
A Real-Time Community-of-Interest Framework for
Command-and-Control Applications

Ray Paul

Department of Defense
Washington, DC

raymond.paul@osd.mil

W. T. Tsai
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287
wtsai@asu.edu

Abstract

The paper presents a real-time Community of Interest (COI) framework for Command
and Control (C2) applications. The overall goal is to support superior decision making,
COIs’ flexible synchronization and collaboration, and real-time communication. The
extended service-oriented architecture (SOA) based framework consists of three layers
including mission layer, COI service layer and support layer. Mission service layer
consists of a set of mission/tactical services. COI service layer provides COI coordinator
service, policy specification/evaluation services, situation awareness and dynamic
reconfiguration services. Overall scenarios of COI’s services are described to illustrate
the relationships among the services. The support service layer consists of discovery
services, messaging services, security service, scenario specification services,
quality-of-assurance service, data storage/retrieval services, and maintenance services.
This paper focuses on COI service layer. A prototype is developed to demonstrate the
main proposed techniques, approaches and the process using an example COI of
bookstores and publishers. It has three layers including data collection/filter layer,
analysis layer and presentation layer.

Keywords: Community of interest, COI services, Coordinator services, Mediator
services, Collaboration services, Situation awareness, Data classification, Service mining

1. Introduction

Community of Interest (COI) is receiving significant attention recently as it is used as a
principal component for future C2 systems such as GIG (Global Information Grid) and
NCES (Net Centric Enterprise Systems). A COI is a place where interested parties can get
related information in real time, and each party can contribute to the discussion and share
information with each other. In this way, a DoD commander can receive the needed
information, download the related knowledge, participate in decision making, make

1

strategic, operational, and tactical plans, issue commands to soldiers, and monitor progress
in real time [2].

This paper will propose a COI framework for C2 applications in a network-centric
environment. This framework has the following features:

• Service-Oriented Architecture (SOA): As DoD is embracing SOA for its
applications such as NCES and GIG Enterprise Services (GES), the COI will be
implemented using SOA because an application running on SOA is inherently
survivable.

• Situation awareness and analysis: Due to the specialized nature of COI, each COI
has its own situation assessment algorithms to determine the current situation. The
COIs also allow participants to contribute and present new situation assessment
algorithms to meet the changing environment.

• Real-time messaging and alerts: The proposed COI framework is a real-time
application where commanders participating in COIs can send and receive
time-critical messages, and each COI can send and receive real-time alerts to and
from other COIs.

• Fault-tolerant computing: The COI needs to be survivable in case of enemy’s
attacks and must be able to recover occasional failures by employing dynamic
reconfiguration;

• Database support: Each COI has its own database, can receive, process, filter, and
retrieve information from its database in real time, and it can send its data to other
concerned COIs.

• Knowledge engineering and processing: The data stored in the COI databases
must be processed for easy retrieval and application. A processed knowledge is
knowledge that be used, interpreted and applied.

• Data mining: A specific technique for knowledge processing is data mining where
abnormal data, trends, statistical characteristics, relationships among data can be
automatically classified and detected by powerful searching and analysis tools for
C2 decision-making;

• Network computing: Each COI will run on a network-centric enterprise system
for interoperability, survivability and knowledge sharing;

• Multimedia: Each COI will have a multimedia presentation with video, photos,
voices, map, pictures and texts. These data need to be transmitted reliably and
securely over a DoD enterprise network.

The paper is organized as follows. Section 2 illustrates the COI architecture and describes
the main COI services. Section 3 demonstrates a prototype. Finally, Section 4 concludes
the paper.

2. COI Architecture

Each COI consists of core services that represent the main capabilities and common

2

services that are shared among most COIs (Figure 1). The architecture is divided into three
layers with the services at a higher layer using services of the lower layers.

Mission/Tactical

Services

Dynamic
Recofiguration

Policy Specification &
Evaluation

Situation AwarenessCOI Coordinator

Discovery Messaging Security

Data Acquisition Data Storage

Membership
Management

Scenario Specification Test & Evaluation

Mission Services Layer

COI Services Layer

Support Services Layer

Simulation

Mission/Tactical
Services

Mission/Tactical
Services

Maintenance

Data Classification

Service Mining

Figure 1. COI Architecture

The Mission Services Layer contains mission-specific services for specific C2 applications.
Modern warfighting is agile, and these services need to change at runtime in real time when
new services are created and obsolete service become deactivated. Services in this layer
provide individualized COI services for warfighting and they exchange data, information,
decisions, knowledge and alerts with each other to achieve the overall mission.

The COI Service Layer contains common services needed to implement specific C2 COIs.
These common services include membership management, C2 policy management,
dynamic reconfiguration, and situation awareness management.

• Membership Management Service (MMS): The service provides mechanisms for
users to register/un-register with specific COIs, and also manages connection
among individual COIs. A COI may register with another COI to get real-time data
and alerts, a COI may be a supervisor of another COI, and a steady stream of data
will flow from one COI to another COI. In fact, a COI may have other relationships
with other COIs, and this is discussed in Section 2.2.

• Policy Specification/Evaluation Service (PSS) [13]: The proposed COI framework
supports policy-based computing where C2 policies are specified and used in
various computing including situation awareness and dynamic reconfiguration.
These policies will be specified using a Policy Specification and Execution
Language (PSEL), and policies stated in this language can be executed in real time
at runtime to determine system properties such as security and reliability. PSES
allows decision makers and commanders to issue appropriate commands without
specifying the details of the command. C2 policies in this framework can be

3

changed at runtime by participating COIs, and because computing is based on
policies, thus once policies are changed, the behaviors of the system are changed
(See [6] for details).

• Situation Awareness Service (SAS): This kind of services collect data from sensors
and other participating services, analyze the data received, and issue alerts to
concerned COIs and participants.

• Dynamic Reconfiguration Service (DRS): The service supports dynamic
reconfiguration in a SOA in real time at runtime [6]. The existing SOA such as
Microsoft’s .NET allows runtime service location, binding and execution. However,
once a decision is made, the same service will be called over and over again unless
another round of service discovery and binding is performed, and this must also be
initiated by an attendant. The proposed COI framework is different as it has DRS
that can continuously monitor each participating service, and initiate a
reconfiguration process, and implement the process using the stated C2 policies.
With DRS, individual service can be added, removed, and replaced at runtime
without interrupting the system operations.

• Service Mining Service (SMS): During reconfiguration, new services must be
identified to replace the failed service. This can be done by mining the existing
services to find an effective mapping between a request and the existing services.

• Data Classification Service (DCS): This use the data mining approach to classify
the data collected into appropriate categories for decision making [3] [4].

The Support Service Layer provides basic services needed to support common COI
services. Many of these services provide similar functionalities as those of core enterprise
services in NCES. As the proposed COI framework has the dynamic reconfiguration
capabilities, many of these basic services need to have real-time behavior and must be
involved in continuous monitoring and data collection.

• Discovery Service (DIS): The service provides discovery in traditional SOA such
as .NET. However, in addition to collecting static information such as functionality
and interface of services in an SOA, these discovery services also need dynamic
information about available services in the network including their operational
profile, current status (not-activated, idle and ready, working, busy, overloaded, and
failed), location, security (unclassified, secret or top secret), scheduled tasks,
maintenance schedule, and backup data information.

• Messaging Service (MES): The service provides event-driven messaging to COIs
triggered by services such as policy, discovery, situation awareness & dynamic
reconfiguration, COI coordinators, security, and storage. The events form complex
hierarchy with attributes of reliability, survivability, security & non-repudiation,
and timely delivery.

4

• Security Service (SES): The service ensures system security including encryption,
authentication, filtering, and security policy enforcement.

• Scenario Specification Service (SSS): The service allows users to specify system
requirements in a scenario specification language and ACDATE model [8] [9].
The scenario/ACDATE model is useful for system verification including runtime
verification and monitoring, simulation, C2 policy enforcement and static analysis
such as completeness and consistency checking.

• Test and Evaluation Service (TES): Scenario-based test supports automated test
case/scripts generation using pattern-driven techniques and state models as well. It
also supports distributed test execution.

• Simulation Service (SIS): This kind of services simulate system behaviors once the
system scenarios are specified using the ACDATE model, and allows various
analyses such as security analysis, completeness and consistency analysis,
concurrency analysis, timing analysis to be performed at runtime in real time.

• Data Acquisition Service (DAS): The service collects data for situation awareness
analysis, runtime monitoring and evaluation, security analysis, and test &
evaluation.

• Storage Service (STS): The service provides data storage and retrieval capabilities.

2.1 COI Action Initiations

COI services may be initiated in following ways:

1) Mission-driven activities: This may happen when a commander issues a new C2
policy in a COI, and such change of the C2 policy will immediately trigger a series
of actions in the COI framework. For example, when a commander decides that it is
necessary to react to a specific situation detected earlier, the commander can update
the relevant C2 policies, and the updated C2 policies will alert other commanders in
other COIs to react accordingly.

2) Situation-driven activities: This kind of activities starts with a detection of a
concerned situation such as abnormal/suspicious/attack behaviors based on data
received from data collection services or sensors. These data must be analyzed by
the situation awareness services or COIs according the stated C2 policies. Once
such behaviors are detected, the system will respond to these behaviors according
the previously stated C2 policies.

3) Collaboration-driven activities: This kind of activities will be generated based on
collaboration among commanders and decision makers participating in various
COIs. Note that multiple commanders may participate in one COI, and multiple

5

COIs may collaborate with each other with different collaboration strategies (such
as peer-to-peer or supervisor-to-subordinate) under different C2 policies.

2.2 COI Coordinator Services

The COI coordinator is a specific service that provides COI coordination including
mediation within a COI, collaboration among COIs, and overall optimization in terms of
benefit/cost analysis under C2 policies and constraints. Each COI has at least one COI
coordinator and this is shown in the following figure.

COI Coordinator A

Mission/Tactical Services

(a) (b)

Collaboration

Dynamic
Recofiguration

Policy Specification &
Evaluation

Situation Awareness

Scheduling Services

COI Coordinator B

Mission/Tactical Services

Dynamic
Recofiguration

Policy Specification &
Evaluation

Situation Awareness

Scheduling Services

Figure 2. Overall COI Scenarios

Mediator Services within a COI

The COI coordinator needs to interact with other services such as PSS, SAS and DRS,
within the COI. The mediation can follow the blackboard model or priority model. In the
blackboard, participating services will interact with each other by sharing a common
working space, and each service will provide its service upon receiving specific data in the
working space [7]. The priority model assigns priorities to each service, and participating
services will get its turn for execution according to the priorities [1]. The priorities may be
changed at runtime by C2 policies so that the system will have different behaviors at
different times, e.g., peacetime or wartime. The COI coordinator may also work with a
hybrid model, i.e., integrating both blackboard and priority model. This kind of mediation
promotes loose coupling by keeping the services from referring to each other explicitly
regarding COI activities.

Collaboration Services

The proposed COI framework is a distributed network with individual COIs on a secure
DoD network. Each COI focuses on a specific area of applications or data, and each COI
has its own unique data and knowledge processing rules, deductive capabilities, filtering,
and classification rules for its specific data. However, these COI also can cooperate with
each other by providing real-time alerts and data to fellow COIs in the network as shown in
 Figure 3 below. COIs may need to register with other COIs to get their real-time alerts and

6

updates.

The relationship among COIs can be different, for example:

• Supervisor-to-subordinate relationship: The supervisor COI can send command to
and impose control policy on the subordinate COI, which needs to report the
results back. The relationship is asymmetric and transitive. That is if COI1 is a
supervisor of COI3, then COI3 only can be a subordinate of COI1. The relationship
cannot be reversed. Assume that COI3 is the supervisor of COIn-1, then COI1 is
also a supervisor of COIn-1. This relationship is transitive.

• Peer-to-Peer: Each COI has unique characteristics and provides specific services
to the other. They may cooperate with each other to achieve common goals, than
compete for resources and tasks. The relationship is symmetric and transitive.

• Competitor-to-competitor: Each COI has similar characteristics and provides
similar capabilities regarding the requests. However, they may have their own
goals, and compete for the limited resources. The relationship is symmetric and
transitive.

• Winner-to-Winner: Although each COI may achieve its goal by itself, the
cooperation with other COIs provides better solutions. The goals are independent,
and without resource competition. Mathematical game theory can be utilized to
maximize each player’s goal or minimize each player’s loss. The relationship is
symmetric and transitive.

COI2 COI3

COI1

COIk

COIn COIn-1

Peer-to-Peer

Competitor-to-Competitor

Competitor-to-Competitor

Supervisor-to-Subordinate

Supervisor-to-Subordinate

Winner-to-Winner
Competitor-to-Competitor

Supervisor-to-Subordinate

Figure 3. Net-centric COIs

2.3 Data Classification

The first step of classification is to build the model to tune the parameters in the
classification rules using training data with the classification algorithms (Figure 4). In the
second step, the accuracy of the rule-based model needs to be estimated. The holdout
method is a simple technique that uses a test set of class labeled samples. These samples are

7

randomly selected and are independent of the training samples. The accuracy of a model on
a given test set is the percentage of test set samples that are correctly classified by the
model. If the accuracy of the model is considered acceptable, the model can be used to
classify future data for which the class label is not known.

Training Data
Classification Algorithm

Classification
Rules

Test Data New Data

First Step

Second Step

Figure 4. Data classification process

Data can be classified according to the attributes, such as frequency of sending/receiving
(Sparse, Often, Intensive), level (Low, Guarded, Elevated, High, Severe), source (Top, Peer,
Subordinate), and type (Warning, Alerting, Mandatory). The model is constructed by
analyzing data stored in database. The data tuples collectively form the training data set
used for a better understanding of the data contents. In the second step, the model is used
for classification.

A typical warfighting scenario with classification services using data mining techniques is
shown as follows:

1. The sensor probes suspicious signals from certain location, and posts the data to
distributed database using database storage services, and to profiles maintained by
discovery services.

2. Discovery services match events/signals (producer) to listeners (consumer) with
the profiles, prepare the trigger alert messages and send to messaging services.

3. The messaging services notify the consumer with the messages in real-time.

4. The notified edge user pulls the data from the distributed database. The storage
services provide the delivery with integrity and in timely fashion.

5. Before taking any action, the pulled data need to be analyzed and interpreted.

2.4 Service Mining

During reconfiguration, new services must be identified to replace the failed service. This
can be done by mining the existing services. Service mining is different from the traditional
data mining [5] in several ways: 1) It deals with runtime services rather than static data,
because each service needs not only static (e.g., functionality) but also dynamic

8

information (e.g., capability, binding, and interoperability), this complicates the mining
process; 2) the selected services may need to be verified at runtime before they can be used
to ensure that the service keeps the same level of performance; 3) If the failed service has
some state information, it is necessary for the replacement service to start from this
particular state before resuming the computation. In other words, the distributed
monitoring agent is also responsible to keep track of the state information for the
monitored service, and in case of reconfiguration, the agent retrieves the saved state for the
replacement service.

The service-mining problem can be described as finding an effective mapping between a
request and the existing services. Given the large number of services available in a network,
it is necessary to organize the existing services into a service hierarchy (or a service tree) to
have an efficient mapping between a request and services. The following are key issues in
service mining:

• Creating a service tree by applying hierarchical clustering algorithms to services;
• Extending the service tree with new services by designing incremental learning

algorithms for hierarchical clustering; and
• Refining the service tree by reorganizing services to optimize the hierarchy with a

compact structure.

2.5 Situation-Awareness Service (SAS)

An SAS consists of a SA decision manager (SADM), which specifies reconfigurable
policy/rules for situation analysis and communicates with other services (e.g., COI
Coordinator); and a set of distributed SA action managers (SAAM), each of which
controls a group of sensors or any data collectors by gathering and fusing data input. Figure
5 shows the Situation Awareness services architecture.

• SADM receives and analyzes high-level command/control messages or
COI-related requests, and specifies the types or categories of situations/data it
needs to collect and to support decision making; and determines the
process/inference/prediction rules for situation analysis, which demands
domain-specific knowledge. SAAM performs a variety of analyses on the rules
including completeness and consistency [12], and priority assignment. The rules
are stored into database in such a way that they are easy to be retrieved.

• The distributed SAAMs extract the reconfigurable rules and create detailed SA
actions executed on distributed sensors/monitors, including tracking targets,
frequency of scanning/tracking data, which are posted and made available in GIG.
Also SAAMs need to handle the security of sensor data, including acquisition,
calculation, and transmission.

• Once SADM fuses and aggregates information from distributed SAAMs, it may

9

need to use other services, such as Scheduling services for scheduling to handle
detected events, Simulation for execution/evaluation of rules, Verification services
for rules verification and validation, and Data Mining services for prediction.

SA Decision Manager

Policy/Commander

Scheduler

COI Coordinator
Simulation

Verification

Risk Analysis

Reconfigurable policy/rules

SA Action Manager k

SA Action Manager 1 SA Action Manager n

Sensors/Monitors 1

High-level command/control

Sensors/Monitors 2

Sensors/Monitors i

Sensors/Monitors m

COI-related
request

Specify

Data

Data

Data
Data

Global
Information

Grid
(GIG)

Pull data

Issue
command Issue

command

Issue
command

Request

Send data

Send data Send dataSend data

Request Request Request

Use

Feedback

Data Mining

Feedback

Store Data

Security

Use

Figure 5. Situation Awareness Services Architecture for Net-centric COIs

 Table 1 and Table 2 in the Appendix summarize the capabilities, functionalities and
technologies used in COI service layer and support layer, respectively.

3. Prototype of COI

A prototype model for COI has been developed. The model enables autonomous as well as
collaborative decision making. Each COI focuses on a specific area of applications or data,
and each COI has its own unique data and knowledge processing rules, deductive
capabilities, filtering, and classification rules for its specific data. So each COI is
decentralized for reliability and survivability, and hence autonomous. COIs cooperate with
each other by providing real-time alerts and data to fellow COIs in the network.
Participants of COIs can make coordinated C2 decisions to achieve a mission. Also, if
needed, a COI can delegate tasks and responsibilities to other COIs and take a decision
depending on the results from the COIs.

3.1 Extended SOA for COI model

The current WS architecture does not address real time aspects and dynamic
reconfiguration mechanism. Specifically, the DoD enterprise C2 system must address

10

reliability, safety, security, and performance aspects that commercial WS architecture
does not address at this time. Also, the DoD enterprise C2 systems must address the
system as well as the network aspects in addition to just the application aspects as in the
commercial WS architecture. These additional requirements make the proposed SOA
unique for DoD C2 applications. In the proposed SOA model [6] each service will be
specified using the Interface, Scenario, Constraints (ISC) convention defined as follows:

• Interface Specification
 Input/Output parameters
 Communication protocols
 Interfaces with other sub-systems

• Scenarios Specification
 Specify the service scenarios using the ACDATE model
 Specify interactions with other sub-systems

• Constraints Specification
 Based on the scenario model and ACDATE model
 Specify the properties of the services must have such as

• Reliability, availability, security, timing, concurrency, performance,
sequence, safety

• These constraints must be addressed at runtime to assure dependable
computing.

The COI model is implemented using SOA so that all of its internal layers are organized
into the service architecture. In the SOA, every computing unit is a service and each
service is treated the same. All the services in the COI group publish their interface,
adhere to constraints and also need to specify the operational scenarios of each service.
Each service in the COI group will be specified using the ISC convention.

I S C I S C

I
S
C

I
S
C

I
S
C

Inter COI Service
Directory

Data organization
service

Analysis service

Presentation service

Intra COI Service
Directory

I
S
C

I
S
C

I
S
C COI Group

Data organization
service

Analysis service

Presentation service

Intra COI Service
Directory

COI Group

Collaboration

Figure 6. Extended SOA with ISC for COI
Note that a service can be formed by composing several other services, and in this case,
the overall service has its own ISC specifications, and each of its sub-services also has its
own ISC specifications. In our model, the COI group takes the services of data
organization, analysis and presentation layers using the service directory. The service
directory publishes all the services that are available in the COI group. Each COI group is

11

itself a service, implemented as an autonomous unit, and can utilize the services of other
COI groups if necessary. The COI group A can take the services of other service
providers from a different COI group B in case of disruption or failure.

3.2 COI Prototype Design

The prototype developed has three layers: Data Organization Layer, Analysis Layer, and
Presentation Layer as shown in the following figure.

Data Visualization/

Analysis Report Generation Query Support

Predictions Messaging/ Action Situation Awareness

Data Acquition Data Storage Data Filtering

Data Analysis Decision Making Pattern Detection

Presentation Layer

Analysis Layer

Data Organization Layer

Figure 7. Functional View of Prototype

The following describes the three layers.

Data organization layer: This layer deals with data collection, filtering and storage.
Data are collected from different sources and filtered based on filtering rules. Domain
data set is passed to the analysis layer. This layer uses open source software tool called
"Weka" [16] for data filtering and data classification.

Analysis Layer: This layer has three main functional blocks.
Classification block: This block is used to classify the data. Popular techniques used in
data mining for classification are decision trees and clustering. Classification rules are
obtained after classifying data. First, training data is fed to the classification block to train
it in the desired classification. The block should classify data based on the training. After
classification is complete, the information is passed on to the decision module.

Decision module: The inputs to this module are data from the classification block,
historical information, situation awareness information, and information from other COIs.
This module finds useful patterns in the data and stores them in the pattern repository. It
lists all the patterns identified in the data. Also, it generates the list of possible actions
that the COI need to take, and messages/alerts to other COIs.

Pattern repository: This block stores patterns. Basic patterns are identified and stored in
this repository in advance. The decision module, after identifying the patterns in the data,
compares them with the patterns in the repository and, if not present, stores them in the

12

repository.

Presentation Layer: This layer provides a user interface to display the results of the data
analysis. The following functionalities are available.
Data visualization and analysis: The data and interesting dependencies in data are
represented in the form of tables, charts.
Report generation: The possible actions to be taken by COI, messages and alerts to other
COIs are represented visually.
Query support: User query results are presented here.

3.3 Data Filtering

Data collected are often incomplete, noisy, and inconsistent. Data needs to be
preprocessed so as to improve the efficiency and ease of mining process. Some of the
data preprocessing techniques are data filtering (data cleaning), data integration, data
transformations, data reduction. Data filtering routines attempt to fill missing values,
smooth out noise, and correct inconsistencies in the data. Some of the basic methods
employed for data filtering are filtering data based on missing values, noisy data and
inconsistent data. In the data organization layer of the COI, Weka tool is used for data
filtering.

Domain Filters: Domain filters are defined to filter data based on the scope and
functionality of COI. Every COI has its own domain policy specified. Filtered data from
the Weka tool can be run through domain filters to get the domain specific data.

3.4 Example

A hypothetical bookstore is used as an example to implement the proposed COI model. It
has customers, bookstore and book publishers, and is implemented on .NET platform
 [14]. Services of COI groups for tracking customer behavior, next purchase, purchase
interval, tracking old and new books and tracking bookstores are implemented as shown
in the following figure.

Figure 8. COI Groups in the Bookstore Example

13

After data are collected, they are filtered using the Weka tool, which is a collection of
machine learning algorithms for data mining. Decision tree algorithm is used for
classification. The following figure illustrates the filtering process using Remove Missing
Value filter in Weka.

Figure 9. Data Filtering using Weka

A brief description of the some of the scenarios is given here. A scenario where customer
needs to buy a new book is considered. Customer objective is to find the book for lowest
price. Customer requests the COI group “Tracking new books”. This COI uses the “Data
organization service” which collects the data about the book requested by the customer
from different bookstores. The “Analysis service” finds the best bookstore for the
customer to buy the book by taking the book prices/discounts, historical data, and
information/alerts from other COIs into consideration. The results are presented to the
user using the “Presentation service”. The following figure shows the results of
presentation service giving the comparison of book prices in different stores.

0

50

100

150

200

250

B S 1 B S 2 B s 3 B S 4 B S 5 B S 6 B S 7 B S 8

P ric e B efore D is c ount
P ric e Afte r D is c ount

Figure 10. Comparison of Book Prices

14

A scenario where bookstore needs to track customer behavior in various age groups is
considered. Bookstore contacts the “Customer behavior” COI. This COI communicates
with “Tracking customers next purchase” and “Tracking customer purchase interval”
COIs to make a coordinated decision and returns the analysis results to the bookstore.
Domain filters are used to get the data required to a particular age group. This scenario
illustrates the coordinated decision making using multiple COI groups. Also, scenarios
where publisher needs to track book sales in the bookstores, and customers requesting old
and new book information are implemented. The following figure shows the
implementation of COI services and the class view in .NET.

Data organization ,
analysis, presentation
services in a COI group

Class view

Figure 11. Services and Class View

4. Conclusion and Future Research

A SOA based real-time COI framework for C2 applications, which consists of three
layers including mission layer, COI service layer and support layer, is described. This
paper focuses on COI service layer. A prototype is developed to demonstrate the main
techniques using COIs of bookstores and publishers. Future work includes exploring the
algorithms to address collaboration, synchronization, real-time scheduling, security and
privacy protection, scalability, survivability, and service mining.

Reference:

[1] A.D. Baker. A survey of Factory Control Algorithms That Can Be Implemented in
a Multi-Agent Heterarchy: Dispatching, Scheduling, and Pull. Journal of
Manufacturing Systems, Vol. 17, No. 4, 1998, pp. 297-321.

[2] L. Diedrichsen, “Command and Control: Operational Requirements and System
Implementation”, Information and Security, Volume 5, 2000.

[3] S. Krishnaswamy, A. Zaslavsky, S. W. Loke, “An Architecture to Support Data
Mining Services in E-Commerce Environments”, Second International Workshop

15

on Advance Issues of E-Commerce and Web-Based Information Systems
(WECWIS 2000), June 2000.

[4] S. Krishnaswamy, A. Zaslavsky, and W. S. Loke, Towards Data Mining Services
on the Internet with a Multiple Service Provider Model: An XML Based Approach,
Electronic Commerce Research (Special issue on Electronic Commerce and
Service Operations), 2(3), August 2001.

[5] H. Liu, A. Mandvikar, P. Foschi, and K. Torrkola. “Active Learning Using
Ensembles for Image Mining”. In Proceedings of IJCAI, Acapulco, Mexico, 2003,
AAAI Press.

[6] R. P. Paul, W. T. Tsai, “Service-Oriented Architecture for Command and Control
Systems with Dynamic Reconfiguration”, to appear in Proc. of 2004 Command and
Control Research and Technology Symposium.

[7] N. M. Sadeh, “A Blackboard Architecture for Integrating Process Planning and
Production Scheduling”, Concurrent Engineering: Research and Applications, vol.
6, No.2. pp. 88-100, 1998.

[8] W. T. Tsai, L. Yu, F. Zhu, R. Paul, "Rapid Verification of Embedded Systems
Using Patterns", Proc. of IEEE COMPSAC, 2003, pp. 466-471.

[9] W. T. Tsai, L. Yu, R. Paul, C. Fan, X. Liu, Z. Cao, “Rapid Scenario-Based
Simulation and Model Checking for Embedded Systems”, Proc. of 7th IASTED
International Conference on Software Engineering and Applications, 2003,
(SEA2003), pp. 568-573.

[10] W. T. Tsai, A. Saimi, L. Yu, R. Paul, “Scenario-based Object-Oriented Test
Frameworks”, Proc. of 2003 Third International Conference on Quality Software
(QSIC03), pp. 410-417.

[11] W. T. Tsai, C. Fan, R. Paul, and L. Yu, “Automated Event Tree Analysis from
Scenario Specifications”, Proc. of IEEE ISSRE, 2003, pp.240-241.

[12] W. T. Tsai, R. Paul, L. Yu, X. Wei, and F. Zhu, “Rapid Pattern-Oriented
Scenario-Based Testing for Embedded Systems” to appear in Software Evolution
with UML and XML, edited by H. Yang, 2004.

[13] W. T. Tsai, “Scenario-based Policy Specification and Execution Language”,
Technical Report, Arizona State University, 2004.

[14] A. Troelsen, C# and the .NET Platform, Addison Wesley, Reading, MA 2001.
[15] Web Services Architecture,W3C Working Group Note 11 February 2004,

http://www.w3.org/TR/ws-arch/.
[16] Ian H. Witten and Eibe Frank, Data Mining: Practical machine learning tools with

Java implementations, Morgan Kaufmann, San Francisco, 2000.

16

http://www.w3.org/TR/ws-arch/

Appendix:

Table 1. COI Service Layer

 Service name Capabilities and functionality Technologies used

Membership Management
Services (MMS)

• Provide mechanisms for users to
register/un-register with specific
COIs, manages connection among
individual COIs

Directory service,
Database indexing,
Searching

Policy Specification/Evaluation
Services (PSS)

• COI framework supports
policy-based computing. Policies
are specified in PSEL and policies
can be extended in real time at
runtime to determine system
properties such as security and
reliability

Policy Specification,
Policy execution, Policy
enforcement

Situation Awareness Services
(SAS)

• Collect data from sensors and other
services, analyze the data received,
issue alerts to concerned COIs and
participants

Data mining, Data analysis,
Classification, Pattern
detection

Dynamic Reconfiguration
Services (DRS)

• Support dynamic reconfiguration in
SOA in real time at runtime

• The COI has DRS that can
continuously monitor each
participating service, initiate
reconfiguration process, and
implement using the C2 policies

• Services can be added, removed at
runtime without interrupting the
system operations

Directory service,
Distributed monitoring,
Data mining, Profiling,
Authentication

Data Classification Services
(DCS)

• Classify data collected using data
mining approach to support
decision making

Data mining
Decision making

Service Mining Services (SMS) • Dynamically and optimally match a
request to existing services

Data mining
Operations Research

17

Table 2. Support Service Layer

Service name Capabilities and functionality Technologies used

Discovery Services (DIS)

• Provides discovery in traditional
SOA such as .NET

• In addition to static information,
these discovery service also needs
dynamic information about available
services in the network including
their operational profile, current
status, scheduled tasks, maintenance
schedule and backup data
information

Naming and directory
services

Messaging Services (MES) • Provide event-driven messaging to
COIs triggered by services such as
policy, discovery, situation
awareness & dynamic
reconfiguration, security and storage
which form complex hierarchy with
attributes of reliability, survivability,
security & non-repudiation, timely
delivery

Communication

Security Services (SES) • Services ensures system security
including encryption, authentication,
filtering and security policy
enforcement

Encryption, Security
models

Scenario Specification Services
(SSS)

• Allow users to specify requirements
in a scenario specification language
and ACDATE model which helps in
system verification, simulation, C2
policy enforcement, completeness
and consistency checking

Scenario model, Scenario
specification, Scenario
execution, Simulation,
Completeness and
Consistency

Test and Evaluation Services
(TES)

• Supports automated test case/scripts
generation using pattern-driven
techniques and state model

• Support distributes test execution

Test script generation,
Verification, Interface
specification

Simulation Services (SIS) • Once system scenarios are specified
using ACDATE model, these
services simulate system behavior to
allow various runtime analyses such
as security analysis, concurrency
analysis, timing and completeness
and concurrency analysis

Distributed simulation,
code generation,
concurrency

Data Acquisition Services (DAS) • Collect data for situation awareness
analysis, runtime monitoring and
evaluation, security analysis and test
and evaluation

Semantic web mining,
Data warehousing

Storage Services (STS) • Provide data storage and retrieval
capabilities

Databases, Data
clustering, Data storage,
Information retrieval

18

