2004 Command and Control Research and Technology Symposium
The Power of Information Age Concepts and Technologies

An Environment for Comparing Command and Control Architectures

Dr. John James and MAJ Fernando Maymi

Corresponding Author: John James

Department of Electrical Engineering and Computer Science, USMA
Thayer Hall, Building 601, Room 1107

West Point, NY 10996

Phone: 845 938-5563

FAX: 845 938-5956

John-James@usma.edu

USMA 2 April 2004

Abstract:

As the Services move to transform joint and coalition operations, a new capability being
contemplated for the transformed forces is synchronizing manned-combat-vehicle and
unmanned-combat-vehicle target engagements. However, we are just beginning to work
out the details for implementing such a symphony of coordinated human and machine
decisions and actions. One challenge in realizing an implementation is the selection of
command and control architectural components and their relationships that will provide
the precision and flexibility needed for joint and coalition warfare. We describe an
experiment in building an environment for comparing command and control
architectures. The experiment involves extending the One Semi-Automated Forces
(OneSAF) simulation environment to support analysis of alternative architectures for
integration of control of autonomous combat vehicles with control of manned combat
vehicles. The autonomous combat vehicle being simulated is the Loitering Attack
Missile (LAM) which is being considered as a supporting indirect fire weapon for the
Future Combat System (FCS).

Background

As with current operations, future Joint Operations will require availability a range of
direct-fire and indirect-fire (non-line-of-sight) weapons to engage enemy targets. One
such weapon system being considered is the non-line-of-sight Launch System (NLOS-
LS) with associated indirect-fire missiles: the Precision Attack Missile (PAM) and
Loitering Attack Missile (LAM) [1]. The NLOS-LS set of systems is expected to be a
key component of a suite of indirect fire weapons available to future commanders [2].

An active area of review, analysis and research has been in the consideration of the
impact of the ongoing revolution in information systems to command and control systems
[3, 4, 5, 6]. The notion that “information age” warfare is in some sense “network centric”
implies a capability to share information across networks to dynamically “understand”
the state of the battlespace better than your opponents (information dominance) and
dynamically alter plans based on that understanding (i.e. “get inside the decision cycle”
of opposing force commanders).

Fundamental to these considerations for future command and control systems is the issue
of system architecture comparison and selection. This paper will provide an overview of
an architecture comparison environment being implemented for an undergraduate project
in control system architecture comparison. There have been many efforts in software
architecture comparison over the past ten years [7, 8, 9]. The cadet work will focus on
design and implementation of airspace deconfliction algorithms. For that area, they will
compare three different missile control architectures: centralized control,
semiautonomous control, and autonomous control. They will also "brainstorm"
Information Assurance (IA) issues. In order for the cadet deconfliction work to be done,
the missiles, targets, and obstacles have to be identified and the simulation dynamics
provided.

* This work was partially supported by an endowment establishing
the Adam Chair in Information Technology. The views expressed
herein are those of the authors and do not purport to reflect the
position of the United States Military Academy, the Department of
the Army, or the Department of Defense.

USMA 2 April 2004
-3-

Currently, we have the of the OneSAF Testbed Baseline (OTB) simulation environment
as modified by the U. S. Army Communications Enectronics Command (CECOM) under
a Defense Advanced Research Projects Agency (DARPA) project. The DARPA project
has resulted in the capability to control simulated Future Combat System (FCS)
unmanned ground vehicles. Faculty will modify the CECOM interface for ground
vehicles to enable providing the data needed by the cadet project. However, the dynamics
for the targets, obstacles, and missiles will also have to be added. The plan is to have
faculty modify a solution available from the Mathworks that implements some prior work
in controlling a swarm of missiles to engage a set of targets [10].

Partitioning of system components

The cadet project will compare different command and control architectures so a high-
level task is to decide upon an approach for architecture comparison. A fundamental issue
in comparing command and control architectures is the relative effectiveness of the
architecture in supporting development and execution of a commander’s concept of the
operation. For the cadet project we will not explore the semantics of commander’s intent
in the framework of a concept of the operation but constrain the problem at hand to issues
surrounding implementing alternatives for centralized, semi-autonomous and autonomous
engagement of targets by loitering missiles. Such a problem requires close attention to the
details of communicating time-sensitive information among architecture components.
Such time-sensitive information includes: updated target lists, updated target
prioritizations, changes in the defense condition, and changes in the rules of engagement.
The cadet project Software Requirements Specification (SRS) states that:

There are three architectures that must be examined for use in the system:

Centrally controlled, man-in-the-loop semi-autonomous, and autonomous.

The centrally controlled architecture has a ground-based controller giving

commands to the missiles for everything they do. The semi-autonomous

architecture allows a controller to input commands to missiles, however

missiles will operate on their own without additional commands. Fully

autonomous operation occurs when the ground-based controller selects the

autonomous mode or the missile has lost communication with the controller.

The pros and cons of each architecture must be determined and weighed in

the implementation of the system.

An architecture comparison approach that has been used in the past [7] has been provided
to the cadet team. Also, iterative architecture development through a spiral process of
“build a little, test a little” requires an architecture comparison methodology to indicate
directions for improvement. The remainder of this section discuses an initial
methodology proposed by researchers at the Software Engineering Institute and suggests
changes which make the approach appropriate for comparing time-sensitive architectures.

The Software Architecture Analysis Method (SAAM) [11] has been proposed as a
methodology for comparing alternative software architectures. The steps proposed in
SAAM are:

1. Characterize a canonical functional partitioning for the domain.

2. Map the functional partitioning onto the architecture’s structural decomposition.

USMA 2 April 2004
_4.

3. Choose a set of quality attributes with which to assess the architecture.
4. Choose a set of concrete tasks that test the desired quality attributes.
5. Evaluate the degree to which each architecture provides support for each task.

However, while SAAM provides a methodology for architecture comparison, it must be
modified for use in evaluating distributed, real-time architectures. Specifically, SAAM is
incomplete for comparing alternative distributed, real-time architectures. The
incompleteness occurs in two areas: (1) explicit consideration of communication between
architectural components is not discussed and is fundamental to distributed, real-time
architectures since communications links in an application architecture may vary over
time between zero bandwidth and essentially infinite bandwidth, and (2) distributed, real-
time processes contain many feedback loops which result in: (a) a need to analyze a set of
components to determine the next state of the set of components (i.e. it is not correct to
analyze a component in isolation) and (b) the notion of letting a set of components “settle
out” over a period of time before the next set of input values are processed (i.e. the idea
of a time constant associated with a process).

Concerning the first SAAM incompleteness issue, communication can often be assumed
to not be an issue, especially whenever the architecture under consideration will be
implemented such that communication between modules is almost instantaneous. Even
in this case, communication between modules probably should be accounted for at the
reference architecture level. However, for architectures involving large distributed
systems, analyzing communications processes between modules is necessary and will
normally involve at least a fixed delay (latency) of messages at the simplest level and, for
complex systems, may require use of specialized tools to record or simulate actual
message preparation, transmission, propagation, receiving, and processing activities.
Certainly for our domain of interest, distributed real-time systems, communication is an
integral member of the problem space and must be explicitly considered. Establishing
communication between modules should be a step in the architecture development
process, equal with partitioning the problem space and assigning functional modules to a
structure.

Concerning the second SAAM incompleteness issue, the canonical functional partitioning
will normally result in components whose internal state depends only on the previous
state and current inputs. The component independence assumption is true most of the
time for those components supporting higher-level decisions leading to engagement
events, especially force operations decisions which set the environment for use of deadly
force. However, the component independence assumption is almost never true for
modeling lower-level physical processes, such as aircraft and missile guidance control,
sensor control, and control of engagement processes, all of which are integral processes
of the distributed, real-time problem space. Stated another way, for military applications,
the failure of the independence assumption for distributed, real-time components arises
from the fact that the distributed nature of motion in the battlespace (e.g. ships, missiles,
aircraft, tanks, helicopters, troops, ...) means that very high-level decisions can result in
producing constraints which dramatically change the operational environment for low-
level components. The low-level components then quickly produce different outputs
which change the state of the higher-level components inside their decision cycle (i.e. the

USMA 2 April 2004
-5-

component independence assumption is invalid because we have a mixed-signal, or
hybrid, problem space).

Distributed, Real-time Architecture Comparison Requirements:

While functional segmentation is a natural approach to follow in construction of software
modules (since implemented functionality of software process models and data schema
can be directly related to user functional requirements), the functional partitioning of
components may not be the best approach for architecture development. An architectural
comparison approach is thus required. The relative ability of alternative software,
hardware and communications architectures to react to expected failure modes will be
determined by the detailed partitioning of required operations into functional modules,
the mapping of resulting distributed software processes onto the distributed computation
and communication resources, and the execution of combined system functionality across
components which may be widely distributed in space and time.

A Real Time Software Architecture Analysis Method (RT - SAAM):

An approach for comparing alternative distributed, real-time software architectures is:
1. Build a set of software architectures for the distributed, real-time problem space by
repeatedly:

a.l Identify a level above which system behavior is to be determined by modifying
logical parameters only and partition the problem space (tasks) into appropriate
higher-level functional modules using event-based models,

a.2. Below the level identified in step al, partition the problem space (tasks) into
functional modules, some strictly event-based models, some a mixture of event-
based models and differential-algebraic-equation-based models.

b. Assign modules to a computational structure (usually pipe and filter computational
style), and

c. Establish communication between modules.

2. Choose a set of quality attributes with which to assess the architectures (pick success
criteria),

3. Choose a set of concrete tasks which test the desired quality attributes, and

4. Evaluate the degree to which each architecture provides support for each task.

For the cadet problem, the simulation environment, the One Semi-Automated Forces
(OneSAF) Test Bed (OTB), handles the details of the physics-based modeling. Thus, the
cadet team implementation must explore the details of step 1a, 2, 3, and 4 of RT-SAAM.

Simulation system and interface between components

We are using the eXtensible Markup Language (XML) as an interface definition
language for the interface between the OneSAF simulation environment and the student
simulation components. An example of messages to the missiles is given in Figure 1.
The syntax of the messages is given in the data type definition of Figure 2

USMA 2 April 2004

<?xml version="1.0" ?>

<!DOCTYPE messages (View Source for full doctype...)>

essages>

<!-- Message from missile network to simulation environment.

Mssile ml: vioalte physical |aws and reposition as indicated
Mssile n2: set a new tenporary waypoint to avoid a collision
Mssile nB: set a new (pernmanent) loiter pattern -->

:ssage command="PUT" messageld="100">

ssile command="godHand" missileld="m1">

ocation lat="22311" lon="56478" alt="350" />

relocity north="112" east="0" down="0" />

</missile>

ssile command="setWaypoint" missileld="m2">

vaypoint waypointld="0" lat="12345" lon="12345" alt="250" />

</missile>

ssile command="setWaypoint" missileld="m3">

vaypoint waypointld="1" lat="13345" lon="13345" alt="250" />

vaypoint waypointld="2" lat="14345" lon="13345" alt="250" />

vaypoint waypointld="3" lat="14345" lon="14345" alt="250" />

vaypoint waypointld="4" lat="13345" lon="14345" alt="250" />

</missile>

</message>
<I-- Message from missile network to simulation environment.
Mssile nB: launch -->

:ssage command="PUT" messageld="101">
nissile command="launch" missileld="m3" />

</message>
<!-- Message from missile network to simulation environment.
Get all update nessages for all mssiles. -->

nessage command="GET" messageld="101" />
<!-- Message from missile network to simulation environment.
Get all update nessages for nissile n2. ->
issage command="GET" messageld="102">
nissile missileld="m2" />

</message>
<I-- Message from missile network to simulation environment.
Abort (detonate) missile n2. -->

:ssage command="PUT" messageld="103">
nissile command="abort" missileld="m2" />

</message>
<!-- Message from simulation environment to missile network.
Updat e nessage for missile nB. ->

lessage messageld="644" command="get">
lissile missileld="abc">
ocation lat="13345" lon="13345" alt="250" />
relocity north="112" east="0" down="0" />
</missile>
</message>

</messages>

Figurel. Example messages to missiles

USMA 2 April 2004

<?xml version="1.0" 7>
<IELEMENT messages (message+)>
<IELEMENT message (missile*)>
<IATTLIST message command (put|get) "get" >
<!IATTLIST message messageld CDATA #REQUIRED >
<IATTLIST message timestamp CDATA #IMPLIED>
<IELEMENT missile (location?, velocity?, waypoint®)>
<IATTLIST missile command (abort|godHand|launch|setWaypoint)
#IMPLIED>
<IATTLIST missile missileld CDATA #REQUIRED >
<!ATTLIST missile timestamp CDATA #REQUIRED>
<!ELEMENT location EMPTY>
<IATTLIST location lat CDATA #REQUIRED>
<IATTLIST location lon CDATA #REQUIRED>
<IATTLIST location alt CDATA #REQUIRED>
<IELEMENT velocity EMPTY>
<IATTLIST velocity north CDATA #REQUIRED>
<IATTLIST velocity east CDATA #REQUIRED>
<IATTLIST velocity down CDATA #REQUIRED>
<IELEMENT waypoint EMPTY>
<IATTLIST waypoint waypointld CDATA #REQUIRED>
<IATTLIST waypoint lat CDATA #REQUIRED>
<IATTLIST waypoint lon CDATA #REQUIRED>
<IATTLIST waypoint alt CDATA #REQUIRED>

Figure 2. Document Type Definition for the missile interface

Summary

As discussed above, we are building a simulation environment to experiment with the
comparison of command and control architectures. In particular, a cadet team is
investigating the relative efficacy of autonomous, semi-autonomous, and centralized
control of a next-generation autonomous combat vehicle. However, we expect that the
simulation framework we are creating will also be useful for experimenting with a wide
range of issues surrounding the interface of autonomous and man-in-the-loop decision
support systems.

In addition, we expect the simulation environment to support faculty research into other
areas of interest. Concerning possible faculty/other research issues, it should be noted that
the OneSAF software is expected to provide event-based simulations of operational
scenarios and the Matlab/Simulink software is expected to provide continuous time and
space simulations as well as the link between event-based and continuous simulations. A
rich environment of the system state will thus be available. In this environment, the only

USMA 2 April 2004
-8-

invariant is expected to be the commander's intent with all other system parameters being
subject to change during the duration of the simulation. The set of issues associated with
NLOS-LS networked communications (such as QoS, bandwidth allocation,
trustworthiness of system state parameters, ...) is an area of research that is essentially
open-ended. Another area that has been investigated for many years without resolution is
the fusion of network sensor data (such as target identification, target update, obstacle
identification, obstacle update, ...).

REFERENCES:

1. An overview of the NLOS-LS is found in the Army RDT&E Budget Item
Justification, http://www.dtic.mil/descriptivesum/Y2004/Army/0604645A.pdf .

2. A visualization of the NLOS-LS operational concept
http://www.gordon.army.mil/symposium/2002/2002pri/briefings/DCD-
TSM/JITRS/FA%20Briefing.pdf

3. Network-Centric Warfare: Its Origin and Future.,Vice Admiral Arthur K.
Cebrowski, U.S. Navy, and John J. Garstka, JCS J-6, January 1998.

4. Network Centric Warfare Report to Congress., July 2001

5. Understanding Information Age Warfare, Davis S. Alberts, John J. Gartska,
Richard E. Hayes, and David A. Signori, ISBN: 1-893723-04-06, 2001

6. Network Centric Warfare, Davis S. Alberts, John J. Gartska, and Frederick P.
Stein, 2™ edition, ISBN: 1-57906-019-6, 2000.

7. James, J. R. and R. McClain, “Tools and Techniques for Evaluating Control
Architectures ”, proceedings of the 1999 IEEE Conference on Computer-Aided
Control System Design, Kohala, Hawaii, August 1999.

8. Medvidovic, Nenad and Richard N. Taylor “A Classification and Comparison
Framework for Software Architecture Description Languages”

9. Mary Shaw and David Garlan "Tutorial Slides on Software Architecture"
August 1997.

10. http://www.mathworks.com/company/digest/may03/modeling.shtml

11. Kazman, R, L. Bassm G. Aboud, and M. Webb "SAAM: A Method for Analyzing
the Properties of Software Architectures", 1995.

