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ABSTRACT 
 

In a previous paper of ours [HPSZ02], we addressed the C2 decision support issues and 
introduced software agent architecture for combat C2 tactical decision aids under 
overwhelming information inflow and uncertainty.  The research described in this paper 
is further concentrated on applying a Bayesian-Game-theoretic approach to multi-source 
data fusion for achieving the situational awareness that supports C2 decision making in 
time and mission stressed settings with significant amount of information uncertainty and 
inaccuracy.  The Consolidated Undersea Situational Awareness System (CUSAS) 
provides information management and integration by applying an evolutionary games 
theoretic model to state determinations and conflict resolutions in a mapping between the 
combat space data sets and the situational state estimations.  A Bayesian probabilistic 
computation is conducted to evaluate sensory and environmental inputs and 
quantitatively rank the situational state hypotheses in terms of certainty functions.  
Asynchronous and intelligent agents are employed to support the prioritization, 
management, and coordination of the data fusion process, as well as to model adversarial 
and friendly behavior for providing advices to decision makers or other software agents 
playing human roles.  The agents with data fusion ability are to learn and cooperate to 
process overwhelming combat information more accurately, systematically, and in a 
well-prioritized manner.  

 
 

I. INTRODUCTION 
 
While without question combat command and control is a complicated undertaking across most, 
if not all, military operations.  It is particularly hard for those situations with significant amounts 
of dynamically changes, uncertainty, and at best, partially accurate critical data.  One scenario 
that fits well to this domain is commanding and operating a nuclear attack submarine, such as a 
Los Angeles class boat (688 or 688I).  To quote the ADPA/NSIA study on information 
management [ADPA/NSIA98]: 

The SSN force of the future will be inundated with data from on board sensors and 
external sources. To affect optimum tactical command and control, the CO needs to turn 
this data into information and knowledge quickly and efficiently. 

 
In fact, owing to both (1) uncertain, partially inaccurate and partially unavailable information of 
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the enemy and the environment, and (2) very capable counter threats, an SSN may at times find 
it very difficult to maintain informational, electronic and general combat superiority over enemy 
boats and other hostile assets [KKTW96].  We are very motivated by this problem quest, and 
would like to address it by providing a performance accounting methodology and a concomitant 
system software to assist the SSN team (CO, XO, OOD, sonar-men and others) in their 
exceptionally hard jobs of acquiring accurate situation awareness in complex combat settings.   
 
Basic researches are needed in a number of areas to build that kind of intelligence-demanded 
battle space situation awareness systems [AMS96].  For example, mathematical foundations of 
information fusion must be first established [K85, KRTB90, OSKS97].  The kind of robust, 
integrated fusion architectures for handling increasing diversity of input sources are especially 
important in contemporary command and control (C2) missions [Dawidowiez99].  A well crafted 
computer system integrating knowledge acquisition tools and proper decision support models 
can assist military planners in their tactical decision-making in many different ways, particularly 
with respect to quickly identifying responses and counter-responses to enemy action or inaction 
[KKTW96, DeJB97].  Unit commanders would apply such a tool in order to determine the best 
allocation of tactical resources, to accomplish the unit’s assigned mission, and to satisfy the 
commander’s strategic intent.  When the unit staff uses a suitably automated “war gaming” tool 
to support Course of Action (COA) analysis, the commander can quickly gain a comprehensive 
understanding of the action-counteraction dynamics between the opposite units, thus increasing 
the assurance factor of the mission success.  
 
In a previous paper of ours presented in the 2002 International Command and Control Research 
and Technology Symposium (ICCRTS), Monterey CA, USA in June 2002 [HPSZ02], we 
addressed the C2 decision support issues and introduced a software agent architecture for combat 
C2 tactical decision aids under overwhelming information inflow and uncertainty.  The research 
described in this paper is concentrated on multi-source data fusion for achieving the situational 
awareness that supports C2 decision-making in time and mission stressed settings with 
significant amount of information uncertainty and inaccuracy.  We applied a Bayesian-game 
approach to the achievement of situation awareness through multi-source data fusion for 
commanding and operating a nuclear attack submarine.  The Consolidated Undersea Situational 
Awareness System (CUSAS) provides information integration, management, and decision 
support under uncertainty for submarine operations.  The system uses a combination of Bayesian 
network and Gaming Theoretical inference technology to enable COs to quickly obtain an 
uncluttered view of the battle space situations, so as to efficiently model operational plan, such 
as coordinated multi-force strike scenarios based on the integrated information acquired through 
the data fusion process.  In cooperation with submarine officers, the software system examines 
various tradeoffs, including speed of maneuver versus detections and probability of collisions.   
 
In the data fusion process a two-person, non-zero sum, non-cooperative game (TNNG) model is 
applied.  In TNNG games it is possible to have multiple Nash Equilibriums (NE) [Ghosh98, 
Gintis00].  Since there are non-zero sum outcomes, the outcomes need to be represented 
separately in two matrices, one for each player.  The situation may be complicated by the fact 
that the dominant NE can only be achieved through probabilistic evaluations [Qian95].  
Essentially, it is a process of evaluating a series of games that may take place under somewhat 
different conditions of probabilities.  The optimal strategies are considered under the evaluation 
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of the Bayesian probabilities.  The relationships between the evolutionary game model and the 
Bayesian probability model in a C2 process are designed to work in the following courses: (1) 
The evolutionary games theoretic (GT) model is in charge of state determinations and solutions 
to the mappings between the data sets and the situational state hypotheses. (2) The Bayesian 
probabilistic network (BN) evaluates sensory and environmental data and quantitatively ranks 
the information entities (packages, blocks) in terms of certainty functions.  Bayesian probability 
enables reasoning under uncertainty and combines the advantages of an intuitive representation 
with a sound mathematical basis in the games.  The benefits of Bayesian probability stem from 
the fact that it is able to accommodate both subjective probabilities and probabilities based on 
objective data [desJarins93, Meek95, Castro98].  Moreover, the Bayesian probability can readily 
handle incomplete data and avoid over-fitting of data in a fusion process.  Additionally, 
intelligent agent software provides automated data mining and integrates all of the phases of C2 
operations, and provides recommended Course of Actions to the COs [KHBM96, K97].   
 
In the current prototype, many relevant data items are readily managed, indexed and provided in 
appropriately hierarchical fashion.  Ship position, track, coordinate, depth and other data are 
interplayed with zoom and pan controls, and are provided to the user accordingly. As is the case 
in real life, different levels of details are provided for each event, depending on the user. For 
instance, the CO has the ability of seeing all of the data but will routinely (by default) only be 
provided with high-level views, showing all ships and other elements and so forth. On the other 
hand, the same elements are represented to the Sonar Technician as detailed contact and track 
pertinent data, with the appropriate emphasis (e.g., Broadband, Narrowband and Demon 
displays).  The Fire Control Officer has a mixture of the two views of the same data with, yet 
again, different attributes. Based on operator input, previously observed patterns of behavior and 
entered possibilities will be annotated with ranked attributes and linked to typical cases. To 
provide submarine personnel with an ability to solicit and routinely benefit from intelligent 
software advice on decision-making in the presence of significantly uncertain, inaccurate and 
incomplete information, information provided by one sensor will be linked to (possibly 
correlated) information provided by other sensors. This is particularly useful, because in the 
absence of correlated information, individual sonar technicians may be conservative in reporting 
suspected hostile contacts.  Based on the stochastic game theory, modified Bayesian inference 
networks, and objective function optimization, the agent-based CUSAS provides summarized 
information to the Submarine CO (and other key Officers) for contact identification, navigation, 
and collision avoidance.  The results are visualized on the CO’s tactical display.  Learning and 
adjustment are being implemented primarily through weight evolution in utility formulae and 
correlation links.  As more is learned, information will be refined, re-ranked, and re-annotated. 
Qualitative and quantitative triggers will be installed which will force a re-evaluation of possible 
correlation. For instance, should a possible contact be re-classified under a set of likely 
possibilities where one of the possibilities is new (was not considered possible before), this may 
be a substantial hint for information correlation.   
 
In the following of this paper, section II provides an overview of the theoretic foundations of the 
data fusion process performed by the CUSAS.  Section III describes the implementation 
approaches of the CUSAS for the combat C2 situation awareness through the multi-source data 
fusion.  An operational example is illustrated in section IV.  Section V contains conclusion 
remarks.    
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II. OVERVIEW OF THEORETIC FOUNDATIONS 
 
Information overload can be equally bad and often dangerous as is in the lack of useful 
information.  Good decision-making requires an accurate or at least a plausible “degree of 
certainty” situational assessment and awareness through a vigilant and timely information 
processing, and an effective management of stress, pressure, overload, fatigue, emotional states 
and other distractions.  In the overwhelming information presenting situation, the dominant 
technique of C2 decision aids makes use of utility, cost, and objective functions that capture 
requirements and promises of combat system components and the overall data inflow systems.  
Individual data sets are transformed, correlated, and fused to form a suitable and integrated 
objective function, which is in turn used to build the components of situational descriptions.  The 
objective function is consequently computed as a linear expected-value summation, with 
constant or constant-sum weights representing significance of each hypothetic situational status 
[Doyle99, Kontkanen99].  For example, in most cases the inconsistency of information about the 
situational states should be very quickly recognized and brought to the attention of the 
processing and management team, saving the time and resources.  However, such approaches 
may fail to represent adequately the situation, for a number of reasons, including following: (1) 
significance values may change over time, (2) individual objectives may exhibit a dependency on 
each other, and (3) the integrated objective relationship may not be linear [RHMM96].  
Consequently and on the basis of extensive research in tools and methodologies, people have 
developed both detailed hierarchies and general forms for an objective evaluation and integration 
of the available data sets from multiple resources.      
 
Much of the situation awareness (SA) task aboard submarines is made very difficult by 
incomplete, confusing and partially correct (and partially incorrect!) information from the 
various resources.  To model friends, foes and the environment, and to provide functional, timely 
and relevant advice to CO, XO, OOD, Sonar Supervisor and others, we cannot rely on precise or 
even statistically averaged information models.  Instead, we need to make use of theories suitable 
for modeling information and structuring information in the presence of incomplete, partially 
correct data and under conditions of time and mission stress.  In the following, we discuss 
several theoretic aspects of multi-source data fusion for situational awareness in combat C2 
applications.  
 
II.1. SA Under Uncertainty 
 
One goal of any SA system is to keep track of and use all available information in a proper and 
timely manner to support objective tactical planning and decision-making.  However, in most 
situations, particularly combat C2, uncertainty can mean several degrees of things, for instance, 
(1) lack of good probabilistic knowledge, (2) lack of information, and (3) lack of awareness.  In 
each case it is possible to choose one or more strategies to help inform the judgment process.  
Often this is based on experience and historical knowledge, which include recognition of patterns 
and trends, analogical reasoning, case-based inference, and evidential deductions [Dagum93, 
Cooper95].  Reasoning under uncertainty requires making assumptions about the condition of 
nature, and the intentions and methods of an adversary [Chickering96].  One usual assumption is 
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that all parties will behave rationally, that is seek to maximize their gain and/or minimize their 
losses depending on the conditions and point of view from which each party is operating.  If the 
assumption of rational behavior is true, and one can gain the same sense of the situation that the 
other party has, or provide the other party with a sense of the situation, then inferences can be 
drawn regarding most likely behavior and viable options.   
 
Expected Utility Theory and Game Theory are conventional approaches to the study of non-
cooperative adversarial relationships and options.  Other methods, which may have value, are 
models of explicit and tacit situational knowledge that can be engaged at several level of 
abstraction.  These methods include bootstrapping, composite judgment models, and Multi-
Attribute Utility Theory (MAUT) [Cooper95, OSKS97, Doyle99].  Each is based on a linear 
modeling technique and has been demonstrated to provide useful types of consistent, reliable 
advice to decision makers in a variety of situations.  Although each method is a bit different in 
approach, they rely on the ability to develop a linear model that expresses the explicit and tacit 
knowledge as a weighted utility function that is appropriate to the situation at hand.  If these 
modeling can be done accurately, then in cases without significant and important novelty, the 
data analysis system will provide consistent and useful judgments and advice.  
 
II.2. Human Factors and SA 
 
Literature from cognitive and behavioral sciences, and supporting evidence from neural science 
and physiology, make it quite clear that human performance is highly content and context 
dependent from both an external and internal sense. (For example, recent studies have 
established that the mechanisms of the eye account for only 20% of human vision. The other 
80% of producing an image is pattern-matching neurology in the brain.) [KHBM96].  Individual 
differences and even individual variability over short, medium, or longer-term time frames of 
perception capability and discrepancies regarding massive data processing may need to be 
considered [SLHM94, SM95, SM96].   
 
Human decision making performance is in part dependent on personality and motivation, is 
dependent on level of knowledge, training, and natural abilities.  Good performance requires 
strategic thinking and planning and effective use of short and long term memory, while avoiding 
natural biasing tendencies (recent effects, premature closure, anchoring, etc).  It is clear that 
intelligent technologies can provide valuable assistance at many levels to an individual 
information analyst or collaborative group.  This is accomplished by real-time software based on 
proper task divisions that reduces cognitive complexity, workload and short term memory 
demands, freeing the analyst to think more freely and creatively about strategic, tactical, and 
operational situation states.  In submarine operations and similar stress and pressure situations, 
uncertainty, high stakes, biases, and long hours can have negative effects on clarity of thought 
and objectivity.  Computerized automatic information processing system must account for these 
deficiencies and provide assistance to complement for the human thinking and judgment.   
 
Bias of perception and reasoning can appear from several sources: transient or long held beliefs 
for which there is little or no factual support or the facts support alternative views, or perhaps 
more commonly, human intuitions [SLHM94].  Even carefully developed computational 
procedures may also pose biases in the process of evaluating certain data objects.  For example, 
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many types of bias come about because the reliance of certain type of computational assistance, 
while our cognitive architecture often does not support the types of things we have needed to do 
without external assistance.  Overall, our ability to perform probabilistic and statistical 
calculations and mathematical inference is poor.  Heuristics that we have developed to overcome 
this inability often are in faulty.  Studies have shown a tendency to bias our reasoning by, among 
others, the following means: 

• Ignorance: Neglect of information about prior probabilities in favor of beliefs. 
• Conjunctive Fallacy: avoiding compound probabilities in favor of deciding by similarity 

or representativeness. 
• Gambler’s Fallacy: playing hunches instead of probabilities. 
• Availability heuristic: using information that is most available – come to mind easily 

(personal experience) rather that most objectively relevant. 
• Hindsight Bias: “learning” by justifying outcomes, rather than reasoning objectively 

about process and causes. 
• Anchoring and Adjustment: we tend to be unreasonably anchored to our present beliefs 

and make adjustments accordingly.  Anchoring often does not allow us to take sufficient 
account of evidence that contradicts our beliefs. 

• Attentive Bias: unjustified focus on part of the information presented, rather that 
comprehensive consideration of the information and alternative possibilities. 

• Illusory Correlation: people tend to find in data what they think (before they look) will be 
there. 

• Primacy Effect: the order of presentation of information can be biasing, with the first 
piece of information given more weight independent of any measure of greater value.  It 
is generally easier to remember the first and last items in a list, and this can provide them 
with greater influence on our thinking and judgment processes than justified. 

• Premature Closure: making conclusions unnecessary early, that is before considering the 
information available that may support the conclusion or contradict it.   

 
In some situations, cooperation can assist with mitigating natural biasing tendencies.  With more 
study of the particular types, circumstances, and triggers that occur in submarines operations, we 
believe that improved judgment and decision-making can be made through cooperation and 
integration of data from multiple sources and reduction of the influences of biases on these 
processes.  Game theoretic approach is one of the solutions.  
 
II.3. Game Theoretic SA 
 
A difficult challenge for SA achievement is that the data fusion system must strike an 
appropriate balance between representing game pertinent aspects of data sets while abstracting 
away irrelevant detail in order to achieve the efficiencies required to appropriately sample the 
action-reaction game space.  In other words, we can’t have a computer model that is so detailed 
that it only models a few scenarios when thousands of scenarios may need to be sampled. 
Likewise, the model must be designed in sufficient detail to provide useful insight to the 
allocation of resources [Qian95].  This understanding becomes particularly important for 
identifying and prioritizing “gaps” in a unit’s knowledge about enemy disposition and intent 
since collection assets can be concentrated on enemy indicators that “tell” or “give away” 
tactically significant actions.  This understanding can also greatly assist in the analysis of 
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uncertain intelligence by reducing the probability of tactically “stupid” enemy actions and 
increasing the probability assigned to savvy opposition moves.  
 
There are three basic perceptions to consider in a game-theoretic setting [Gintis00]: 
1. States of Nature:  These include data, information, knowledge, and beliefs about the internal 

and external operational environments. Clearly, the more relevant the available knowledge 
and the more that beliefs correspond to objective reality, the more certain the environment.   

2. Acts:  These are the objects of choice, the courses of action that are available to the decision 
maker.  Not all acts may be intuitive or obvious.  As we have learned through analysis, 
preferred courses of action may be counter-intuitive.  The time and ability to think clearly 
and creatively may lead to better, non-obvious choices.  

3. Consequences:  These concern with the possible results of an action, what are the likely 
results, what new difficulties or benefits may arise. 

 
The pairing of Acts and Consequences is the basis for risk-benefit (Pay-off) analysis.  Game 
outcomes are usually represented as a matrix of payoffs [Gintis00].  Games may be played either 
with a pure strategy or a mixed strategy [Ghosh98].  If the optimal strategy is singular, then this 
is called a pure strategy (a special case of mixed strategy).  If the optimal strategy requires the 
use of some or all the available strategies with probabilities associated with them, this is called 
mixed strategy.  It can be proved that for two-person, non-cooperative, non-zero-sum games 
(TNNG), a pure strategy may not exist [Gintis00].  In this case, optimizing one’s strategic 
position means playing a mixed strategy with probabilities attached.  This approach increases the 
uncertainty of the opponent.  The objective for TNNG is to find the optimal mixed strategy.  The 
result of an optimal strategy is to create a Nash Equilibrium situation, that is if player A uses an 
optimal mixed strategy, then given any strategy taken by the player B, player A will not be better 
off by making another choice.  Bayesian probability comes into play naturally in the TNNG with 
uncertainty and completeness of information available to the players [Qian95].   
 
II.4. Bayesian Evaluative SA  
 
When under uncertainty and incompleteness of the information sources and counter actions, the 
game model needs to take account of how easy it is to switch between actions, i.e., how swiftly 
can the unit commander response to new information, to retract actions, and to regain control 
points in a non-monotonic course.  The benefits of using Bayesian probabilities to model 
uncertainty in decision support are well known, especially since the breakthroughs in algorithms 
and tools to implement them [Pearl88]. Game theory is closely related to probabilities even since 
its early age of development. The foundation of the connection was even laid off in the classics 
of von Neumann and Morgenstern [von Neumann53], where it stated that if the consequence 
function is stochastic and known to the decision-maker, then the decision maker is assumed to 
behave as if he maximizes the expected value of a (utility) function that attaches a number to 
each consequence.  If the stochastic connection between actions and consequences is not given, 
the decision-maker is assumed to behave as if he has in mind a (subjective) probability 
distribution that determines the consequence of any action.  
 
Bayesian probability (BP) enables reasoning under uncertainty and combines the advantages of 
an intuitive representation with a sound mathematical basis.  Bayesian probabilistic evaluation 
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has been the choice of decision under uncertainty in many circumstances assuming achieving 
objective goals is the sole reason for the decisions.  Research into heuristics and biases show 
how we attempt to overcome our limited inherent computational abilities through the assistances 
of Bayesian probabilities. In submarines, given the closed internal environment and the 
ambiguous and uncertain external environment, BP is to take on a flavor all it own, with 
somewhat different components, interrelationships, and dynamics operating in this unique 
environment.  The approach is to significantly influence subjective considerations and thinking 
about judgments and situation awareness.  
 
The Bayesian probabilities capture many stochastic-process factors that affect the attributes of 
interest along with the game theory model. It can be used to predict the effects that changes of 
certain attributes have on a data fusion processes.  For example, consider a Submarine CO to 
decide how to act on a reported suspicious contact.  Suppose that a particular maneuver, if taken, 
will provide the sonar systems with an opportunity to classify the contact decisively. Further 
suppose that if the maneuver is indeed taken, the contact will likely prove to be harmless with a 
large probability value and hostile with a small probability value. In the latter case, either the 
maneuver will force the enemy to turn away (with a very large probability value) or the enemy 
will force the own boat to run away (with a very small probability value).  It is likely that the CO 
will conclude that the only negative of the possible outcomes is not very likely (very small 
probability value) and indeed chose to undertake the maneuver. Consider the exact same 
probabilities, with raised stakes specifically, the maneuver will indeed provide a definitive 
classification, with the probability values for the contact being harmless and hostile being 
specifically defined.  Clearly the situations can be effectively recorded in a Bayesian probability 
representation and be efficiently evaluated. 
 
There are several ways of determining the probabilities for the entities in the Bayesian 
probabilities [Hanks94].  One common approach is to use the joint probability distributions of 
the constituent components. One of the benefits of Bayesian probability stems from the fact that 
it is able to accommodate both subjective probabilities (elicited from domain experts) and 
probabilities based on objective data. A Bayesian reasoning process can be initialized with 
certain background knowledge either manually or automatically extracted from certain 
information sources [Haddawy99]. The attributes of relevant data objects and the relations are 
explored in a decision support process using Bayes’ rule. The Bayesian probability can readily 
handle missing data and avoid over-fitting of data in a decision-making process. The processing 
of information with multiple uncertain resources can be effectively handled by applying the 
Dempster-Shafer’s rule of evidence combinations [Bogler87, Barnett91].  
 
The idea of Bayesian game is to construct, for any information-incomplete game G, some 
information-complete game G* that are game-theoretically equivalent to G [Harsanyi67-68]. The 
approach involves introducing some random events (variables), assumed to occur before the 
players choose their strategies. The random events will determine player’s cost function and 
other resources; and so will completely determine the payoff function in the game. On the other 
hand, the random event will determine the amount of information that a player will obtain about 
the cost functions and other resources of the other player, and will thereby determine the actual 
amount of information that player will have about the other player’s payoff function. Both 
players will be assumed to know the joint probability distribution. But, each player will know 
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only his own cost functions and resources but will not know those of his opponent; and that he 
will, of course, know how much information ha himself has about the opponent but will not 
know exactly how much information the opponent will have about him.   
 
Learning and adapting can be incorporated in the Bayesian game model for a number of reasons. 
Clearly, the main reason (and the one most directly and commonly observed by the human users) 
will be to maintain relevancy of advice to the humans. However, the computer system that can 
learn and adapt will also play the roles better, that is, to interpret, filter and correlate information 
(e.g., track histories) more efficiently and correctly. Learning and adjustment in Bayesian game 
model can be implemented primarily through weight evolution in utility formulae, correlation 
links and so forth. This is similar to neural net learning except that there is no detailed, largely 
static net and there is significant autonomy of decisions within constraints. Flexibility is key 
given the extent of dynamic changes, uncertainty and so forth. 
 
Overall, the relationship between the evolutionary game model and the Bayesian probability 
model in the data fusion system for situation awareness is as the following. The evolutionary 
game model will be in charge of state determinations and solutions of the mappings between the 
state space and the representation hypotheses. Bayesian probability model evaluates sensory and 
environmental data and quantitatively ranks the action alternatives in terms of cost functions. 
The two models will be incorporated and compensate each other in the data fusion process for 
situation awareness in combat C2 environment.  
 
 

III. SCHEMATICS OF SYSTEM IMPLEMENTATION 
 
A core problem in the implementation of Bayesian Game theoretic model for situation awareness 
through data fusion is the systematic reaction to dynamic changes of the system.  Humans and 
computational support resources, each in their own way, need to make quick assessments and 
adjustments to maintain situational awareness in dynamic environments. The basic need is to 
react to such changes incrementally, rather than starting for scratch each time.  Here we 
investigate several aspects of incremental computation for data fusion and support for situation 
awareness and study how the techniques can be applied in those different aspects.  
 
III.1. Hierarchical Information Integration and Presentation 
 
It is important that the way the system presenting information (in their advisory capacity) is 
adaptive to the human operator’s needs.  In the CUSAS system, the agents are to be operational 
in a cooperative manner, where each agent communicates and provides service to others, 
including human operators.  For example, the system provides to submarine CO (1) an ability to 
process overwhelming combat information more accurately, systematically and in a well-
prioritized manner, (2) an ability to solicit and routinely benefit from intelligent software advice 
on decision-making in the presence of significantly uncertain, inaccurate and incomplete 
information, (3) an ability to systematically filter, correlate, and analyze large amount of data 
inflow, and perform state prediction and other tasks of managing historical and current combat 
information, and (4) an ability to hierarchically project relevant information and systematically 
measure (heuristically) the quality of past and present decisions, and to project the like measures 



 10

of the quality of future decisions.  Specifically the software modules present information and 
advice to submarine CO necessary supports in time and mission critical situations such as where 
he wishes to avoid both collision and detection (which are sometimes conflicting objectives) in a 
combat C2 operation.   
 
The design and implementation of a number of data analysis, extraction, distilling, and 
integration functions over the current state of affairs in submarine information management is 
critical to the CUSAS system.  Based on operator input, previously observed patterns of behavior 
and entered possibilities, the information fusion agents of the system should compensate for data 
ambiguity, uncertainty and imprecision as follows.  
1. Information needs to be annotated with ranked expectation attributes (e.g., 90% standard 

probabilistic expectation of the signal corresponding to a distant trawler; 7%: noise from 
harmless biologics; 3%: a hostile SSBN sneaking out of a haven). 

2. Information needs to be linked to typical, previously observed cases of similar suspected, 
verified-positive, verified-negative and unknown contacts. 

3. Information provided by one sensor needs to be associated with (possibly correlated) 
information provided by other sensors. This is particularly useful, because in the absence of 
correlated information, individual sonar technicians may be conservative in reporting 
suspected hostile contacts.  

4. As more about the situation is learned, information needs to be refined, re-ranked, and re-
annotated. Qualitative and quantitative triggers needs to be installed that force a re-evaluation 
of possible correlation.  For instance, should a possible contact be re-classified under a set of 
likely possibilities where one of the possibilities is new (was not considered possible before), 
this may be a substantial hint for correlation.   

 
We provide “texture-style” hierarchies to support representation of the combat C2 related 
information at different levels of abstraction. For instance, a Sonar Technician requires 
considerable acoustic details on the suspected and monitored contacts for which the Technician 
is responsible. The sonar watch supervisor requires information in less detail (but with the ability 
to go into more detail) about individual contacts, but needs to know about all current (suspected) 
contacts, as well as how the contacts on different consoles may be correlated (see below). The 
OOD needs to know about contacts that either need to be understood better (this may require 
adjustments to boat maneuvering) or for which TMA and fire solutions should be developed.  
The CO is likely not to require any acoustic details but needs to know range and bearing of 
positively identified contacts and contacts suspected or known to be hostile or presenting danger 
to 688’s mission.  Every human in the loop will be presented with the information that is both 
required and in the form that is appropriate to the human.  
 
In the current prototype of CUSAS, many relevant data items are readily managed, indexed and 
provided in the appropriately hierarchical fashion.  Ship positioning, tracking, co-ordinate, depth 
and other such data are interplayed with zoom and pan controls, and are provided to the user 
accordingly.  As is the case in real life, different levels of details are provided for each event, 
depending on the user.  For instance, the CO has the ability of seeing all of the data but will 
routinely (by default) only be provided with high-level views, showing all ships and other 
elements and so forth.  On the other hand, the same elements are represented to the Sonar 
Technician as detailed contact and track pertinent data, with the appropriate emphasis (e.g., 
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Broadband, Narrowband and Demon displays and so forth).  The Fire Control Officer has a 
mixture of the two views of the same data, with yet again, different attributes.  Figures 1 shows 
two different displays by the CUSAS for views in different types and abstractions of the 
information hierarchy.  
 

   
Figure 1. A schematic view of CUSAS environment and information display hierarchy 

 
III.2. Intelligent Advices in the Presence of Uncertainty 
 
Recall that an objective of this work is to provide submarine personnel with an ability to solicit 
and routinely benefit from intelligent software advice on situation awareness in the presence of 
significantly uncertain, inaccurate and incomplete information.  A number of functions aboard a 
submarine involve significant amounts of reporting up the chain of command. Typical among 
these is the sonar watch team. Naturally, given the very high number of possible contacts a sonar 
technician observes during his six-hour shift and the very low number of significant contacts that 
these observations will actually represent, technicians tend to be conservative in reporting 
possible hostile (and other relevant) contacts.  We have already discussed how our software will 
help the technicians in managing the information as well as correlating it with the information 
observed by others.  However, even with better management and correlation, the fact remains 
that the available information will still be imprecise and uncertain. Thus reporting will still be 
partially based on exact knowledge and partially based on subjective judgment. 
 
Our agents will provide reporting personnel, such as sonar technicians, with judgment 
strengthening in cases where the software also believes that the report about to be made is likely 
to be correct. Armed with the support of the agent, the human will feel more confidently about 
the reporting. Similarly, where the software believes the report to be incorrect, the agent will 
play Devil’s Advocate and ask “what if” questions. It is possible that the human will change his 
mind. Otherwise, the human may still stick to his decision. In the latter case, it is possible that 
the agent will learn from the human and adjust its own reasoning. One key area where we are 
addressing partial information-based reporting is, naturally, in contact detection and tracking. For 
example, in our prototype an agent assisting in contact detection reports on a possible contact 
within a probability of certainty (e.g., Target course: 322 degrees,. reliability 60%). Work is 
under way to extend to include multivariate certainties, as well as certainty correlation. 
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Another issue about implementation of intelligent advices is the application of an expected utility 
of decisions.  Expected utility of decisions modifies and, sometimes, even reverses classic 
deductive reasoning which is based on the standard probability theory. Consider the same sonar 
technician as in the previous example observing the very same possible contact, except at the 
beginning of the shift.  Probably, given the low probability of significance, the technician will 
not even report it.  Suppose now that the same possible contact is observed after a similar contact 
some time in the past turned out to be significant.  Now, the technician will most likely report it.  
Yet suppose that the same possible contact appears after multiple similar contacts turned out to 
be insignificant, the technician will likely discard this contact as well.  Imagine that a contact is 
likely to be a school of fish with the probability of 90%, a hostile submarine with the probability 
of 5% and a neutral tanker with the probability of 5%, according to one particular sonar system, 
manner by technician A.  In the absence of other information, A is probably not going to raise an 
alarm and assume that until something changes significantly in the contact, the contact is 
harmless.  Suppose that technician B, manning a different sonar, observes a contact, which is 
likely to be a neutral tanker with the probability of 90% or a hostile submarine with the 
probability of 8%, and a school of fish with the probability of 2%.  In isolation, B too is likely to 
assume that the contact is harmless unless something changes very significantly.  So, depending 
on other factors (observations, fatigue, etc.) that do not by themselves alter likelihood or 
probability of the contact being significant, the same possible contact is treated differently by the 
same technician.  
 
Clearly, basic probability axioms, including independence of observations, fall apart here (This 
is similar to gamblers thinking that they are on a roll or having a bad streak.).  The reason the 
technician behaves in this manner is that expected utility (i.e., loss or gain) of his decision 
whether to report the contact as significant depends on more than just the raw probabilities.  In 
particular, the technician (possibly rightly) lets previously observed patterns influence his 
decision, because he expects the current observation not to be independent of the previous ones 
any more.  Similarly, the technician (likely wrongly) lets his fatigue (and frustration, inability to 
properly pay attention after a long shift) influence his decisions as well, because something has 
to occur differently eventually.  The latter situation, incidentally, can also be interpreted as 
classic counter-inductive reasoning.  That is, it is precisely because X has observed a pattern 
occurring, that X expects the next observation to break the pattern. 
 
So far in our software prototype, information is presented in a prioritized manner. For example, 
color-coding is used to indicate type of threat (e.g., red for collision, yellow for detection). 
Spatial, intuitive representation of information is used to delineate options (e.g., three rings: 
middle representing present speed, inner representing decreased speed, outer representing 
increased speed).  Minimal and to the point (and time-separated as per the CO’s risk aversion 
and the time-criticality of the stress) reporting and advice display is provided. Overall, with the 
present prototype, a CO (or XO or OOD) can decide fairly quickly and naturally on the best 
course of action, to avoid a collision and/or detection.  Pattern recognition and later anticipation 
of human decisions will be used extensively. If a human does decide as anticipated, the particular 
“pattern” will be remembered and re-enforced. On the other hand, an unanticipated decision may 
result in a re-work of the current utility weights and correlations.  At present, there is only one 
instance of learning in the prototype. Specifically, contact and track reporting software learns 
what a contact is over time. Initially, only the basic fact that something is out there, in the 
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direction of a relative bearing X, is known. Over a period of 60 seconds within a detectable 
envelope of operation, the software progressively learns more about the contact. After 60 
seconds, the knowledge is sufficient to classify the contact accurately.  As we go forward with 
this work, learning, measuring and adaptation will be much more widespread.  
 
III.3 Augmentation of Human-Machine Operations with Intelligent Agent Support 
 
Yet another objective of our research is to conveniently and naturally augment human-machine 
combat operations with intelligent agent support.  We have already discussed the nature of 
intelligent agent support in this text.  The recommendation mechanism is intended to help COs 
avoid these events.  The basic idea is to merge information from multiple sources within the 
vessel, and after assessing the situation to make a recommendation in a manner that can be 
interpreted and acted upon in a minimal amount of time.  The assumption is that in near-collision 
cases, reaction time is critical, and therefore the system has to display the information in a way 
that can be “digested” instantly, and the operational options can be acted upon very quickly. 
 
The system architecture of CUSAS provides the following human-machine interaction 
components supported by intelligent agent technology.  Every human decision maker and 
information provider on a submarine is associated with the agent assistance to help the human 
reduce the problem space under consideration, prioritize and process efficiently relevant 
informational elements, and consider alternative decisions in an informed manner.  The agents 
also provide intelligent qualification and quantification of uncertain information, utilities of 
particular decisions, risk aversion, and so on.  Very significantly, agent decision-making support 
may be vital where tradeoffs need to be considered, to address conflicting objectives. Even in 
our, admittedly simplified and straightforward, current prototype, we have seen tradeoffs 
between collision avoidance and detection avoidance (e.g., a fast run may avoid the former while 
essentially guaranteeing the latter). Some of these tradeoffs occur seemingly suddenly, with 
precious little time to react. Worse yet, correct reactions may be not so obvious (in some cases 
for instance, a reasonable course reaction may well include a speed increase). We expect very 
complicated and uncertainty-ridden tradeoffs to emerge as we continue with this work. Agent 
support will be essential to the human decision maker in the presence of such tradeoffs. 
 
Additional agents are provided to coordinate, synchronize and arbitrate assistant agent and 
human operations, to play human surrogate roles, and to support mundane but computationally 
intensive and tedious tasks, e.g., evaluation of tracks in the presence of history of similar tracks, 
reporting, and so on.  Communication exchanges are provided to facilitate human-machine 
interaction, in a uniform manner among humans, agents, and sensors that in turn provide 
communication with the outside environment. 
 
The overall purpose of our software is to help driving the ship in a tactically safe manner. 
Clearly, the agents will need to work with the humans in a carefully thought through and trained 
manner. Given the conditions of stress and overwhelming information overload on a modern 
submarine, if the software is not perceived useful, it will be ignored or turned off. It is also very 
important to understand that we have no ambition to provide a combat “auto-pilot” or to 
otherwise fully automate the undersea combatant. Rather, we provide systematic intelligent 
assistance, based on a rigorous and useful theory, to humans. The assistance will be primarily for 
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commanding and reporting tactical decision making alternatives regarding maneuver, contact, 
and collision avoidance. 
 
 

IV. EXEMPLAR ILLUSTRATION 
 
In this section, we give an exemplar illustration of the data fusion activities of the CUSAS for 
situation awareness in time and mission critical operation.  The illustration uses 
collision/detection as an example.   
 
We first describe some of the logics behind the collision/detection mechanism. We make the 
following assumptions: 

• The event horizon is 30 minutes.  Most likely, it is not a safe to assume that any vessel 
will continue in the same course and speed for longer than that time slice. 

• As hinted above, we assume constant speed and course of all vessels (once a course is 
selected) 

• It is also assumed that speed/course changes are effective immediately.  This means that 
the difference between the current course/speed and any other does not effect the 
calculations.  Note that since in reality the turn rate depends on the amount of rudder 
applied, it is next to impossible to make any realistic predictions without ignoring this 
factor. 

• Last, we ignore the effect of the relative approach course on the effective size of the 
vessel as a factor in the collision.  We assume a uniform size (the length) in all directions. 

 
The simplest case of collision prediction is calculating whether for a given current location and 
speed of both vessels, and the bearing of the other vessel, there is a course that if taken will lead 
to collision.  There can be four cases: (1) No collision, (2) One collision point, (3) Two collision 
points, and (4) Imminent collision.  The four cases are illustrated respectively below.   
 
(1) No Collision. If the bearing of the other vessel is such that it is going away from out current 

location, and our speed is slower that its speed, there is no course we can take that will lead 
to collision.  Even if the vessel is heading towards us, but its there is no intersection point of 
the two courses where both vessels will be at the same time, a collision is not possible.  For 
example if we are moving slower than the other vessel, and the closes point it will be to our 
(current) location is far enough so that even if we “aim” directly at that point, we cannot 
make it to that location before the other vessel travels past it.  

 
(2) One Collision Point. This is the “classic” case.  For given starting points and speeds, there is 

only one bearing we can follow that will lead to the timed intersection of the travel lines, i.e. 
collision. Note that under the above time limited assumptions – if we follow the lines 
indefinitely, there will be, of course, infinite number of collisions possible.  

 
(3) Two Collision Points. Even under our assumptions, if the other vessel is far enough and its 

travel direction is towards our location, it is possible to have two collision points.  This can 
happen when the contact speed is greater then that of the controlled vessel one, and the 
contact is moving towards the controlled vessel.  
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(4) Imminent Collision. This may occur when the vessels are close enough.  The CO may not 

have enough time to change the controlled vessel speed or bearing.  It does not matter 
anymore which way the ship may try to go – a collision will happen.  

 
All of the above hold for detection, except that since detection happens within a (somewhat 
distorted) sphere, the result is not a point, but rather a range of courses that will lead to detection.  
In addition, effective detection distance depends on the speed of the other vessel as well as on 
our speed, and the relative course between the vessels.  Even more than in the collision case, it is 
possible that at a close distance, detection will happen no matter which course is taken.  The 
foundation of the detection algorithm is based on the following rules: 

• Detection range will linearly increase as the speed of the target increases.  At speed zero, 
there will not be any detection. 

• Detection range will linearly decrease with the increase to the detector’s (vessel) speed 
• Detection range is the same in all directions, with the exception of targets that are in the 

wake of the detection vessel.  In-wake detection range is reduced by a constant factor.  
(this is not effecting the recommendation generation at this point, just the SSA display.) 

 
The representation of collision/detection risk is done as three (partial) circles centered around the 
own ship.  Each sequence of arcs represent the risks at a given speed, where the middle circle 
represents the current speed, the inner circle represents the current speed minus 5Knts and the 
outer circle -- current speed plus 5Knts.  Exceptions to this rule are the cases where either the 
plus or the minus 5Knts speeds are outside operational envelope of the vessel, in which case that 
circle will not be drawn (and the result will be only 2 circles).  Each circle can consist of the set 
of arcs, where the arcs may be of one of two colors: - Yellow or Red.  Any course that is outside 
the yellow or red area is safe.  That is – own ship will not collide with, or be detected by other 
vessels.  A course that “intersects” a red segment has a very high probability of ending in a 
collision.  The yellow zone represents courses that while not leading to collision will lead to 
probable detection by the other vessel(s).  Note that within the arc, there is an even distribution 
of the chance for collision/detection.  
 

   
Figure 2. Situational Awareness display through multi-source data integration 
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While the above discussion assumes that we know all of the parameters of the battlefield, this is 
not the case in real life.  In particular, when an object is first detected, we know very little about 
it.  In the current prototype, we assume that the learning process is linear – so that after every 
second since the initial detection the information available to us is more detailed, as well as more 
reliable.  After a full minute of continuous tracking and analyzing, we have all of the 
information, and therefore we can use the above algorithms to predict collision/detection.  
However, until that point in time, we have to add to all of our calculation a “fuzziness” factor: 
we have to assume that the information has only some percent reliability, and that it will get 
better in time.  Therefore, during the first minute after initial detection, the recommendation 
analysis does not assume a precise location and/or speed of the other vessel.  Instead it assumes a 
range that is bound by the known limitations (such as speed can’t be more than X Knots).  The 
algorithm will converge on the “correct” data as time progresses.  It is also true that if we loose a 
contact, all data known is also lost, and if the same contact is reacquired, the learning process 
will repeat as if it is the first time it is detected.  All of these will, in time, converge to the “real” 
solution. The solution will then produce vessel identification and (as described above) a 
maximum of two collision points, and four detection arcs.  Again, please note that in the early 
detection interval, when the reliability factor is low, we “err” on the side of caution, and 
therefore the messages will assume the worst case scenario, and time estimates listed are the 
earliest the condition can occur. As an illustration, observe the two progressive agent 
observations (with data reliability progressing from 16% to 66%). Once a contact has been 
identified and properly designated, reliability is 100%. 
 
 

V. CONCLUSION 
 

The problem space of the battlefield is very complex, subject to continuous changes, and 
presently cannot be well modeled due to the associated combinatorial complexity.  To be 
effective the MAS must be able to quickly reorganize its computational assets to meet the 
dynamic changes of the environment as well as to deal with incomplete sets of information.  The 
multitude of variable elements and their relationships, which define the problem space, create a 
computational and combinatorial complexity.  The constantly changing strategic, tactical, 
economical, political, and sociological conditions make the modeling conceptually elusive and 
computationally highly demanding.  However, the significance of MAS in Command and 
Control (C2) applications is yet to be fully demonstrated.   
 
The complexity and efficiency of a multi-agent system depends on the number of software 
agents employed, and the degree of interdependence between them.  While the power of multi-
agent systems is inherited in the individual agent entities, it is amplified by the agent entities’ 
ability to solve problems in a distributive and collaborative fashion.  The larger the number of 
agents and the more interdependent they are, the higher the complexity and the lower the 
efficiency.  In any cases, a supervisory control mechanism is implemented to insure the agent 
operation effectiveness when modeling large complex problem spaces.  In CUSAS, the cognitive 
aspects of the agents, which is critic to the overall capabilities of CUSAS, are greatly improved 
by implementing techniques that stress machine conceptualization of the problem space and 
algorithms to allow the machine to solve problems based on integration of information from 
multiple resources, and achieve a better situational awareness for the submarine COs and other 
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C2 officers.  Clearly, we have seen the need for better display, coordination and, in general, 
management of and assistance with information.  We have made good progress on both problem 
domain learning, applied theory development, and submarine domain-relevant software design 
and prototyping for the objectives. 
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