

2004 Command and Control Research and Technology
Symposium

The Power of Information Age Concepts and Technologies

An Exposé of Autonomous Agents in
Command and Control Planning

Author: Christopher Matthews

RDECOM CERDEC
Command and Control Directorate,

Battle Command Division,
Integrated Battle Command Branch

HQ CERDEC

AMSRD-CER-C2-BC-IBC
Fort Monmouth, NJ 07703

Voice: (732) 427-3978
Fax: (732) 427-2685

Claw.Matthews@us.army.mil

An Exposé of Autonomous Agents in Command and Control Planning

Christopher Matthews
Communications Electronics Command

Command & Control Directorate
AMSRD-CER-C2-SS-A

Fort Monmouth, NJ 07703

Abstract

Autonomous agents are a value-added technology to facilitate integrating logistics into
the in-theater maneuver planning processes. Conventionally, logistics impacts that can
affect the successful prosecution of a maneuver plan are only analyzed or discovered
after the maneuver course of action (COA) has been finalized. Logistic oversights,
assumptions, or faulty assessments can lead to an unsupportable maneuver plan that must
be re-planned or thrown away; a situation that may require unafforded time. We
implemented autonomous agents to provide a near-real-time, logistics feedback loop to
augment the on-going, dynamic battle planning processes. As the battle plan is
progressing, a logistics plan, too, is being formulated whereby logistic assets are being
tasked to support the tentative maneuver plan, dynamically. This logistics plan that maps
to the current battle plan is the mechanism whereby resource management and allocation
impacts are discovered and, thus, can alert the command and control (C2) planners of
logistics issues. The coupling of logistics and C2 planning saves time, effort, and better
utilizes resources and personnel. But, the major benefit is the adaptation of this model
when applied to the execution-monitoring and real-time prosecution of a maneuver plan –
using unfolding battlefield events as re-planning inputs to the current, executing plan.

1. Preamble
This paper is not intended to discuss the formal definition of what constitutes an
intelligent agent (IA). Nor does it address how IA concepts differ from conventional
programming – object-oriented, process-oriented, or otherwise. Suffice it to say that we
recognize the intent of what many advocates of intelligent agency proclaim – that
substantive differences exist in composition, usage, and the deployment environment for
which these “agents” exist. We consider the debate as to what constitutes an agent a
philosophical one, at least for the time being. And, one that is best left to message board
debates or college-level courses. We are primarily concerned with the viability of this
technology for its use in military applications and how it can be exploited to increase
effectiveness and efficiency on the battlefield in the planning and execution phases of C2.

2. Objective
We wanted to learn how to use intelligent agents effectively in the military command and
control (C2) domain, and we wanted to gain experience with agent frameworks. We
sought to develop a relevant, prototypical system that tried to solve a critical mission
need and use this experience to surface the transition-strategy issues and the maturity of

agent technology for present and future C2 programs that build decision-aid software for
the in-theater battle commander and staffs.

2.1 Relevance to C2
Information battlefield management has become significantly more complex; deciphering the
relevant data from the minutia can be a daunting, never-ending job. Using IA mitigates the risks
associated with meeting current and future information battlefield management needs. IA
technology allows the commander to more efficiently track objectives of a battle plan, manage
battlefield resources, and utilize unfolding, battlefield events and external conditions as inputs to
the warfighter’s dynamic planning process. Using agents as the core technology to supplant the
current C2 planning paradigms empowers the commander to her job better – commanding
the battlefield vis-à-vis analyzing mountains of data.

3. Background
We investigated agent technology as part of the raw research and development (R&D)
effort under the Logistics Command and Control Advanced Technology Demonstration
(LogC2 ATD) program. As stated above, we developed agents to tightly couple the
logistics planning process with the maneuver planning process. This prototype system, or
agent application, was to satisfy a critical mission need and to meet the exit criteria for
the program.

3.1 Sponsorship
The LogC2 program commenced in FY98 and concluded in FY03. Our agent
development effort began in mid FY02. As with many programs budgetary constraints
and reallocation of program funds had severely curtailed our grand plans of funding agent
research and application. Despite the funding cuts we were still able to pursue this R&D
effort, albeit, on a much smaller scale. We originally had planned to include many facets
of logistics planning, and at a fidelity that could provide a micro-view of the scheduled
logistics assets to support a maneuver plan as well as the modeled consumption
estimations for both the maneuver and logistics domains. The adage of biting off more
than one can chew was realized when we tried to tackle this big, extremely complex,
cross-functional problem. For a two-man development team that had zero agent
development experience this goal was pretty ambitious if not downright unrealistic. So,
we scaled our objectives accordingly and focused only on the fuel modeling and resource
management aspect of logistics to support a maneuver plan. We came to find later that
the agent architecture that we used promotes domain-specific reusability of the business
logic components and is amenable to developing a system in a piecemeal fashion. We
could essentially build a system that focused solely on a one domain and integrate later
any other domains as they became available.

3.2 The Agent Framework: an Executive Summary
The agent architecture that we used to develop our agent society is the Defense Advanced
Research Project Agency (DARPA) Cognitive Agent Architecture (Cougaar). Cougaar is
and open source, Java-based agent framework from which one typically develops large-
scaled, long-lived, distributed agent applications. Cougaar provides the underlying
infrastructure to create and manage agent applications while abstracting much of the
underlying architecture from the developer. The agent creator need not necessarily

concern herself with the inter-agent communications layer, message pooling, or threading
models used to manage computer resources among agents and the like. A developer can
focus on the design and implementation of her agents and how they are used to solve
complex, real-world tasks using the agent-ontology and tools provided by the
infrastructure.

The Cougaar framework was borne from the Advanced Logistics Program (ALP). ALP
was a DARPA program, initiated in FY96 and completed in FY01, which sought to
revolutionize military logistics planning by exploiting novel information-age
technologies. Conventional software solutions proved too cumbersome when managing
the vast numbers of unique items to model as per the C2 planning process. At the
completion of the ALP program DARPA had successfully developed an agent
architecture that makes it much easier to build decision-aid software for the logistics
community that provides dynamic planning and execution-monitoring capabilities. And,
removing the military-specific functionality, the benefits of this agent architecture could
be realized in any domain desiring a dynamic planning capability. Cougaar is simply the
generic version of the ALP agent framework minus the embedded military logistics
domain properties and logic providers. Follow-on enhancements to security, scalability,
and survivability of Cougaar are the objectives of another on-going DARPA program,
UltraLog.

In short,

“Cougaar is a large-scale workflow engine built on a component-based,
distributed agent architecture. The agents communicate with one another by
a built-in asynchronous message-passing protocol. Cougaar agents
cooperate with one another to solve a particular problem, storing the shared
solution in a distributed fashion across the agents. Cougaar agents are
composed of related functional modules, which are expected to dynamically
and continuously rework the solution as the problem parameters, constraints,
or execution environment change.”(BBN Technologies, 2003)

3.3 The Agent Framework: a Detailed Look
The Cougaar agent is comprised of Plugin components and one Blackboard. The
Blackboard performs two essential functions. First, it is the communications channel for
the agent; all of its communications will originate or terminate here. Second, it serves as
the repository for any information needed by that agent to participate in the distributed
planning process. A Plugin is a software component that provides each agent with its
unique, domain-specific behavior. Plugins exchange information with each other,
asynchronously, through publish/subscribe transactions to the Blackboard. When
“subscribed-to” objects are introduced onto the Blackboard the Plugin is awakened by
the infrastructure and executed.

Figure 1. Cougaar agent anatomy

Agents collaborate through pair-wise relationships, or roles, with other agents. Agents
are aware of each other through these specialized relationships. Cougaar defines these
relationships as Customer Provider and Superior Subordinate. Cougaar
allows the developer to define his or her own pair-wise relationships if need be. This
inter-agent relationship is the way agents are aware of other agents that may be available
to collaborate on a given task. Any agent, at any time, may be participating in its
deployed environment in any role, and most likely an agent will be simultaneously
operating in a multi-role capacity with various agents.

Figure 2. Agent in multiple roles

Conceptually, a Cougaar plan is distributed throughout the agent society. Each agent
contains its portion of the overall plan on its blackboard in the form of PlanElements. A
PlanElement, in Cougaar-speak, is simply one piece of the overall plan, and typically,
agents will have many PlanElements on their blackboard. A workflow is just the
description and details of a process. The notion of PlanElements is how Cougaar
represents a workflow throughout the agent society. This specification is what allows
agents to share information and understand the context of the distributed plan. A
PlanElement is always associated with a task. The PlanElement provides traceable
information on the task’s progress and how it relates to other tasks or agents, for
example, they denote whether the task has been decomposed into subtasks or allocated to
another agent.

Tasks are the cornerstone of this workflow specification. Tasks provide the ‘who, what,
where, when, how’ problem statement definition. Tasks are defined by their grammar
elements (subject, verb, direct object, prepositions, etc.) For example, one may assign a
task to a transportation company to: Transport 6000 gallons of JP8 fuel to Bravo Co, Bn
1-8 Armor at 1600 hrs on D+5 day. And, an agent designed to handle transport tasks
would process this task request using the task grammar elements and task constraints as
to how it will process this unique directive.

Cougaar blackboard objects are used to define and distribute the plan throughout the
society. While any object may be posted to the Blackboard, typically, the only necessary
object types needed for collaborative planning are Tasks, Assets, and PlanElements.
Assets, while not covered in detail here, are simply the consumers of tasks. When tasks
are created or decomposed they eventually must be allocated to an asset. When tasks are
allocated to an asset Cougaar provides a mechanism for tracking estimated, reported, and
observed allocation results (projected or actual task completion status). This feedback
capability is provided by the underlying architecture and makes dynamic re-planning and
execution monitoring of a plan possible. This, too, is how the continuous refinement of a
plan can transcend from being merely feasible to (more) optimal (see figure below).

Figure 3. Dynamic re-planning and execution-monitoring concept

The dynamic replanning and execution-monitoring mode as described by the Cougaar
Architecture Document is the “dynamic negotiation between Agents and Plugins to
generate a feasible and ultimately optimized cooperative solution. The plan is based on
real world requirements, situation information and asset availability: what do I need to
do, what is the state of the environment and what can I use to accomplish my task? As
these variables change, the solution becomes stale and Cougaar forces replanning to
determine how to adjust the plan to compensate for those changes, if possible. Further,
Cougaar continually monitors the plan as it is executed, and forces replanning as
assumptions are modified in real-time.”(2003)

4. C2 Logistics-Planning Tool
Based on the capabilities of Cougaar and it being tailored for military applications, our
decision to use Cougaar for developing our agents was a natural fit. The Cougaar agent
framework provides the logical separation of the business processes from the data. This
separation of data and the development environment makes it easy to build distributed,
scalable, maintainable, upgradeable, interoperable, and most importantly, reusable and
sharable software components.

4.1 System Overview
Our system imports a digitized maneuver plan as the primary input to initiate the logistics
planning process in our logistics-planning tool. Our system, using planning factors, the
plan’s unit task organization, a tailorable force structure, and equipment usage profiles,
produces the fuel consumption and demand generation model. This model is used to
determine maneuver sustainment feasibility and to generate an initial log plan depicting
all logistic asset allocations to support the maneuver plan. Once the plan enters the
execution phase, changed external-events, conditions, and results of allocated tasks will
be used to modify and adjust the on-going plan as it is unfolding.

Figure 4. System overview of the C2 logistics-planning tool

The initial maneuver plan is parsed to extract units, tasks, planning factors, etc. The
maneuver plan is modeled using the information from the maneuver plan, yielding the
demand generation for the fuel needed to perform the mission. If the logistics
infrastructure can support the maneuver plan then a detailed logistics plan is developed
that depicts the logistic asset utilization needed to meet the plan objectives. If the
maneuver sustainment requirements cannot be met then, using a feedback loop to the C2
planning application, alerts and recommendations are exported to depict the shortfalls and
reasons for being unsupportable.

4.2 System Components
The components that make up our system are a collection of agents referred to as a
community. Our community of agents collectively models the maneuver plan to
formulate a corresponding logistics plan (LOGPLAN).

There are basically two types of agents that comprise our logistics-planning tool. First,
there are administration or management agents that handle system initialization and
synchronization of the entire system at startup. These agents coordinate the system at
startup to allow all the agents to initialize to completion before embarking on any
problem solving. This must be done to ensure that the agent society is accurately
represented before beginning. Once initialized, the system can elegantly handle changes
in the environment and incorporate these changes into the planning process. After
initialization these agents are no longer used.

The second and most important type of agent represents a military organization or unit.
These agents model the collective behavior of military units in the context of how they
behave in the given force structure in which they are operating. For our prototype, the
agents represent Task Force XXI (TFXXI) force structure military units. These agents
are loaded with business logic (plugins) representing the tactics, techniques, and
procedures as outlined in TFXXI doctrine. These agents are the workhorses of the
system. They provide the units with the capability to cooperate and collaborate to
negotiate a valid LOGPLAN. Unlike the management agents these agents are meant to
be active the entire time that the system is in the planning or execution-monitoring mode.

4.3 Developmental Items
The plugins that make up an agent and define its behavior are the only items that the
developer must create (or reuse). This paradigm is precisely why Cougaar is so attractive
as a development framework. The developer need not concern herself with developing
the intricate, underlying management infrastructure to make such a distributed system
possible. She only needs to build the business logic modules that make up an agent and
then deploy that agent. Building plugins to model the cognitive thinking process is a
difficult task in and of itself. The arduous task of modeling the command and control
domain is made orders of magnitude simpler through the use of Cougaar agents.
Consequently, the major effort in developing our tool was plugin development. The
remainder effort was simply configuring our environment for which to develop software
and verifying that the agents behave correctly.

Agent plugins encapsulate a unit’s behavior. A forward support company agent, for
example, may have a plugin that processes incoming refueling requests. Depending on
the unit and the appropriate doctrine, the unit may expand the request into subtasks or
allocate the task to another agent or asset (e.g. fuel truck and/or personnel). The designed
behavior of a plugin is always user-defined and will typically be consistent across units of
the same type or domain – making them reusable, sharable, and easily maintainable.

Plugins typically should be lightweight components that perform a specialized function
(e.g. processing specific incoming tasks, or managing a pool of assets.) A plugin can
comprehensively model all of an agent’s behavior but will likely be complex, inflexible,
and hard to maintain. A plugin will most likely fall into one of the following categories:
a graphical user interface (GUI) plugin that allows the user to interact with the system, a
domain plugin that models a portion of how agents do business within the community, or
a logical data model (LDM) plugin that is used to incorporate system-external data into
the agent society. Our tool implemented several plugins of each type in order to model
the processes, interoperate with other systems, and to display the state of the plan to the
user.

4.4 User defined ontology
Cougaar provides the infrastructure to help you model and develop a complete planning
system. Cougaar, however, is just a template for doing generic planning. It is still up to
the users to define things like: task grammar, asset classes, asset properties, task
decomposition, and how to score allocation results. Once the specialized vocabulary has
been developed you can begin to model the workflow management process in your
agents. Below is a sample of what a simple task definition table would look like.

Table 1. Sample Cougaar task grammar table and decomposition

4.5 Synopsis
The end of the LogC2 ATD signified the end of our development of the C2 Logistics-
Planning Tool. By program end we had developed a prototype that could model a small
set of maneuver plan activities, generate the consumption demand for the fuel needed to
prosecute the plan, and manage the resources needed to schedule fuel deliveries (retail
and wholesale planning) on the battlefield using Forward Support Company and Base
Support Company combat trains.

The user could navigate the entire plan across the distributed society and trace workflow
results using our web-based GUI. She could visually inspect plan shortfalls, task results,
and task schedules (sync matrices) at all levels of the force structure (down to Company-
level) and assets within the units as well. Our plan to incorporate user interaction to
trigger dynamic replanning was omitted due to time constraints. However, dynamic
replanning concepts were demonstrated using computer stimulated changes to the agent
environment (we had introduced modifications to unit inventory by simulating fuel truck
breakdowns during the execution phase of a plan).

5. Results
What we have found through our somewhat limited exposure to Cougaar is that there are
some situations where using the architecture is indispensable and there are other
situations where using Cougaar may be overkill. We outline from our experience where
Cougaar is a value-added development environment and where it may provide more
features than what is needed for a particular application.

There are many features of Cougaar that we have not utilized nor explored. Agent
mobility, for instance, was not a concern for our application so we did not use it.
However, Cougaar provides this capability. Likewise, we did not explore the data
persistence and fault-tolerant features of Cougaar either. We invite the reader to
investigate Cougaar further for consideration of using it for their agent development
framework or planning applications. We only provided an overview of the architecture to
extract the salient points of what benefits the architecture provides.

5.1 Benefits
The benefits of using Cougaar to build your C2 planning applications are many.
Depending on your planning needs and intricacy of the planning processes will determine
if Cougaar is right for your program. But, on the whole, Cougaar is tailored for
developing agent-based planning applications, and if your application domain is military
planning then Cougaar is really the only logical choice afforded to you.

Cougaar utilizes the classic superior/subordinate or customer/provider relationship
model. Any planning application or real world business process will map elegantly to
Cougaar for this reason, and the underlying architecture automatically provides you with
a wealth of features through these relationships (discovery, task allocation, scheduling,
etc.)

Cougaar is ideal where many agents can use a modeled process, or plugin. Cougaar
promotes software reuse and makes maintenance of code simpler. You can upgrade,
swap out, or fix one plugin and alter the behavior of all agents using it. This capability is
attractive when modeling military units in various operating environments or force
structures. A unit’s behavior can be changed to reflect its operating environment simply
by exchanging plugins.

Cougaar promotes reuse and information sharing across functional domains as well.
Highly detailed, specialized, planning systems can be developed and made available to

any other agent community that needs that planning service. For instance, our logistics-
planning tool could utilize an agent community developed elsewhere that specializes in
maintenance planning. When logistics assets break down in the field we could request
support from this maintenance provider. The ubiquitousness of Cougaar can lead to a
tightly coupled user library of planning services available to many agent-based
applications.

Cougaar facilitates the design process needed to develop planning systems. The hard part
is already done. The agent and workflow management infrastructure is provided. The
only design and development left to the software engineer is modeling and coding the
planning processes. While this is still no trivial task, designing and implementing a
monolithic, planning application that can do dynamic replanning and execution
monitoring from design to completion could take years longer. Cougaar, after hurdling
its learning curve, can decrease the time-to-market deployment of your system.

5.2 Weaknesses
There are a few drawbacks to using Cougaar. For one, it has an extremely steep learning
curve coupled with lengthy, esoteric documentation. However, being open source
software one can always delve into the code to understand the concepts, but this too
sometimes can be overwhelming. Unfortunately, in our experience we have found this to
be a major detractor for many would-be agent developers to use Cougaar.

Secondly, Cougaar is not well suited to low-bandwidth environments like tactical radio
networks. Kevin Barry of Lockheed Martin’s Advanced Technology Labs writes
“nothing is particularly lightweight. Many performance management issues seem
delegated. The event-driven behavioral model will start breaking down under heavy
event traffic.” (Barry, 2002) Cougaar does have a MicroEdition version that can be
found on their web site (at www.cougaar.org) that may alleviate this problem, but we
have not investigated this version.

Lastly, we found Cougaar to be too much overhead for simple planning modules.
Cougaar is not meant for simple planning applications where the powers of Cougaar
could not be fully realized. It still could be done and if proficient at Cougaar it may be
the approach to take. But, considering the learning curve and its heavyweight framework
it may not be prudent as the architecture to use in this instance.

5.3 Technology Readiness
The technology readiness of Cougaar is subjective. The viability of deploying agent-
based systems using Cougaar will vary depending on an organization’s policy regarding
their technology readiness level (TRL) guidelines. For military use the TRL guidelines
tend to be more restrictive than other organizations. For the most part, though, Cougaar
is just a utility framework that uses the Java programming language with some remote
method invocation (RMI) features of the language. The TRL issue and security
implications are the subject of the DARPA UltraLog program. The results of this
program will provide a more, in-depth maturity assessment.

http://www.cougaar.org/

6. Conclusion
In the real time execution and monitoring aspect, highly parallel applications involving
the generation and maintenance of dynamic plans with relatively loose-coupling and low-
bandwidth communications between parallel streams are too complex to model
monolithically (CAD, 2003). Cougaar was developed specifically to address this
difficulty in building these types of systems. Cougaar provides a way to incorporate
complex workflow management

In closing, we have found Cougaar to be a premier framework for developing any
software application where complex process modeling is needed, regardless of the
intended planning domain. Military logistics planning, or the difficulty in modeling it in
software, was the impetus for DARPA developing Cougaar. Our tool implemented
Cougaar agents as a logistics-planning tool to augment the in-theater C2 battle planning
process. After building our system, we could see how Cougaar could be applied
generically to any application needing a workflow management capability.

Understanding Cougaar’s concepts takes some time. It has a very steep learning curve.
However, the investment of time and effort needed to grasp the concepts is recouped as
increased productivity when one begins to design and build the implementation of your
planning application. And from our assessment, the more complex your planning process
is the more productivity you can expect to leverage – the architecture is that good.

We like the architecture so much that we have lobbied successfully to use Cougaar to
implement the dynamic planning and execution-monitoring capability of the embedded
sensor-planning engine for the Network Sensors for the Future Force (NSfFF) ATD.
This application will import sensor information needs and develop a sensor emplacement
strategy by mapping sensor objectives to sensor asset capabilities. Once the plan has
begun the real-time execution monitoring capabilities will incorporate environmental
changes, modified sensor objectives, and exploitive opportunities to update the current
sensor plan.

References

1. Barger, Mark, & Wong, Jason. (2004). Cougaar training slides, (Available from
http://www.cougaar.org)

2. Barry, Kevin. (2002) Cougaar and EMAA. [white paper]. Camden, NJ: Lockheed

Martin – Advanced Technology Labs.

3. BBN Technologies. (Version 9.2). (2002). Cougaar Architecture Document,
(Available from http://www.cougaar.org)

4. BBN Technologies. (Version 10.0). (2003). Cougaar Architecture Document,

(Available from http://www.cougaar.org)

5. BBN Technologies. (Version 9.4). (2002). Cougaar developer’s guide,
(Available from http://www.cougaar.org)

http://www.cougaar.org/
http://www.cougaar.org/
http://www.cougaar.org/
http://www.cougaar.org/

	An Exposé of Autonomous Agents in Command and Co�
	Claw.Matthews@us.army.mil
	An Exposé of Autonomous Agents in Command and Co�
	
	Christopher Matthews
	Abstract
	1. Preamble
	2. Objective
	2.1 Relevance to C2

	3. Background
	3.1 Sponsorship
	3.2 The Agent Framework: an Executive Summary
	3.3 The Agent Framework: a Detailed Look
	Figure 1. Cougaar agent anatomy

	4. C2 Logistics-Planning Tool
	4.1 System Overview
	4.2 System Components
	4.3 Developmental Items
	4.4 User defined ontology
	4.5 Synopsis

	5. Results
	5.1 Benefits
	5.2 Weaknesses
	5.3 Technology Readiness

	6. Conclusion
	References

