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Abstract 
Command and Control (C2) systems are evolving as warfighting is changing. Modern 

warfighting needs a dynamic, adaptable and agile force supported by rapidly changing 
technology. Three important C2 system characteristics are: survivability, rapid 
development and evaluation, and interoperability. This paper proposes a Service-Oriented 
Architecture with Dynamic Reconfiguration (SOADR) for the DoD enterprise C2 system. 
The proposed SOADR is an extension of the existing Web Services (WS) architecture 
popularized by Microsoft’s .NET platform. In addition, the proposed SOADR includes a 
framework for the dynamic reconfiguration of services thus the C2 system can continue 
to operate in spite of attacks or service malfunction. With the dynamic reconfiguration 
framework, individual service can be added, removed, and replaced at runtime without 
interruption of the system operations. The dynamic reconfiguration policy is governed by the 
C2 policies that may be obtained through the real-time COIs at runtime based on the 
information collected by situation-aware monitoring agents. The services are specified 
with scenario/ACDATE model and policies are specified using a formal specification 
language PSEL. A variety of service constraints such as survivability, security and 
performance can be verified and enforced at runtime through the proposed SOADR 
dynamic reconfiguration framework. This framework is also based on the standard 
protocols. 
 
Keywords : Service Oriented Architecture, Survivability, Dynamic Reconfigurable 
Services, Scenario Specifications, Policy Specification, and Distributed Agents. 
 
1. Introduction 

Command and Control (C2) systems are evolving as warfighting is changing. Modern 
warfighting needs a dynamic, adaptable and agile force supported by rapidly changing 
technology. Three important C2 system characteristics are: 
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1) Survivability: C2 systems will be subject to various attacks including physical attacks 
as well as electronic attacks, but the DoD enterprise C2 system must survivable in 
spite of failures of some of participating systems. One key feature of survivability is 
that the DoD enterprise C2 system must be able to dynamically reconfigure its 
participating systems and continue its intended operations in case of failures. 

2) Rapid development and evaluation: As technology is improving, new systems will be 
added into the DoD enterprise C2 system while numerous legacy systems must be 
still maintained for national security. These new systems must be quickly integrated 
into the existing enterprise system including integration and evaluation. In other 
words, the enterprise C2 system must have an architecture that can accommodate new 
systems into the existing framework rapidly, possibly at runtime without any 
interruption. 

3) Interoperability: The enterprise C2 system must interoperate with numerous existing 
systems including weapon systems, communications, sensor systems, and other C2 
systems for commanders.  

 
This paper proposes a Service-Oriented Architecture (SOA) with dynamic 

reconfiguration (SOADR) mechanisms for the DoD enterprise C2 system. DoD is 
moving into SOA as evidence by the recent development of NCES [12] and GES [5] 
(GIG Enterprise Services). For example, NCES has the following core services: storage, 
discovery, IA/security, messaging, collaboration, user assistant, and mediation. And on 
top of these core services, specialized services are available including C2, COI, Intel, 
Logistics, Weapon Systems, Sensors, Personnel, and Finance. The proposed architecture 
supplements the NCES system by providing survivability to the C2 system with dynamic 
configuration. Furthermore, the proposed architecture is easy to migrate and integrate 
with the application and services provided by the NCES because both of them have a 
common architecture framework, i.e., SOA.  
 

The proposed SOADR is an extension of the existing Web Services (WS) architecture 
popularized by Microsoft’s .NET platform. The WS architecture has the following unique 
features: 

•  System interacts with each other with standard protocols such as SOAP, UDDI 
and WSDL; 

•  Each computation unit is a service and its specification is published in a WSDL 
file; 

•  Service lookup, searching, binding are done at runtime by the UDDI server; 
A significant advantage of this architecture is that new services can be added into the 

system without changing the overall system architecture, and a client can communicate 
with any service using standard protocols. Recently, we have also developed techniques 
that allow services to be evaluated at runtime [18], and thus the WS architecture can be a 
good baseline for the DoD enterprise C2 system.  
 

However, unlike the WS architecture, the DoD enterprise C2 system must also address 
real-time aspects, and it also must have a dynamic reconfiguration mechanism currently 
missing from the WS architecture. Specifically, the DoD enterprise C2 system must 
address reliability, safety, security and performance aspects that commercial WS 



 3 

architecture does not address at this time. Furthermore, the DoD enterprise C2 system 
must also address the system as well as the network aspects in addition to just the 
application aspects as in the commercial WS architecture. These additional requirements 
make the proposed SOADR unique for DoD C2 applications. The proposed SOADR will 
automatically reconfigure participating services at runtime in real time in case of 
electronic attacks, service unavailability, network congestion, overload, security 
intrusion, and failures. 
 

To facilitate dynamic reconfiguration, this paper uses the specifications in [14][15][18] 
to specify services in the framework. Specifically, this specification technique is an 
extension of WSDL, and it specifies a service by its ISC (Interfaces, Scenarios, 
Constraints) specifications. The Interface in the ISC represents the existing WSDL 
specifications and their extensions. The Scenarios in the ISC represent the operational 
scenarios of the service based on the ACDATE (Actors, Conditions, Data, Actions, 
Timing, and Events) model [15]. The ACDATE model is a semi-formal model and once a 
system is specified using ACDATE, it is possible to perform various automated analyses 
including simulation model checking [17] and Event Tree Analysis (ETA) [16]. The 
Constraints of the ISC specify system constraints such as timing constraints, reliability 
constraints and security constraints. The ISC specifications are used by the proposed 
dynamic reconfiguration tool to reconfigure WS in case of system failures or overload. 
An important benefit of using the ISC specification is that it allows dynamic verification 
at runtime in real time. 
 

The dynamic reconfiguration mechanism is also controlled by a set of C2 policies, and 
these policies specify appropriate actions to take under various situations. These C2 
policies can be pre-specified before system operations, but also they can be updated 
during runtime in real-time by the COI (community of interest) within the C2 system. For 
example, both NCES and GIG have real-time COIs that can be used to determine and 
construct C2 policies based on data collected from situation-aware monitoring agents or 
services. For this purpose, A Policy Specification Executable Language (PSEL) is 
designed to specify the reconfiguration policy that is dynamic changeable and executable 
at runtime. Thus, when the distributed situation-aware COI monitoring agent detects the 
changes in the operation environment, it informs the concerned COIs and then these COIs 
may update their C2 polices to adjust to the changing environment. This allows C2 
policies to be updated in real time at runtime, and once the C2 policies are changed, the 
dynamic reconfiguration algorithm is changed as it is ruled by the C2 policies, even 
though the overall reconfiguration mechanism remains the same. In this way, 
commanders and decision makers make high-level decisions, based on the latest situation 
assessment, and let the C2 to actually implementation the transition plan. This cyclic 
reconfiguration framework is shown in Figure 1. Furthermore, it is important to note that 
multiple monitoring agents, COIs, and DRS can participate in this process, and this 
process is done in a distributed but collaborative manner. 
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The proposed SOADR for improving the dependability of the DoD C2 enterprise 

systems has the following features: 
 

•  Each computation unit including hardware and software will be treated as a 
service (and this feature alone makes this SOADR different from the commercial 
WS architecture); 

•  Services can be looked up, searched and bound at runtime using secure protocols; 
•  In addition to publishing its interface, each service also publishes its operational 

scenarios as well as constraints such as security, timing, reliability, and safety 
constraints; 

•  Services will be integrated and verified at runtime using the published interface, 
scenarios and constraints[15][18]; 

•  Services can be removed and added into the system without changing the overall 
architecture, and the reconfiguration will be performed at runtime even during the 
enemy attack including electronic and physical attacks; 

•  The Dynamic Reconfiguration Service (DRS) itself is implemented as a critical 
service with redundancy and the reconfiguration strategies and algorithms can be 
changed at runtime to fit the warfighting needs; 

•  The SOADR also accommodates Systems of Systems (SoS); 
•  Various control units can be added into the SOADR to monitor and track the 

progress of services in the enterprise system; 
•  Services can be audited and checked at runtime by distributed agents . 

 
The rest of the paper is organized as follows. Section 2 discussed the related work on 

SOA and dynamic reconfiguration. Section 3 gives an overview of SOADR and the ISC 
specifications and explains how ISC can be used to specify the scenarios of 
reconfiguration. Section 4 describes the system architecture of DRS and its distributed 
agents. Section 5 elaborates the policy driven dynamic reconfiguration mechanism within 
the DRS framework. Section 6 concludes the paper.  

Data  Reconfiguration Actions

C2 PoliciesReal time dataMonitoring 
Agents 

COIs 
Dynamic 
Reconfiguration 
Service  

Figure 1 Cyclic Flow of Dynamic Reconfiguration Process 

C2 Services 

Commander Participation 

Reconfiguration Actions 
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2. Related Work 

Traditionally, many studies [1][2][9][11] have been focused on exploiting the software 
architecture specifications such as Architecture Description Language (ADL) to represent 
the configuration and connection of system components. ADL is an architecture language 
that formally specifies the structure of the components and their connections. Based on 
ADL, several dynamic architecture description languages have been developed with 
corresponding language tools such as Rapide [8]. While the former focuses more on the 
static perspective of system and system component architecture, the latter is ideally to 
express the dynamic transitional relationship among the working tasks.  

 
Besides the approach based on the software architecture, there are other wide variety of 

studies on runtime dynamic reconfiguration. These include the approaches exploiting the 
middle ware object oriented architecture such as CORBA, and augmenting of the 
operation systems and compilers technologies.  In recent DARPA programs on survivable 
systems, several research activities are reported. Wells, et al., proposed a dynamic 
reconfiguration system based on an object services architecture in [19], where the reliable 
configuration model is built to connect the components, in addition, a utility model is 
used to optimize reconfiguration decisions given that the same function may be 
implemented by multiple services. Hiltunen, et al., proposed a dynamic reconfiguration 
framework in [6] where an event-driven middleware layer is used to reconfigure the 
system. In [8], Knight, Sullivan, Elder and Wang discussed several survivability issues 
and proposed a hierarchical survivable architecture.  

 
Web services (WS) based systems [20] received significant attention recently as major 

IT companies such as IBM and Microsoft are pushing for this new distributed computing 
paradigm. WS has significant advantages over traditional approaches because services 
are located, bound, and executed at runtime over the Internet using standard protocols 
such as UDDI, WSDL, and SOAP. Since it is relatively easy to perform system 
integration, applications developed in this paradigm can be viewed to form a loosely 
coupled architecture that provides maximum flexibility in terms of system structure and 
evolution. Furthermore, it makes the system more dependable because sub-systems can 
be removed from or added into the environment without changing the overall architecture 
[4]. This kind of architecture also maximizes system reusability because legacy systems 
can be wrapped and reused without significant changes. 

 
On the other hand, although WS can be located, bound and executed at runtime and 

over the Internet, once bound, the application will always call the same service unless 
another round of service relocating and rebinding are performed. Furthermore, there are 
times when deployed services need to be upgraded. Another weakness of the existing WS 
systems is that real-time and dependability requirements are not taken into consideration. 

 
Our approach is based on the same spirit of utilizing a software architecture approach 

to address the dynamic reconfiguration of the SOADR. We explored the feasibility of 
developing new service specification technique ISC which is an extension of WSDL to 
specify the static and dynamic structure of services. And based on the ISC, a runtime 
distributed dynamic reconfiguration tool has been designed and implemented.  
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The ISC specifications are used by the DRS to verify that any new services joining the 

application satisfied the application’s requirements and constraints. In the proposed 
framework, services and applications are organized as services in a hierarchical directory 
tree. The DRS performs the service registration/de-registration, lookup, verification, 
binding, execution, monitoring at runtime, and the re-selection and re-binding in case of 
failures or overload. 

 
3. Services-Oriented Architecture, ISC and PSEL 

 

3.1 SOADR and ISC Service Specification Model 
 
The SOADR extends WS by requiring each service publishing its ISC specifications in 

addition to its WSDL specifications. Like WS, the SOADR organizes each sub-system as 
a service, and each sub-system interoperates with each other via standard protocols. The 
differences between WS and SOADR are that the entire system, including all of its 
internally layers, is organized as a service architecture, rather than just at the application 
level like WS. In other words, the system will become inherently survivable in case of 
system failures because each layer of the system can be considered a loosely coupled 
architecture with services. Furthermore, each service will be specified using the ISC 
(Interfaces, Scenarios, and Constraints) convention defined as follows: 

 
 Interface Specification 

• Input/Output parameters 
• Communication protocols 
• Interfaces with other sub-systems 

 Scenario Specification 
• Specify the service scenarios using the ACDATE model 
• Specify Interactions with Other Sub-systems 

 Constraint Specification 
• Based on the scenario model and ACDATE model 
• Specify the properties of the services must include, such as 

– Reliability 
– Availability 
– Security 
– Timing 
– Concurrency 
– Performance 
– Sequence 
– Safety 

• These constraints must be addressed at runtime to assure dependable computing. 
• Constraints are specified using a formal and executable policy specification 

language PSEL. 
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Note that a service can be formed by several other sub-services. In this case, the 
composite service has its own ISC specifications, and each of its sub-services also has its 
own individual ISC specifications, as shown in Figure 2. 

 

 
 

 Figure 2 A Composite Service 
 
Once the ISC specifications are available, it is possible to perform various static and 

dynamic analyses such as completeness analysis, consistency analysis, state analysis, 
pattern analysis, usage analysis, security analysis, and safety analysis as discussed in 
[16], either at compile time or runtime.  

 
For instance, a real-time message exchange service is a program that can forward 

incoming messages from and to the registered parties. It also blocks any unauthorized 
messages that are trying to reach a registered party, and prevents a classified or sensitive 
message from being sent to any unauthorized party. The following shows some aspects of 
its ISC specifications: 

 Interface Specification: 
- Register/deregister: Participants register or deregister to the service with the 

information of identification, address, authorization level etc, 
- Update registering information, 
- Messages receiving and forwarding. 

 Scenarios Specification:  
The scenarios can be used to describe a service functional behavior and non-
functional constraints. One functional scenario for this service could be: 

Begin:  
 While (Event: Receiving) 
  Action: Check the Authorization levels 
  If (Condition: Authorized) 
   Action: Forward Message 

ELSE 
   Action: Discard the Message 
End 

 Constraints Specification: 
- Timing constraints: Message forwarding should not take more than T seconds after 

it receives the message at any time. This constraint is represented as: t(event. 
Forwarding) <= t (event. Receiving) + T. where t(event) is the event occurring 
time. 
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- Security Constraints: an unauthorized message cannot be sent to a registered party, 
and a classified message cannot be sent to an unauthorized party: L (Actor. 
Message) <= L (Actor. Receiver), where L(Actor) means the authorization levels 
of a specified Actor or Participants inside of the system. 

3.2 PSEL: Policy Specification & Execution Language 
 

PSEL (Policy Specification & Execution Language) is a flexible, scenario-based, 
executable and fine-grained language for specifying and executing policies. It is designed 
to specify service constraints and dynamic reconfiguration polices and can be easily 
integrated with C2 services and environments. It takes a form that is close to natural 
languages and is designed to facilitate policy specification, enforcement and revision. 

 
 Policy specification: PSEL provides a flexible and powerful syntax, and is close to a 

natural language. It can be used to specify policies in various domains, ranging from 
simple to complex at a fine-grained level. 

 Policy enforcement: PSEL is based on the ACDATE model and it is executable as 
the ACDATE model is executable. A significant advantage is that once policies are 
specified by PSEL, they can be executed in real time at runtime to verify that policies 
are correctly enforced by the system. 

 
The PSEL is designed to support policy-driven computing in GIG (Global Information 

Grid) [5] as it has Policy-Based Networking and Common Open Policy Service.  A PSEL 
sample policy specification is shown in Figure 3. 

 
Once the ISC and Dynamic Reconfiguration C2 Policy are defined, they can be used to 

verify and audit various system properties at runtime and governs the reconfiguration 
process. 

 

 
 

4. Architecture of DRS and its Components 
 
A DRS uses the ISC specification to configure the participating services and to form 

the application. It monitors the runtime behavior and performs dynamic reconfiguration 
in case of service unavailability, overload, and system failures, to ensure the quality of 
services. 

Figure 3 Sample Policy Specifications 

(allow | deny | require) {subject} to{action} on {object} when {condition} 
 
Sample 
•  Policy: Engine cannot get started when any door is open. 
•  Specification: 

deny Driver to StartEngine when (DriverDoor.Status = “open” || 
PassengerDoor.Status = “open”) 
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In the SOADR, every participating unit, including DRS, is a service and each service is 

treated the same. As a service, the DRS provides the following functions: 
 Dynamic service lookup, service publication, service binding, and service profiling, 
 Registration and de-registration, 
 Runtime services verification including constraint verification such as security 

verification, interoperability checking, and performance monitoring, and 
 Dynamic Service reconfiguration, which means by changing the ISC definition for a 

service, it changes the behavior of a service runtime and even the DRS framework 
itself, since it is also a service of services.  

 
Multiple DRSs can exist at each layer of the system including 

 Application layer: Services at this layer provide application-oriented services. 
 System layer: Services at this layer provide platform-related services such as 

resources allocation, file management and system-level security and monitoring. 
 Infrastructure layer: Services at this layer manage service creation, scheduling, and 

deletion. 
 Network layer: Services at this layer handles various communication protocol stacks. 
 
In this way, a service at one layer actually uses services at the lower layer to perform 

its computation. Because each layer now is a loosely coupled architecture of 
decentralized services, each layer is self survivable, which in turn makes the entire 
system survivable.  

 
At each layer, multiple DRSs, forming a DRS cloud, may exist so that in case a DRS 

of a given layer fails, the other backup DRSs can take over the assigned tasks to continue 
the operation. Thus, DRSs at each layer must communicate and synchronize with each 
other to ensure dependable computing. Figure 4 shows the layered architecture of DRS 
and the overall system infrastructure. A DRS is a service with several sub-services:  

 
 Service Directory (SD): This stores and organizes services in a hierarchical tree with 

internal tree node representing a group of related services.  
 Standard Service Naming Directory (SSND): This stores all the names of services 

registered in an alphabetical order. 
 Proxy Agents: An Proxy Agent (PA) is responsible for interoperability and 

integration between DRS, services and their clients. In addition, it also enforces 
security accessing control.  

 Auditing Agents: An Audit Agent (AA) monitors and checks the performance and 
user concerned properties of the participating services at runtime and updates their 
profiles. 
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The internal architecture of a single DRS is shown in Figure 5. The three key 

components, the service directory, proxy agents, auditing agents, and their interactions 
with other components are elaborated in the following subsections. 

 

  
4.1 Service Directory  
 

An SD provides services lookup, services publication, services registering/de-
registering, services evaluation and ranking, and runtime verification. For reliability sake, 
a single DRS can have multiple SDs, and thus they need to synchronize with each other, 

Service Directory 

Auditing Services 
Proxy Services 

Access Control 
Services

C2 Policies 

Clients 

Services 

DRS 
Coordinator 

COIs 

DRS DRS Services 

DRS DRS Services

DRS DRS Services

DRS DRS ServicesNetwork 

DRS Clouds  

Figure 4 Layered Architecture of DRSs 

Application 

System  

Infrastructure 

Figure 5 the Architecture of a Single DRS  
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and must back up in case of system failures. Furthermore, each SD keeps a cache of 
recently used services for efficient access, and each SD keeps track of a list of quality 
services in case of user queries. Currently, both the SD and SSND are implemented using 
LDAP (Lightweight Directory Accessing Protocol) [7]. 
  

 

 
 

A DRS needs to interact with Service Provider (SP), Service Subscriber (SS), SD, and 
SSND. Figure 6 shows these relationships, where the Execution Service represents all the 
execution parts of the DRS including runtime verification and registration. Each service 
in the SD is specified using the ISC format. As summarized in section 2. The SD also 
maintains the related assurance materials including test cases, evaluation routines, history 
usage patterns, and feedbacks associated with each service. The verification code 
associated with the service can be used to ensure reliability, interoperability, security, 
safety, and performance. 

 

 
 

Figure 6 Service Directory Tree 

Figure 7 Hierarchical Tree of SD 
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The SD organizes services as a hierarchy of services. Each node in the tree can be one 

of the three types: composition, abstraction, and certified. Figure 7 shows a sample 
hierarchical tree of a SD. A composite service, denoted as a rounded rectangle, is a 
service that is an integration of its child services. An abstract service, denoted as a regular 
rectangle, represents an interface only, and all its child services satisfy the stated ISC 
requirements. A certified service does not have any child node, thus it cannot be 
decomposed.  

The functions of the SD are to provide service publication, lookup, and certification for 
both Services Subscribers (SSs) and Services Providers (SPs). The mechanisms and 
operational processes of service publication and registration are described below: 

 
 An SS sends in its service request to the DRS. The DRS will locate the needed 

services by matching the stated requirements with the ISC specification of registered 
services. The DRS may return multiple services that satisfied the stated requirements 
and let the SS decide which one to call. 

 An SS may actually request creation of an abstract node in the SD to an DRS. The 
abstract node will contain the stated requirements, and the DRS may publish the 
requirements to all the SPs. In this way, any SP that can actually supply the required 
services can request its services to be attached to the published abstract node. The 
DRS may actually evaluate the submitted services by SPs before accepting it by 
using the test scripts in the ISC specifications supplied by the SS.  

 Whenever an SP wishes to register a service with the DRS, the service will be 
evaluated by the DRS before it can be published to the SS. Specifically, if the service 
wishes to join an existing node in the SD, it will be evaluated by the test scripts and 
evaluation routines associated with the node. The service must pass these tests 
successfully before it can be accepted by the SD node. This is needed for quality 
assurance [15][18]. An SP may submit a new service and request a new node in the 
SD to be created. It can do so by also supplying the related ISC specification with the 
node. The submitted service will still be evaluated before it can be accepted by the 
DRS. 

 A DRS keeps track of the status of various online services including their 
performance and will initiate a dynamic reconfiguration if it detects a service failure 
or overload to the concerned SSs or SPs.  

 A DRS keeps a list of best services at its cache based on user feedback and status 
report from participating agents. The DRS may actually publish the list to all SSs and 
SPs so that the information stored can be useful for both SSs and SPs in making their 
decisions. 

 If an AA detects the failure of a service, it will be reported to the DRS, and the 
corresponding service will be marked unavailable. If a service is marked unavailable 
for an extended period of time, it will be de-listed from the SD.  

 
In summary, a SSND is an integrated component in a DRS, and it contains the 

complete set of registered services in alphabetical order, and it will be updated whenever 
a service is registered or de-listed.    

 



 13 

4.2 Proxy Agents 
 

A PA coordinates between services and their clients at runtime. Due to its role as a 
broker, it is also a place where access control can be enforced. A PA is created whenever 
an abstract node in the SD is created. It will be activated whenever one of the services 
under the abstract node is called. A PA may consist of one or multiple Service Proxies, 
Access Control Lists, and Proxy Scenario Lists. Because all the services under the 
abstract node provide the same functionality, each can replace each other whenever there 
is a need of reconfiguration. The functions of a PA are briefly described as follows. 

 
 The interface of PA is defined by the corresponding abstract node in the SD. In each 

abstract node there is one corresponding PA. 
 When a client initiates a service request, the DRS will return the address of 

corresponding PA to the client instead of the address of a service directly. In other 
words, the client interacts with the PA only. 

 Each registered service must interoperate with its corresponding PA.  
 PA responses to any service invocation by invoking the corresponding service proxy 

scenario and checks with the accessing control list in the mean time. A proxy 
scenario is a scenario given by service providers that instruct the PA how to map the 
standard interface to its proprietary counterparts. Once defined, it provides a 
universal form for service accessing. By redefining the proxy scenario for a service, 
it changes the way service will be accessed automatically as long as it confirms with 
the abstract service definition.  

 
Now consider an example of the proxy scenario. Assume we have several Echo Web 

Services which always echo back whatever input it gets over the network. However, they 

Figure 8 Interaction of Service Invocation via Proxy Agent
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have different interface definition. They are “1)String echo(string input)”, “2)String 
echome(string input)”, “3)String echoback(string input)”, respectively. So, the DRS will 
define an abstract service dedicated for this type of service “Echo” and have an standard 
interface definition as “string echo(string input)” which is the only interface for the client 
application. The proxy scenario for each of the services can be defined as:  

ProxyScenario_EchoService1_echo 
 Action: echo 
ProxyScenario_EchoService2_echo 
 Action: echome 
ProxyScenario_EchoService3_echo 
 Action: echoback 
 

The PAs in the DRS framework provide flexibility, interoperability, service 
integration, and service reconfigurations. Figure 8 shows the interaction of service 
invocation via proxy agents.  

 
4.3 Auditing Agents  
 

An AA monitors the status of the participating services at runtime. Each participating 
service will have at least one AA, but an AA may audit multiple services. An AA has the 
following behaviors:  

 
 An AA is created whenever there is at least one service is bounded to a client 

through a PA;  
 An AA monitors the status and performances of services, and notifies the DRS in 

case of failures or overload. 
 An AA is also responsible for creating and maintaining a profile for each active 

service to keep track of its performance and usage patterns. 
 Standard auditing scenarios are defined for each type of services and SPs can provide 

additional auditing scenarios and data for better decision making. Two common 
auditing scenarios are:  
- Hello Auditing Scenario: this detects the liveliness of the concerned service 

periodically 
- Threshold Auditing Scenario: this is used for performance or other constraints-

related audits. When the reported data are outside the normal range, the AA will 
report immediately to the DRS to initiate a reconfiguration. For example, an AA 
for a video multicast service will inform the DRS if the packets/frames lost rate 
exceeds a certain limit. 

 
5. Reconfiguration 
 

A DRS removes a service from active duty when it detects that the service is not 
responsive. The DRS then assign the related tasks to another service to continue the 
operation at runtime. It makes the reconfiguration decision based on the current C2 
policies. The C2 policies may be pre-determined or determined at runtime by the COIs. 
This process is illustrated as follows. The monitoring agents collect data of the 
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participating services, and send the data to the concerned COIs. Each COI may have its 
reasoning algorithms and have concerned commanders to participate in the decision 
making. Based on the situation assessment, commanders may update the current C2 in a 
collaborative manner, and send the updated C2 policies to the DRS. The DRS will then 
perform reconfiguration according to the updated C2 policies.  

 
The C2 reconfiguration policy dictates the best services to select for a given situation 

and this may change overtime, thus the framework constantly updates these policies via 
COIs. A sample C2 reconfiguration policies “In case of the JFC system fails, move the 
position location task to backup system” is shown in Figure 9. 

 
  
 
 
 
 
 
 
 
 
 
 
 
Dynamic reconfiguration can be initiated in at least two circumstances: 
 
 Initiated by clients 
An SS can initiate a dynamic reconfiguration by requesting its tasks to be performed 

by another service listed in the same SD. If SS does not identify a specific service in the 
SD node, the DRS may choose another service with the minimum recent workload. If all 
the registered services are working in an overloaded mode, the DRS may look up other 
services registered at another DRS.   

  
 Initiated by the DRS  
Once an AA detects that the concerned service is not working properly, it will inform 

the DRS immediately. If the service does not recover from the situation within a 
predetermined time span, the DRS will remove the service from the SD and transfer its 
tasks to another service in the same SD node. 

 
The DRS will then notify the PA to complete the reconfiguration. Figure 10 shows an 

example of the interactions among PAs, DRScoordinator and AAs during dynamic 
reconfiguration. 

 
Furthermore, it is possible that participating agents such as AAs and PAs may fail, and 

even the DRS may also fail or become overloaded. This problem is addressed by 
redundant DRSs and periodic review by the DRS on AAs and PAs. Specifically, the DRS 
monitors the status of AAs periodically, and if a certain AA does not respond within a 

Figure 9 Sample C2 Reconfiguration Policy with COI 

Sample 
•  Policy: In case of the JFC system fails, move the position location task to 

AWY system. If AWY system is overloaded, then move the position location 
task to the least busy system runtime detected. 

•  Specification: 
require “position location task” to Move to AWY when (JFC.Status = “fail” || 
AWY.status = “normal”) 
require “postion location task” to Move to System Decided by COI at runtime 
when (JFC.Status = “fail” || AWY.status = “busy”) 
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certain time span, the DRS may initiate a new AA to replace the one that failed. 
Similarly, the DRS also monitors the status of PAs periodically, and if a certain PA fails 
to respond within a time period, the DRS will initiate a replacement PA. Note that a PA is 
also a service, and thus it has its corresponding AA, and when a PA fails, its AA will 
report immediately to the DRS. Similarly, the DRS is also a service, and its AA will 
report the failure of the DRS to another DRS in case of failure. 

 
In the proposed architecture, the DRS is the core of fault-tolerance. Like all fault-

tolerant systems, we face the dilemma: who is watching the watchdog? Basically, we can 
tolerate fail-stop failures of DRS through redundancy. However, we need to assume that 
DRS may not have malicious failure mode that sabotages the operations of the system. 
This is a reasonable assumption because the DRS is a system agent that may not be 
installed by clients. 

 
6. Conclusion 
 

This paper proposed a SOADR with dynamic reconfiguration for the DoD C2 system 
based on an extension to the existing WS architecture. In this framework, every process is 
treated as a service, either an atomic service or a composite service. The extensions 
include service specification, policy specification and execution, runtime monitoring and 
verification, and dynamic reconfiguration. A prototype tool has been constructed to 
illustrate these concepts. 

The proposed SOADR addresses survivability of C2 systems as each process or 
services running in the framework is continuously monitored by at least one service, and 
any failure or overload for the particular service will cause the triggering of dynamic 
reconfiguration in real time at runtime under the control of C2 policies without human 
intervention. The DRS is also redundantly placed throughout the system, including at 
each layer of abstraction, so that the DRS can be recovered as well as in case of DRS 
failures. 

Figure 10 Interaction of Dynamic Service Switching 
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The proposed SOADR also addresses rapid development and evaluation. As any new 
software can be developed as a service, and once it is placed in the SOADR, it can be 
picked up by other applications running on top of SOADR. The proposed SOADR like 
existing SOA such as .NET allow multiple programs to interoperate using standard 
Internet protocols such as UDDI. 
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