leefingwell, D. Widerig, Managing Software Requirements A Unifies
Approach, (Addison-Wesley, Wesley Longman Inc, USA, 2000).
[17] R. Daft, N. Macintosh, A tentative Exploration into the amount and equivoality
of information processing in organizational work units, Administrative Science
Quarterly, 26 (2), 207-224.
[18] J. Galbraith, Organizational Design (Addison-Wesley, Reading, MA, 1977).
[19] M. Tushman, and D. Nadler, Information Processing as an integrating concept in
organizational design, Academy of Management Review, 3(5), 1987, 613-624.
[20] S. Nidumolu,. The effect of Coordination and Uncertainty on Software Project
Performance: Residual Performance Risk as an Intervening variable, Information
Systems Research, 6(3), 1995, 191-219.

 21

[21] J. Alexander, W. Randlph, The fit between technology and structure as a
predictor performance in nursing subunits, Academy of Management Journal, 28(4),
1985, 844-959.
[22] H. Krasner, B. Curtis, N. Iscoe, Communication Breakdowns and Boundary
Spanning Activities on Large programming Projects, Proceedings of Empirical
studies of Programmers: Second Workshop, Washington D.C. USA, 1987, 47-64.
[23] J. Cooper, Software Development management planning, IEEE Transactions on
Software Engineering 10(1), 1984, 22-26.
[24] W. Humphrey, B. Curtis, Comments on a critical Look. IEEE Software 8 (4),
1991, 42-46.
[25] J. Dutton and J. Webester, Patterns of interest around issues: The role of
Uncertainty and feasibility, Academy of Management Journal, 31 (3), 1988, 663-675.
[26] C. Gresov, R. Drazin, & A. Van, Work-unit task uncertainty design and Morale.
Organization Studies, 10 [1], 1989, D45-D62.
[27] F. Milliken, Three types perceived uncertainty about the environment: State,
effect and response uncertainty, Academy of Management Review, 12(1),1987, 133-
143.
[28] J. Spence, R. Tsai, On human cognition and the design of information systems,
Information & Management, 1997 (32), 65-73.
[29] J. Spence, R. Tsai, On human cognition and the design of information systems,
Information & Management, (32), 1997, 65-73.
[30] L. Argote, Input uncertainty and organizational coordination in hospital
emergency units, Administrative science Quarterly, 27(3), 1982, 420-434.
[31] S. Sussman, P. Guinsan, Antidotes for high complexity and ambiguity in
software development, Information & Management, (36), 23-35.
[32] D. Parnas, P. Clements, A rational Design process: how and why to fake it, IEEE
transactions on Software engineering, 12 (2), 19 86, 251-257.
[33] B. DeBrabander, G. Thiers, Successful information Systems development in
relation to situational factors which effect effective communication between MIS-
users and EDP-specialists, Management Science 30 (2), 1984, 365-375.
[34] F. Redmill, Software Projects: Evolutionary versus Big-Bang Delivery (Wiley
Publications, Chichester, U.K 1997).
[35] A. Davis, Software Requirements, Objects, Functions, and State (Prentice-Hall
publications, Englewood Cliffs, N.J., USA, 1993)
[36] M. Tushman, D. Nadler, Information Processing as an integrating concept in
organizational design, Academy of Management Review, 3, 1987, 613-624.
[37] D. Huper, D., Powell, Retrospective reports of strategic level managers:
guidelines for increasing their accuracy, Strategic Management, 6(2), 1985, 171-180.
[38] W. Kettinger, V. Grover, The Use of Computer-Mediated Communication in an
Inter-Organizational Context, Decision Sciences, 28(3), 1997, 112-120.
[39] B. Boehm, Software engineering Economics (Prentice-Hall, Inc., NJ, USA, 1981)
[40] M. Kerishnan, C. Kriebel, K. Sunder, & T. Mukhopadphyay, An empirical
Analysis of productivity and quality in software products. Management Science, 46(6)
2000, 189-197.
[41] A. Albrecht, J. Gaffney, Software function, source lines of code, and
development effort prediction: A software science validation, IEEE transactions on
Software Engineering, 9(6), 1983, 639-647.

 22

[42] C. Kemerer, An empirical validation of software cost estimation models,
Communications of the ACM, 30(5), 1987, 416-429.
[43] D. Straub, Validating instruments in MIS research, MIS Quarterly, 13(2) 1989,
147-169.
[44] J. Henderson, S. Lee, Managing I/S design teams: a control theories perspective,
Management Science, 38(6), 1992, 316-327.
[45] J. Shin, A. Lee, A process model of application software package acquisition and
implementation, Journal of Systems and Software, 32 (1), 1996, 57-64.
[46] R. Slavin, Research methods, second edition(Boston, MA, USA: Allyn and
Bacon, 1992)
[47] S. Schumacher, J. McMillan, Research in education: A conceptual introduction
(New York: Harper Collins College Publishers (3rd edition), USA, 1993).
[48] T. Crowl, Fundamentals of educational research, (Dubuque, IA: Wm. C. Brown
Communications, USA, 1993).
[49] L. Gay, P. Diehl, Research Methods for Business and Management,
(New York: Macmillan Publishing Company, USA, 1992).
[50] L. Osterweil, L. Clarke, (1999), A proposed testing and analysis Research
initiatives, IEEE Software, 23 (9), 1999, 89-98.

