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Abstract 

A chasm exists between laboratory and field methods in C2 research. These methods are 
complementary but used rarely in combination. This expository article describes a research 
approach that bridges such chasm: computational experimentation. Computational 
experimentation mitigates the weakness of both laboratory and field research, yet it has its own 
limitations and appears suited best as a complement and not a replacement. To illustrate the 
power and potential of computational experimentation, we describe an implemented agent-based 
modeling environment called VDT. VDT benefits from accumulated research over two decades 
and extensive external validation. We employ this modeling environment to represent and 
emulate the behavior of a high-level C2 organization. Using a full-factorial experimental design, 
we illustrate computational experimentation through controlled manipulation of key factors 
associated with organizational and technological design (i.e., bureaucracy level, coordination 
load, knowledge inventory). This illustration includes discussion of rich operationalized 
constructs used to characterize a diversity of C2 organizations, task environments and 
performance measures. The experimental results highlight complex interactions between design 
factors, and they suggest fundamental tension and decision tradeoffs between important 
performance measures such as mission duration and risk. The article closes with key 
conclusions, implications for C2 in practice today, and suggestions for future research. 

Introduction 

Command and control (C2) represents a complex system (Jackson and Keyes 1984) that often 
involves large and distributed organizations, diverse and sophisticated technologies, and a 
mixture of novice and highly trained personnel, operating in hazardous and equivocal 
environments usually under the pressure of time constraints. As such, a huge number of diverse 
factors combine in various ways and at various times to influence the performance of C2 
processes. Such number and diversity make it very difficult to attribute causality and identify 
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which specific combinations of organizational structures, work processes, technologies and 
personnel contribute to relatively better and worse performance. Hence trial and error abounds in 
C2 practice, as does perpetuation of what has appeared to work well—or at least not failed—in 
the past. 
 Through research in the C2 domain, new knowledge continues to develop through a 
variety of methods. For instance, analytical methods such as optimization can be employed 
quickly and at low cost to combine myriad variables and identify the best mix to pursue some 
particular objective and satisfy specific constraints. As another instance, laboratory methods such 
as experimentation can also be employed relatively quickly and at low cost to control factors and 
manipulate variables to trace causality in C2 processes. This class of analytical and laboratory 
methods suffers from well-known weaknesses, however (e.g., poor external validity & 
generalizability). Alternatively, field methods such as case study and action research can be 
employed to study professional people in operational organizations performing complex work 
processes at sea and in other hazardous environments. But this class of field methods also suffers 
from well-known weaknesses (e.g., high cost & time consuming, poor experimental control & 
internal validity). Even field experiments exhibit great difficulty with control, validity and 
confounding at present. The relative weaknesses associated with these two classes points to a 
chasm that exists between laboratory and field methods in C2 research. 

This expository article describes a research approach that bridges the chasm between 
laboratory and field methods in C2: computational experimentation. As a bridge method, it 
mitigates the weaknesses of research methods in both classes (i.e., laboratory and field) and 
hence offers relative advantages over either method individually. However, computational 
experimentation has its own limitations and hence appears suited best to be used to complement 
laboratory and/or field methods, not replace them. To illustrate the power and potential of 
computational experimentation, we describe an implemented agent-based modeling environment 
called the VDT. VDT benefits from accumulated research over two decades and extensive 
external validation. We employ this modeling environment to represent and emulate the behavior 
of a high-level C2 organization. Using a full-factorial experimental design, we illustrate 
computational experimentation through controlled manipulation of key factors associated with 
organizational and technological design (i.e., bureaucracy level, coordination load, knowledge 
inventory). The article closes with key conclusions, implications for C2 in practice today, and 
suggestions for future research.  

Computational Experimentation 

Throughout the era of modern science a chasm has persisted between laboratory and field 
research. On one side the laboratory provides unparalleled opportunity for controlled 
experimentation. Through experimentation the researcher can manipulate only a few variables of 
interest at a time and can minimize the confounding associated with the myriad factors affecting 
complex systems and processes in the field (Box et al. 1978, Johnson and Wichern 1992). 
However, limitations of laboratory experimentation are known well (Campbell and Stanley 
1973) and particularly severe in the domain of command and control (C2). In C2 
experimentation such limitations center on problems with external validity. Laboratory 
conditions can seldom replicate the complexity, scope and scale of the physical organizations 
and systems of interest for research. Experiments also include problems with generalizability. 
Many experiments utilize samples of convenience (esp. university students) instead of working 
professionals. This practice calls into question how closely the associated experimental results 
 

 
 



are representative of C2 behavior in operational organizations. These same concerns also pertain 
to analytical methods (e.g., mathematical analysis, optimization; see Chiang 1984, Lapin 1985). 
Most such methods use theoretical concepts as variables, not operationalized constructs, and of 
course analytical models do not involve real people, systems and organizations. 

On the other side field research provides unparalleled opportunity for realism (Denzin 
and Lincoln 1994). The researcher in the field can study full-scale artifacts in operational 
environments (Yin 1994) and can minimize the abstraction away from working people, systems 
and organizations (Glaser and Strauss 1967). However, limitations of field research are also 
known well (Campbell and Stanley 1973) and particularly severe in the C2 domain. In C2 field 
research such limitations center on problems with internal validity. Field research affords little 
opportunity for controlled experimentation (cf. Cook and Campbell 1979). Also, confounding 
results often from the myriad influences on complex systems and organizations that cannot be 
isolated in the field. This practice makes it difficult to identify and trace the causes of differential 
behaviors—better as well as worse—in C2. 

As implied by the name, computational experiments are conducted via computer 
simulation. As such they offer all of the cost and time advantages of computational analysis. But 
computational experiments go beyond most simulations. Rigorous experimental designs are 
employed to capture the benefits of laboratory experimentation. The variables affecting physical 
systems and organizations in the field can be isolated and examined under controlled conditions. 
This also addresses the internal validity and confounding limitations of field research. Yet 
computational experiments can be conducted at a fraction of the cost and time required to set up 
and run experiments with human subjects in the laboratory. Further, through external validation, 
computational models can demonstrate fidelity emulation of the key qualitative and quantitative 
behaviors of the physical systems and organizations they represent. This addresses the problems 
with external validity and generalizability noted above.  

It is important to note, computational modeling and simulation are not new techniques for 
the study of C2.  For instance, the Adaptive Architectures for Command and Control (A2C2) 
team (see Diedrich et al. 2003, Kleinman et al. 2003) employs a “Model Driven Experimentation 
Paradigm” (Handley 1999). But this method sits squarely within the class of analytical and 
laboratory methods noted above, using analytical models to guide laboratory experimentation. 
Carley (1999) uses computational methods for hypothesis generation, as another instance.  
 Figure 1 illustrates the essential elements of computational experimentation as a research 
method. The top of the figure includes a shape to depict the bridge metaphor associated with this 
method, as it spans a wide gap between laboratory and field methods. From the left side of this 
“bridge,” two arrows represent inputs to describe the behaviors of computational models. 
Organization theory, which is predicated upon many thousands of studies over the last half 
century, provides the basis for most such behaviors. Behaviors pertaining to organizational 
factors such as centralization, division of labor, task interdependence, function, coordination, 
formalization, technology and information processing are captured from organization theory. 
Where extant theory does not address well a behavior of interest (e.g., knowledge flows), 
ethnographic and like immersive field studies (Bernard 1998) are conducted to understand the 
associated organizational behaviors. Because organization theory is general, and not based on 
any single organization, the associated behaviors have broad applicability across organizations in 
practice. This provides for the generalizability attainable through the method of computational 
experimentation. 
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Figure 1 Bridge Method 
 
 From the bottom of the “bridge,” an arrow represents the use of computer models to 
represent organizations and emulate their key behaviors. Some variety exists in terms of specific 
implementations, but most computer models adhere to standards, norms and conventions 
associated with the field of Computational Organization Theory (COT; see Carley and Prietula 
1994). The central goal is to develop computer models that emulate the key behaviors of 
organizations and to use such models to examine alternate methods of organization and 
coordination. As such COT shares a focus on many factors of importance in command and 
control. 
 From the right side of the “bridge” in the figure, one arrow represents a requirement in 
our approach for model validation. Through validation, the organizational behaviors emulated by 
computer models are examined and compared with those of operational organizations in the 
field. We view this as an essential step, for it provides confidence that the behaviors emulated by 
computer model have sufficient fidelity to mirror faithfully the behaviors of the operational 
organizations they represent. This provides for the external validity attainable through the 
method of computational experimentation. It is important to note, not all COT models are 
subjected to such validation. Many researchers use computational models to conduct theorem 
proving studies, which are valuable in their own right to demonstrate various aspects of 
organization theory. But without validation, such researchers have difficulty making claims that 
such theory mirrors the behavior of organizations in the field. Hence validation represents an 
important characteristic to distinguish computational experimentation as the research method 
described specifically in this article from COT in general. 
 Finally, from the top of the “bridge,” an arrow represents the use of experimental controls 
in research. Following the same rich set of experimental designs available to laboratory 
researchers (e.g., full-factorial, Latin Squares, blocking with replication), computational 
 

 
 



experimentation as a research method can be used to control for myriad factors and manipulate 
just one or a few variables at a time to examine causality. Further, the same experimental design 
and setup can be replicated any number of times, for instance using Monte Carlo techniques or 
other computational approaches to introduce variation. This provides for the internal validity 
attainable through the method of computational experimentation. Combining these “bridge” 
inputs together—organization theory and ethnography, computer models, validation and 
control—the method of computational experimentation can be understood in terms of, and 
indeed inherits, the various properties of its constituent elements. 

Figure 1 also illustrates the bridging nature of computational experimentation as a 
research method. On the left side we depict analytical and laboratory methods and summarize 
their key advantages (e.g., low-cost & fast studies, good experimental control & internal validity) 
and disadvantages (e.g., poor external validity & generalizability). On the right side we depict 
field methods in similar fashion to summarize their key advantages (e.g., good external validity 
and generalizability) and disadvantages (e.g., high cost & time consuming, poor experimental 
control & internal validity). Notice from their relative advantages and disadvantages how the two 
classes of research methods complement one another. Field methods are strong in the areas 
where analytical and laboratory methods are weak, and vice versa. As an alternate research 
method, computational experimentation mitigates weakness of both classes. For instance, it 
enables good experimental control and internal validity as in laboratory methods, yet also 
promotes good generalizability and external validity as in field methods. Nonetheless, every 
research method is flawed in some respects. In our present case, when used in isolation, 
computational experimentation is not as good as either method at its best. For instance, because 
computational experimentation uses computer models of people in organizations instead of real 
people, it is weaker in this respect than laboratory experimentation is. This same use of computer 
models instead of real people also makes computational experimentation weaker than field 
methods are. This is why we describe computational experimentation as a bridge method: it 
bridges the chasm between experimental and field research methods, but it serves best to 
complement, not replace, such methods. 

Agent-Based Modeling Environment 
In this section, we build upon current advances in VDT research—which represents a branch of 
computational organization theory—to describe the agent-based modeling environment used 
here for computational experimentation. Drawing heavily from Nissen and Levitt (2004), we first 
summarize the stream of research associated with VDT and then describe its modeling 
environment. 

Virtual Design Team Research 
The Virtual Design Team (VDT) Research Program (VDT 2004) reflects the planned 
accumulation of collaborative research over two decades to develop rich theory-based models of 
organizational processes. Using an agent-based representation (Cohen 1992, Kunz et al. 1998), 
micro-level organizational behaviors have been researched and formalized to reflect well-
accepted organization theory (Levitt et al. 1999). Extensive empirical validation projects (e.g., 
Christiansen 1993, Thomsen 1998) have demonstrated representational fidelity and have shown 
how the emulated behaviors of VDT computational models correspond closely with a diversity 
of enterprise processes in practice.  

 

 
 



The VDT research program continues with the goal of developing new micro-
organization theory and of embedding it in software tools that can be used to design 
organizations in the same way that engineers design bridges, semiconductors or airplanes: 
through computational modeling, analysis and evaluation of multiple alternate prototype 
systems. Clearly this represents a significant challenge in the domain of organizations. Micro-
theory and analysis tools for designing bridges and airplanes rest on well-understood principles 
of physics (e.g., involving continuous numerical variables, describing materials whose properties 
are relatively easy to measure and calibrate), and analysis of such physical systems yields easily 
to differential equations and precise numerical computing.  

In contrast, theories describing the behavior of organizations are characterized by 
nominal and ordinal variables, with poor measurement reproducibility, and verbal descriptions 
reflecting significant ambiguity. Unlike the mathematically representable and analyzable micro-
behaviors of physical systems, the dynamics of organizations are influenced by a variety of 
social, technical and cultural factors, are difficult to verify experimentally, and are not as 
amenable to numerical representation, mathematical analysis or precise measurement. Moreover, 
quite distinct from physical systems, people and social interactions—not molecules and physical 
forces—drive the behavior of organizations. Hence such behaviors are fundamentally non-
deterministic and difficult to predict at the individual level. Thus, people, organizations and 
business processes are qualitatively different than bridges, semiconductors and airplanes, and it 
is irrational to expect the former to ever be as understandable, analyzable or predictable as the 
latter. This represents a fundamental limitation of the approach. 

Within the constraints of this limitation, however, we can still take great strides beyond 
relying upon informal and ambiguous, natural language textual description of organizational 
behavior (e.g., the bulk of extant theory). For instance, the domain of organization theory is 
imbued with a rich, time-tested collection of micro-theories that lend themselves to qualitative 
representation and analysis. Examples include Galbraith's (1977) information processing 
abstraction, March and Simon’s (1958) bounded rationality assumption, and Thompson’s (1967) 
task interdependence contingencies. Drawing from this theory base, we employ symbolic (i.e., 
non-numeric) representation and reasoning techniques from established research on artificial 
intelligence to develop computational models of theoretical phenomena. Once formalized 
through a computational model, the symbolic representation is “executable,” meaning it can 
emulate the dynamics of organizational behaviors. 

Even though the representation is qualitative (e.g., lacking the precision offered by 
numerical models), through commitment to computational modeling, it becomes semi-formal 
(e.g., different people viewing the model can agree on what it describes), reliable (e.g., the same 
sets of organizational conditions and environmental factors generate the same sets of behaviors), 
and explicit (e.g., much ambiguity inherent in natural language is obviated). Particularly when 
used in conjunction with the descriptive natural language theory of our extant literature, this 
represents a substantial advance. Further, once a model has been validated to emulate accurately 
the qualitative behaviors of the field organization it represents, it can be used to examine a 
multitude of cases (e.g., many more and diverse than observable in practice) under controlled 
conditions (e.g., repeating the same events multiple times, manipulating only one or a few 
variables at a time through repeated trials, stopping the action for interpretation). This alone 
offers great promise in terms of theory development and testing. 

Additionally, although organizations are inherently less understandable, analyzable and 
predictable than physical systems are, and the behavior of people is non-deterministic and 

 

 
 



difficult to model at the individual level, it is known well that individual differences tend to 
average out when aggregated cross-sectionally and/or longitudinally. Thus, when modeling 
aggregations of people in the organizational context (e.g., work groups, departments, firms), one 
can augment the kind of symbolic model from above with certain aspects of numerical 
representation. For instance, the distribution of skill levels in an organization can be 
approximated—in aggregate—by a Bell Curve; the probability of a given task incurring 
exceptions and requiring rework can be specified—organization wide—by a distribution; and the 
unpredictable attention of a worker to any particular activity or event (e.g., new work task, 
communication, request for assistance) can be modeled—stochastically—to approximate 
collective behavior. As another instance, specific organizational behaviors can be simulated 
hundreds of times—such as through Monte Carlo techniques—to gain insight into which results 
are common and expected versus those that are rare and exceptional. 

Of course, applying numerical simulation techniques to organizations is nothing new 
(e.g., see Law and Kelton 1991). But this approach enables us to integrate the kinds of dynamic, 
qualitative behaviors emulated by symbolic models with quantitative aggregate dynamics 
generated through discrete-event simulation. It is through such integration of qualitative and 
quantitative models—bolstered by strong reliance upon well-established theory and commitment 
to empirical validation—that our approach diverges most from extant research methods and 
offers new insight into the dynamics of organizational behavior.  

VDT Modeling Environment 
Here we provide a brief overview of the VDT modeling environment. The development and 
evolution of VDT has been described in considerable detail elsewhere (e.g., Cohen 1992, 
Christiansen 1993, Jin and Levitt 1996, Thomsen 1998, Kunz et al. 1998, Levitt et al. 1999, 
Nogueira 2000, VDT 2004), so we do not repeat such discussion here. The VDT modeling 
environment has been developed directly from Galbraith’s information processing view of 
organizations. This information processing view has two key implications (Jin and Levitt 1996). 
The first is ontological: we model knowledge work through interactions of tasks to be performed, 
actors communicating with one another and performing tasks, and an organization structure that 
defines actors’ roles and constrains their behaviors. In essence this amounts to overlaying the 
task structure on the organization structure and to developing computational agents with various 
capabilities to emulate the behaviors of organizational actors performing work. 

Figure 2 illustrates this view of tasks, actors and organization structure. As suggested by 
the figure, we model the organization structure as a network of reporting relations, which can 
capture micro-behaviors such as managerial attention, span of control and empowerment. We 
represent the task structure as a separate network of activities, which can capture organizational 
attributes such as expected duration, complexity and required skills. Within the organization 
structure, we further model various roles (e.g., marketing analyst, design engineer, manager), 
which can capture organizational attributes such as skills possessed, level of experience and task 
familiarity. Within the task structure, we further model various sequencing constraints, 
interdependencies and quality/rework loops, which can capture considerable variety in terms of 
how knowledge work is organized and performed.  

As also suggested by the figure, each actor within the intertwined organization and task 
structures has a queue of information tasks to be performed (e.g., assigned work activities, 
messages from other actors, meetings to attend) and a queue of information outputs (e.g., 
completed work products, communications to other actors, requests for assistance). Each actor 

 

 
 



also processes such tasks according to how well the actor’s skill set matches those required for a 
given activity, the relative priority of the task, the actor’s work backlog (i.e., queue length), and 
how many interruptions divert the actor’s attention from the task at hand. Collective task 
performance is constrained further by the number of individual actors assigned to each task, the 
magnitude of the task, and both scheduled (e.g., work breaks, ends of shifts, weekends and 
holidays) and unscheduled (e.g., awaiting managerial decisions, awaiting work or information 
inputs from others, performing rework) downtime. 
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Figure 2 VDT Information Processing View of Knowledge Work 

 
The second implication is computational: both primary work (e.g., planning, design, 

management) and coordination work (e.g., group tasks, meetings, joint problem solving) are 
modeled in terms of work volume. This construct is used to represent a unit of work (e.g., 
associated with a task, a meeting, a communication) within the task structure. In addition to 
symbolic execution of VDT models (e.g., qualitatively assessing skill mismatches, task-
concurrency difficulties, decentralization effects) through micro-behaviors derived from 
organization theory, the discrete-event simulation engine enables (virtual) process performance 
to be assessed (e.g., quantitatively projecting task duration, cost, rework, process quality).  

Clearly quantitative simulation places additional burden on the modeler in terms of 
validating the representation of a knowledge-work process, which generally requires fieldwork to 
study an organization in action. The VDT modeling environment benefits from extensive 
fieldwork in many diverse enterprise domains (e.g., power plant construction and offshore 
drilling, see Christiansen 1993; aerospace, see Thomsen 1998; software development, see 
Nogueira 2000; healthcare, see Cheng and Levitt 2001; others). Through the process of 
“backcasting”—predicting known organizational outcomes using only information that was 
available at the beginning of a project—VDT models of operational enterprises in practice have 
demonstrated dozens of times that emulated organizational behaviors and results correspond 
qualitatively and quantitatively to their actual counterparts in the field (Kunz et al. 1998).  

 

 
 



Viewing VDT as a validated model of project-oriented knowledge work, researchers have 
begun to use this dynamic modeling environment as a “virtual organizational testbench” to 
explore a variety of organizational questions, such as effects of distance on performance (Wong 
and Burton 2000), or to replicate classic empirical findings (Carroll and Burton 2000). Thus the 
VDT modeling environment has been validated repeatedly and longitudinally as representative 
of both organization theory and enterprises in practice. This gives us considerable confidence in 
its results. Moreover, VDT is designed specifically to model the kinds of knowledge work and 
information processing tasks that comprise the bulk of C2 processes.  

VDT Command and Control Model 

Here we employ the VDT modeling environment to represent work processes associated with a 
high-level command and control organization. The organization modeled here is fictitious but 
representative at a general level of those involved with large-scale C2. VDT is capable of 
modeling large, complex, operational organizations in great detail, and it has been demonstrated 
repeatedly to emulate well the associated behaviors of organizations in the field. But using a 
high-level model as such helps us maintain the focus of this expository article on techniques of 
VDT modeling and computational experimentation, which represents our primary contribution, 
and not get lost in the details of the organization itself. We first describe the VDT representation 
and then illustrate how a full-factorial computational experiment can be performed on it. 

VDT C2 Model 
Figure 3 presents a screenshot of this high-level VDT C2 model. The model is comprised of four 
mission tasks (i.e., denoted as lightly colored boxes) divided in to two phases. In the first phase, 
air and surface missions (i.e., labeled “Air Missions 1” and “Surface Missions,” respectively) are 
planned for coordinated execution. Upon successful completion of both missions, a milestone 
marking the beginning of Phase 2 is noted. In the second phase, a different set of air missions is 
planned for coordinated execution with a ground assault (i.e., labeled “Air Missions 2” and 
“Ground Missions,” respectively). Mission tasks require resources to perform, demand particular 
capabilities, and vary in terms of magnitude, complexity and timing. 

The coordination links (i.e., denoted by light dashed lines) connecting the coordinated 
missions denote reciprocal task interdependencies (Thompson 1967), which suggest they must be 
coordinated closely in both planning and execution. For instance, an air mission such as 
removing anti-ship assets must be coordinated closely with anti-mining and shipboard artillery 
surface missions. Likewise, close-air support must be coordinated closely with amphibious 
ground assault. VDT emulates the added coordination effort associated with such reciprocal task 
interdependencies. The rework links (i.e., denoted by dark dashed lines) connecting tasks from 
different mission phases denote sequential task dependencies, which suggest the predecessor 
missions must be accomplished effectively in order for the successors to perform well. In the 
case of amphibious assault, for instance, this depends heavily upon success of the anti-mining 
and artillery operations. To the extent that such predecessor work is not completed or not 
accomplished effectively, certain aspects may have to be redone to correct any major 
deficiencies. 
 The people icons depict organizations and are arranged in terms of the command 
hierarchy. People icons represent resources, which have particular capabilities, skill levels and 
roles. Where a skilled actor’s capability matches that required for a mission task, the resource is 
likely to perform it competently and within the time required. If the actor has greater or lesser 
 

 
 



skill, the time required to perform the mission task can be appreciably shorter or longer, and the 
competency of performance can be notably better or worse, respectively. Where an actor does 
not possess the required capability at all, the mission task will be in jeopardy. Such relationships 
are appealing intuitively and reflect well many organizational behaviors. 
 

 

Figure 3 VDT C2 Model Screenshot 
  

A Commander actor sits atop the organization and has two major command organizations 
reporting to it: 1) an Air Command is responsible for all air missions, and 2) a Surface Command 
is responsible for both surface and amphibious missions. Reporting to each of these commands is 
a set of actors with different capabilities. For instance, the icon labeled “Air A” could represent 
an aviation organization specializing in reconnaissance and strike warfare, and its counterpart 
labeled “Air B” could specialize instead on aerial attack and support. Likewise, the “Surface” 
unit could involve ships at sea, and the “Ground” unit could be comprised of expeditionary 
forces. Notice the VDT representation includes a mission task structure and an organization 
structure. The assignment links (i.e., delineated by solid lines) denote which organizational 
actors are responsible for the various mission tasks. Finally, a dark trapezoid box is used to 
depict recurring meetings that must be attended by the actors connected by links. Meetings 
consume actors’ resources, but they also contribute toward coordination.  

All of the structural elements (e.g., mission tasks, requirements and interdependencies; 
actor capabilities, skill levels and roles; organization structure, task structure and meeting 
requirements) of this VDT model are developed by the authors. Such structural elements would 
clearly be different for each unique organization and process model. VDT also includes several 
dozen environmental variables with “normal” values determined empirically by prior field 
research. These include factors such as the level of uncertainty and noise associated with a 
project, the inherent propensity of an organization to make errors, and relative concern for 

 

 
 



performance quality associated with actors at different levels of organizational hierarchy. These 
and other environmental variables can be changed where appropriate to reflect a wide variety of 
different organizations and contexts. Other factors can be changed to reflect different 
organizational designs. For instance, the level of centralization and formalization can be varied 
by changing design variables. The corresponding VDT model behaviors have been developed 
empirically. 

VDT also includes several performance variables for comparison. In addition to standard 
simulation measures such as project duration and cost, VDT also includes measures such as 
levels of rework, coordination and delay, in addition to risk measures keyed to various attributes 
of importance (e.g., tasks left undone, missed communications, project-level errors). Some of 
these performance variables are correlated often with one another, whereas others highlight 
tradeoffs that must be made. For instance, where a project is running behind schedule but on 
budget, a leader or manager can decide to employ more resources. This often has the effect of 
increasing the rate of progress but also increasing the rate of expenditure. Other tradeoffs such as 
those between cost and risk or schedule and coordination require balance in a similar fashion. It 
is important to note again, the extensive and longitudinal validation of VDT provides 
considerable confidence that the organizational behaviors emulated by our computational model 
will reflect well those of operational C2 organizations in the field.  

VDT Computational Experiment 
Through computational experiments, we emulate the behaviors of a modeled organization as 
subjected to different conditions (e.g., mission task difficulties, coordination loads, experience 
levels) and designs (e.g., organizational structures, personnel characteristics, technologies). In 
general a researcher performing an experiment—whether computational or not—would 
investigate the background literature and develop a set of hypotheses for testing. In this article 
we skip the literature review step, for we are interested in illustrating the method of 
computational experimentation, not the results of a particular experiment per se. Nonetheless, in 
this section we examine experimentally three factors that should be of interest to the reader: 1) 
level of bureaucracy; 2) coordination load; and 3) knowledge inventory. 
 Briefly, the level of bureaucracy pertains to the organizational structure and is 
operationalized through a combination of VDT constructs (e.g., degree of centralization, level of 
formalization, lateral information seeking, hierarchical levels, coordination via meetings, team 
experience). Such constructs for bureaucratic forms are cited widely in the organization studies 
literature (Scott 2003). Coordination load pertains to the task environment and is operationalized 
through a different set of VDT constructs (e.g., levels of task interdependency, communication 
requirements, noise, project-level coordination difficulties). These constructs are grounded 
similarly in the organization studies literature. Knowledge inventory pertains to the capability of 
the organization and is operationalized through two VDT constructs (e.g., skill level, capability 
match). Skill level pertains to how well an actor can perform a certain class of tasks. Capability 
match pertains to the class or classes of tasks with which the actor has developed skill.  

For the experiment, each of these three factors is specified at two levels: high and low. 
Hence a full-factorial design consists of eight trials, which we designate according to the levels 
corresponding to the three factors. For instance, the first trial involves High bureaucracy, High 
coordination load, and High knowledge inventory (HHH). The second trial involves High 
bureaucracy, High coordination load, and Low knowledge inventory (HHL), and so forth. We 
report on two dependent variables of particular interest in the C2 domain: mission duration and 

 

 
 



mission risk. As the name implies, mission duration pertains to the elapsed time required for a 
mission to reach its completion milestone. The importance of speed in warfare is known well, 
particularly in modern times. Mission risk is measured in VDT as the fraction of assigned 
mission tasks left incomplete at the end. The completion of mission elements has great bearing 
on the efficacy of the mission as a whole. Clearly every single task planned for a mission need 
not be completed for the mission objective to be attained and the mission as a whole to be a 
success. But the more mission tasks that remain incomplete, the greater the risk to mission 
effectiveness. Notice that going back to correct deficiencies and complete unfinished mission 
tasks requires additional time but contributes to efficacy. Hence these two dependent variables 
mission duration and mission risk set up a tradeoff between speed and efficacy. The tension 
between these two performance measures serves to highlight several important tradeoffs between 
our three experimental factors bureaucracy, coordination, and knowledge.  

Experimental Results 
Here we report the results of the C2 computational experiment described above. The key results 
are summarized in Table 1. For each of the eight trials associated with this full-factorial 
experiment, the table includes measures for mission duration (i.e., measured in days to complete 
the final milestone) and mission risk (i.e., measured in percentage of mission tasks left 
incomplete at the end). For instance, the first trial involves High bureaucracy, High coordination 
load, and High knowledge inventory (HHH). The mission duration for this trial is 347 days, 
indicating that nearly a calendar year is required to reach mission completion. The mission risk is 
36%, indicating that roughly 36% additional resources (e.g., people, time) would be required to 
complete all mission tasks. The other table entries are reported in the same manner.  
 

Table 1 Experimental Results 

Trial Bureaucracy Coordination Knowledge Duration 
(Days) 

Risk 
(%) 

1 HHH High High High 347*** 36* 
2 HHL High High Low 361*** 33*** 
3 HLH High Low High 335*** 37*** 
4 HLL High Low Low 351*** 33*** 
5 LHH Low High High 333*** 57*** 
6 LHL Low High Low 347*** 55*** 
7 LLH Low Low High 325*** 56*** 
8 LLL Low Low Low 337*** 53*** 
*** significant at the 99% level; ** significant at 95%; * significant at 90%. 
 
 The VDT modeling environment uses Monte Carlo techniques to simulate the variation 
necessary to support statistical analysis. Each performance measure reported in the table 
represents the mean of 100 simulation trials, and VDT also provides standard deviations for such 
measures. Hence confidence intervals can be calculated, MANOVA can be conducted, and 
hypotheses can be tested statistically. For instance, all of the duration results reported in the table 
are statistically different, at the 99% level, than mission duration of the baseline model (mean = 
356, sd = 6), as are all of the risk results (mean = 0.35, sd = 0.059) except for the first trial 
(HHH), which is significant at the 90% level. Due to the expository nature of this article, we 

 

 
 



omit other routine analysis such as testing for main and interaction effects, conducting contrasts 
and the like. The point here is, such statistical analyses can be conducted through computational 
experimentation research. 

In terms of interpretation, notice the maximum mission duration corresponds to the 
second trial (HHL). Where bureaucracy is high and coordination load is high but knowledge 
inventory is low, the mission requires the most time. Hence aspects of bureaucracy contribute 
toward extended mission execution as do requirements for heavy coordination. The contribution 
of knowledge to mission execution is intuitively appealing, and we show here how such 
contribution can be measured computationally. Alternatively, the maximum mission risk 
corresponds to the fifth trial (LHH). Where bureaucracy is low but coordination requirements are 
heavy, risk increases. This reveals the tension associated with bureaucracy: although this form of 
organization contributes to extending mission duration, it reduces mission risk. The knowledge 
inventory does not contribute much toward mission risk, but the contribution it makes is subtle. 
Where knowledge inventory is high, work progresses rapidly, for people and organizations know 
what they are doing. However, such rapid progression of work actually leaves less time to 
correct mistakes that are made and attend to communications that are missed. The net effect is a 
very small increase of mission risk associated with high knowledge levels. Anecdotally this bears 
some resemblance to overconfidence. The minimum mission duration (325 days) corresponds to 
the seventh trial (LLH), and the minimum mission risk (33%) corresponds to the fourth (HLL). 
Notice these minimum trials reflect mirror images of their maximum counterparts from above in 
terms of factor levels (cf. HHL vs. LLH for duration, and LHH vs. HLL for risk). This is 
appealing intuitively and suggests excellent consistency between the eight experimental trials. 
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Figure 4 Mission Duration Results 

 

 
 



 
 Experimental results are also presented in Figure 4 for additional interpretation. Here we 
present a bar chart depicting mission duration associated with each trial. As noted above, in each 
case bureaucracy adds to mission duration, as does coordination load, but knowledge inventory 
reduces the time required. Comparing visually the bars in this chart serves to reinforce the 
relationships summarized in the table. Figure 5 presents the complementary bar chart depicting 
mission risk associated with each trial. Notice the considerable difference attributable to 
bureaucracy when compared to the other factors examined in this experiment. As above, 
comparing visually the bars in this chart serves to reinforce the relationships summarized in the 
table. 
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Figure 5 Mission Risk Results 
 
 Finally, Figure 6 presents a scatter chart plotting the relative coordinate positions of all 
eight trials with respect to both mission duration (X axis) and mission risk (Y axis). This view is 
useful to gauge both the individual and combined effects of the three experimental factors. For 
instance, the graph delineates clearly the two different levels of mission risk associated with 
bureaucratic and non-bureaucratic organizational form; all of the former points plot below the 
40% line, and all of the latter plot above the 50% risk mark. But the individual contributions of 
coordination load and knowledge inventory are not quite so clear in this representation. Instead, 
both coordination load and knowledge inventory interact together to create the dispersion across 
the duration axis. For instance, where coordination load is high and knowledge inventory is low 
(i.e., for a given level of bureaucracy), the effect on mission duration is striking.  

 

 
 



Interpreting further these figures, where mission speed is of primary concern to a leader, 
then the bureaucracy represents an inferior form of organization than counterparts with lesser 
degrees of centralized decision-making, formalized procedures and vertical information flows. 
Alternatively, where mission risk is primary, then the bureaucracy represents a superior 
organizational form. This reflects a fundamental tradeoff between performance measures and 
organizational design, as conceptualized generally in terms of Contingency Theory (Lawrence 
and Lorsch 1967). Further, high coordination loads place considerable stress on C2 processes. 
Coordinated defenses and attacks represent commonplace in warfare today, but the associated 
task interdependencies and communication requirements can actually debilitate C2. Additionally, 
where knowledge inventory is low, the organization needs particular help to ensure mission 
duration does not extend greatly and mission risk does not increase appreciably. It is important to 
understand the knowledge of an organization and to compare such knowledge with mission 
demands. But how many commanders today possess the insight, much less the tools, to assess 
knowledge inventory as such. Clearly primitive measures used today such as manning and 
readiness fall hopelessly short. 
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Figure 6 Mission Duration vs. Risk Results 
 

Conclusion 

A chasm exists between laboratory and field methods in C2 research. These methods are 
complementary but used rarely in combination. This expository article describes a research 

 

 
 



approach that bridges such chasm: computational experimentation. Computational 
experimentation mitigates the weakness of both laboratory and field research, yet it has its own 
limitations and appears suited best as a complement and not a replacement. To illustrate the 
power and potential of computational experimentation, we describe an implemented agent-based 
modeling environment called VDT. VDT benefits from accumulated research over two decades 
and extensive external validation. We employ this modeling environment to represent and 
emulate the behavior of a high-level C2 organization. Using a full-factorial experimental design, 
we illustrate computational experimentation through controlled manipulation of key factors 
associated with organizational and technological design (i.e., bureaucracy level, coordination 
load, knowledge inventory). This illustration includes discussion of rich operationalized 
constructs used to characterize a diversity of C2 organizations, task environments and 
performance measures. The experimental results highlight complex interactions between design 
factors, and they suggest fundamental tension and decision tradeoffs between important 
performance measures such as mission duration and risk. 

We illustrate through the article how computational experimentation bridges the chasm 
between laboratory and field methods. The baseline, high-level C2 model discussed above was 
developed over the course of a week, and the computational experimentation required roughly 
the same amount of time. Of course, the C2 organization we modeled is fictitious, and our model 
represents such organization at an admittedly high level. Also, we are very experienced with 
modeling in general and VDT in particular. But what would be the time, effort and cost to 
execute in the laboratory a full-factorial experimental design such as described in this article? 
How would a researcher in the field even begin to establish the kinds of controls and manipulate 
the kinds of design factors exhibited in this study? 

We also illustrate through the article how diverse factors such as organizational form, 
coordination requirements and organizational knowledge play important roles in terms of C2 
performance. Understanding when the bureaucracy is relatively important and how this rigid 
organizational form can impact negatively mission speed is important for C2 practice today, as is 
the performance impact of coordination load associated with mission task interdependencies. The 
critical role played by knowledge inventory manifests itself clearly in our experimental results. 
Knowledge is key to effective work, and effective work is key to organizational performance. 
The results suggest leaders and managers should assess their knowledge inventory before 
embarking on a mission, and they should adjust the manner in which each mission is undertaken 
(e.g., in terms of organizational form, coordination requirements) on that basis. 

The article also leads to natural topics for future research along these lines. Although the 
high-level C2 organization modeled in this study is representative of such organizations in 
practice, we do not claim to have experimented—even computationally—with an operational 
organization. A logical future study would take the VDT modeling environment into the field 
and model such an operational C2 organization. Once the VDT model has been validated to 
emulate the key behaviors of the operational organization in the field, then any number of 
different experimental designs (e.g., full-factorial, Latin Squares, blocking with replication) can 
be executed computationally to develop results as rich as those presented in this article, but 
further pertaining to an operational C2 organization in the field.  

Another logical future study would employ computational experimentation to narrow 
down the range of promising factors, conditions and scenarios to test in the laboratory. In other 
words, computational experimentation can be used to inform laboratory experimentation and 
hence focus laboratory efforts on those conditions that appear most promising in results of 

 

 
 



computational experiments. Such combination of computational and laboratory methods could 
inform further and perhaps guide better A2C2 experimentation, for instance. Likewise, results of 
computational experiments can be used to guide field research and help investigators focus on 
factors that show performance leverage through experimentation. Such combination of 
computational and field methods could inform further and perhaps guide better use of 
technologies such as the Navy’s Battle Force In-port Trainer (BFIT), for instance. Developing 
feedback mechanisms and routines in C2 to recognize when the organizational and technological 
design matches a particular mission represents a related topic for continuing this line of research. 
Analytical and fieldwork to develop and operationalize new constructs such as knowledge 
inventory, which is critical for mission success and offers potential for alerting commanders to 
abundances as well as deficiencies in organizational capabilities, follow logically from this line 
of research as well. 

Building upon the VDT constructs introduced in this article, one day researchers may 
even develop techniques for design optimization (e.g., organizational form and technological 
artifacts) based on mission objectives (e.g., speed vs. risk) and constraints (e.g., coordination 
load, knowledge inventory). Leaders, managers and researchers may develop the capability to 
design organizations, work processes and technologies using computational techniques 
comparable to those employed for designing airplanes, bridges and computers. That day is not 
yet here. But through research along these lines, we can both foresee and accelerate it. 
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