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ABSTRACT 
 

In most current ground force combat simulations, the operational movements and command intent 
of forces follow prescribed, inflexible objectives and plans.  Because of this limitation, the value of 
advanced intelligence, surveillance, and reconnaissance (ISR) and high-level fusion is reflected 
only in better targeting and not in improved operational-level command and control (C2).  RAND 
has developed an agent interaction-based constructive simulation called the Ground C4-ISR As-
sessment Model (GCAM) to help examine the contributions of C4-ISR to ground forces. In GCAM 
simulated ground force commanders make decisions on the basis of shared awareness derived from 
information produced by Level 1 (Identify/Correlate), Level 2 (Aggregate/Resolve), and Level 3 
(Interpret/Determine/Predict) fusion processes. In this way simulated ground commanders can adapt 
their plans in response to perceived changes in enemy capability, activity, or intent, or to perceived 
changes to the battlefield environment. This paper details the representation of high-level fusion 
processes used in GCAM and developed with the support of the U.S. Army Model Improvement 
Program. Those processes are modeled using the Assistant Secretary of Defense for Networks and 
Information Integration (ASD-NII) Decision Support Center (DSC) Multi-INT fusion study 
“Knowledge Matrix” methodology. The information or knowledge added by high-level fusion and 
analysis of raw sensor data from multiple sources is represented in this methodology by increased 
information quality levels for activity, capability, and intent. This research will allow military ana-
lysts to demonstrate the utility and the relative importance of improved C2 and high-level fusion 
capabilities for Army and Joint forces. 
 

1. Introduction 
 
In most current ground force combat simulations, the operational movements and command intent 
of forces follow prescribed, inflexible objectives and plans.  Because of this limitation, the value of 
advanced intelligence, surveillance, and reconnaissance (ISR) and high-level fusion is reflected 
only in better targeting and not in improved operational-level command and control (C2).  To help 



examine the contributions of C2, Communications, Computers, and ISR (C4ISR) to ground forces 
the RAND Corporation has developed an agent interaction-based constructive simulation called the 
Ground C4ISR Assessment Model (GCAM). 
 
GCAM is a time-stepped, multi-sided, stochastic simulation of combat in a theater context with rep-
resentations of C2 at multiple echelons on all sides. GCAM is intended to support the analysis of 
C4ISR issues. Figure 1.1 depicts many of the features of GCAM entities. 
 

 
 

Figure 1.1 Depictions of GCAM Entities 
 

Areas or volumes having common characteristics represent the terrain and environment probabilis-
tically. Agents in GCAM may be platforms, such as satellites, aircraft, ships, vehicles, school buses, 
etc. or units existing in a command hierarchy. Agents are governed by their own individual behav-
iors and external orders from superiors. Agents may mount weapons and sensors and communicate 
with other agents over communications channels. In GCAM, agents, playing the role of command-
ers, make decisions on the basis of a perceived individual and shared battle space awareness called 
the common operational picture (COP) [1]. These decision-making agents start with an initial 
course of action (COA) and maneuver plans along with their own perceived Intelligence Prepara-
tion of the Battlefield (IPB). The agents use their own organic sensors, communications with other 
entities, and fusion processes to derive their perceptions. In this the way those agents can adapt their 
plans in response to perceived changes in the enemy or to the battlefield environment.  
 
If we characterize combat simulations with respect to their representation of decision-making and 
modeling approach, Figure 1.2 presents where some current combat simulations would lie with re-
spect to each other and GCAM. The arrows in Figure 1.2 try to capture where the simultion in ques-
tion is heading in its development. Distilled decision making features simple rules governed by ex-



ogenous influences. Rational decision-making represents deliberate planning based on internal per-
ception and complex sequences of behaviors. The equation-based simulation approach concentrates 
on the integration of observables (equations) through time. Equation-based simulations frequently 
involve the solution of large difference equations such as those commonly called Lanchester equa-
tions [2]. On the other hand, in agent-interaction based simulations overall patterns emerge from 
outcomes that evolve through the interactions and adaptations of many agents. These patterns are 
significantly more complex than the behaviors of the individual agents would imply. In [3] agent 
interaction-based simulations using distilled decision-making were called “Dot Wars. 
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Figure 1.2 Relationship of GCAM to Other Simulations 

 
 
Modern network enabled warfare phenomena are not well understood but may be characterized by 
the dynamic interactions of autonomous information-oriented decision-making entities. Therefore, 
rational agent interaction-based modeling seems natural. GCAM is built upon the System Effec-
tiveness Analysis Simulation [4] (SEAS), a toolkit for building such simulations. The quality of 
GCAM agent decisions is a function of the quality and the accuracy of the perceived situational 
awareness available to them. Thus, analysts may assess the impact of the quality of information 
produced by the ISR and fusion architectures on the command decision-making process and ulti-
mately on combat itself examining the outcomes of battles fought with alternative architectures. An 
adequate representation of the fusion process is key to this evaluation. This paper details the repre-
sentation of high-level fusion processes used GCAM. 
 

2. Fusion 
 
Fusion may be defined as “a series of processes performed to transform observational data into 
more detailed and refined information, knowledge, and understanding [5].” The fusion process ob-
serves significant events and battlefield entities performing various actions. We distinguish in our 



model between four general types of entities: infrastructure and facilities (buildings, roads, bridge 
etc.), pieces of equipment (tanks, trucks, etc.), aggregates (units, collections, organizations, etc.), 
and elements with structured relationships such as an order of battle. Based upon the Joint Directors 
of Laboratories (JDL) Data Fusion Model [6] first proposed in 1985 under the guidance of the De-
partment of Defense (DoD), we partition fusion into six, not necessarily sequential, levels.  
 
Level 0 fusion organizes discrete pieces of sensed data into forms that can be used by the process. 
Level 1 fusion processes sensed data to identify that discrete entities or events have been observed, 
correlates and combines like information, and resolves information conflicts. The output from Level 
1 fusion is a set of discrete observed battlefield entities with information about the type, location, 
movement, identity, status, and capability, along with an evaluation of the quality of this informa-
tion. 
  
Based upon the Level 1 products, IPB order of battle templates, and knowledge about the environ-
ment, Level 2 fusion aggregates discrete entities into larger objects that are interacting. It interprets 
entity events and actions and hypothesizes what events may occur next. The outputs from Level 2 
are aggregated as well as inferred entities, observed and derived events and actions, and a collection 
of hypotheses on what events will happen in the future. In addition, quality assessments of these 
products will be available. 
 
Level 3 fusion projects current situation into the future to predict intent and courses of action. Level 
4 assesses and controls the fusion process to drive improvements in the process. It allocates re-
sources to satisfy collection needs. Level 5 fusion provides the fusion process with customer feed-
back and control through visualization of the fusion products and determination of Priority Intelli-
gence Requirements (PIR). 
 
Many simulations represent the Level 1 fusion of location and movement information for single en-
tities with an eye to targeting them with weapons. The representation described is this paper con-
centrates on higher-level (Level 1, 2, and 3) processes. Separate representations of Level 4 and 5 
fusion would use the results of the higher-level process representation. 
 
The fusion process in current and future Army intelligence units the will be conducted by five foun-
dational domains - four single-source and one integrating. 
1. The Imagery and Geospatial Information Domain handles Imagery Intelligence and Geospatial 
Information. 
2. The Signatures Domain handles Measurement and Signatures Intelligence. 
3. The Signals Domain handles Signals Intelligence.  
4. The Human Domain handles Human Intelligence and Counterintelligence. 
5. The Integrating Domain performs all source analysis by integrating, planning, guiding, and 
tasking all other domains in conducting all intelligence tasks. 
 
Observations are assumed to be the result of Level 0 Fusion as part of the sensing process. As indi-
cated in Figure 2.1 observations may be then processed by one of the single source domains and 
then the integrating domain or directly by the integrating domain. Fusion levels 1 through 5 occur in 
each domain. 
  



3. Knowledge Matrix  
 
One purpose of fusion is to reduce the amount of data on the COP. But the product of a fusion proc-
ess should also have higher quality than the input to the process. Thus, to represent fusion ade-
quately in a simulation we must represent not only the product but also its quality. Our goal is to 
represent the fused observation and also the improvement in the quality of that observation added 
by the fusion process.  
 
The “Knowledge Matrix” [7] is a tabular framework for capturing the quality of a piece of observa-
tional data. Each column of the matrix represents a different type of knowledge (Location, Track, 
Identity, Activity, Capability, Intent, etc.) about the data. Within each column, each row represents 
decreasing levels of quality for the type of knowledge represented by the column. Figure 3.1 pre-
sents an example of a knowledge matrix with descriptions of the levels of quality. 
 
 

 Type of Knowledge 
Quality 
Level 

Loca-
tion Track Identity Activity Capa-

bility Intent 

5 5 m. 
Vectors 
& Pat-
terns 

Object 
Hierar-

chy 

Precise 
Actions 

All Ele-
ments 

All Ob-
jectives 

4 10 m. Vectors Object Specific 
Actions 

Many 
Details 

Major 
Objec-
tives 

3 20 m. Veloc-
ity Classify

Identi-
fiable 

Actions 

Some 
Details 

Primary 
Objec-
tives 

2 100 m. 
Toward 

or 
Away 

Catego-
rize 

Single 
Action 

General 
Infor-
mation 

General 
Objec-
tives 

1 1 km. Moving 
Discrim

inate 
Uniden-
tifiable 
Actions 

Mini-
mal In-
forma-

tion 

Single 
Objec-

tive 

0 10 km Detect Detect Detect Detect Detect 
 

Figure 3.1 Knowledge Matrix Cell Descriptions 
 
The entry in each cell of the knowledge matrix for a piece of data is the likelihood that the data 
achieves the level of quality or better for that cell. It depends on the sensor or process that generated 
the piece of data, the environment, and the target itself. This information may be derived from sen-
sor characteristics, expert opinion, or played parametrically. A knowledge matrix may be used to 
portray the quality of any piece of information about battlefield entities. We distinguish between 
four types of entities: infrastructure (buildings, roads, bridge etc.), equipment (tanks, trucks, etc.), 
aggregates (units, collections, etc.), and elements of an order of battle. 



 
Figure 3.2 is an example of a knowledge matrix. If we were to adopt a 90% threshold for quality 
this data would indicate, see the shaded cells, a vehicle moving away, say, with ~100 meter location 
error, general capability and unknown activity and intent. In this example and extra row of ones has 
been appended to emphasize that each column can be treated as a cumulative distribution function 
for a discrete random variable. In the remainder of this paper if this last row is not explicitly stated 
it should be assumed to exist. In addition, for knowledge matrix G, we will refer to the likelihood in 
the cell for Quality Level i of column j as Gi, j. 
 
 

 Type of Knowledge 
Quality 
Level 

Loca-
tion Track Identity Activity Capa-

bility Intent 

5 0.0 0.0 0.0 0.0 0.0 0.0 
4 0.3 0.0 0.0 0.0 0.0 0.0 
3 0.8 0.0 0.0 0.0 0.0 0.0 
2 0.9 0.7 0.9 0.0 0.0 0.0 
1 0.95 0.9 0.95 0.0 0.9 0.0 
0 0.99 0.95 0.98 0.0 0.92 0.0 
-1 1.0 1.0 1.0 1.0 1.0 1.0 

 
Figure 3.2 Example Knowledge Matrix 

 
Suppose a scout has been assigned to watch a specific Named Area of Interest (NAI). Vehicles ob-
served in that NAI are highly likely to be following a specific Course of Action (COA). Figure 3.3 
presents a possible knowledge matrix for a detection of such a vehicle. 
 
 

 Type of Knowledge 
Quality 
Level 

Loca-
tion Track Identity Activity Capa-

bility Intent 

5 0.0 0.0 0.0 0.0 0.0 0.0 
4 0.3 0.0 0.0 0.0 0.0 0.2 
3 0.8 0.0 0.0 0.0 0.0 0.6 
2 0.9 0.7 0.9 0.0 0.0 0.9 
1 0.95 0.9 0.95 0.0 0.9 0.9 
0 0.99 0.95 0.98 0.0 0.92 0.9 

 
Figure 3.3 Knowledge Matrix for a NAI 

 
Most simulations, both stochastic and deterministic, have and use the information available in a 
knowledge matrix. In a stochastic simulation, if G is the knowledge matrix for an entity that has 
been detected, for each Knowledge Type j, one would generate a uniform random variable, uj, and 
find the sampled Quality Level, qj = Gj

-1(uj), where Gj
-1(x) is the highest Quality Level i such that 

x≤Gi,j. That sampled quality level becomes the perceived knowledge about the entity being ob-



served and would be reported for use by the other processes in the simulation. In addition, the vec-
tor of sampled uniform random variables, u = (uj), is associated with the observation and knowledge 
matrix. 
 
In a deterministic simulation, if nk entities of type k are detected, then nkGi,j type k entities are re-
ported at Quality Level i of Knowledge Type j. For example, if a sensor in a deterministic simula-
tion detects 10 tanks and Figure 3.3 is the knowledge matrix for those tanks then 0, 3, 8, 9, 9.5, and 
10 tanks would be reported with location errors less than 5 m., 10 m., 20 m., 100 m., 1 km., and 10 
km., respectively. The vector of detections, n = (nk), would be associated with the knowledge ma-
trix. Unfortunately, many simulations fail to associate the knowledge matrix information with the 
observation data after the data is produced. As we will see in the next subsection maintaining the 
knowledge matrix is central to our representation of fusion. 
 
Our representation of the fusion process involves four steps. The first is to “age” the knowledge ma-
trices. Then candidates for fusion must be determined. The third step combines the observations and 
their associated knowledge matrices. The last step infers quality improvements that are supported 
by the information in the fused knowledge matrix. 
 

4. Knowledge Matrix Aging 
 
The quality of a piece of data becomes less accurate as time advances. This is due to the propensity 
of battlefield entities to unpredictably change their state or behavior. Stationary entities begin to 
move.  Moving entities stop. Infrastructure is destroyed and rebuilt. We thus need to “age” the like-
lihoods in a knowledge matrix over time. If knowledge matrix G(t1) was obtained at time t1 then the 
aged knowledge matrix for time t2, G(t2), is formed by multiplying each G(t1)i,j by exp{Ri,j(t1 – t2)} 
for some value of Ri,j that depends on the quality level, type of knowledge, type of target, and the 
environment. Possible values for Ri,j are given in [6]. For example, Ri,1 is 0.069 per minute for mov-
ing vehicles for all quality levels indicating that the likelihood for the quality levels of the location 
of a moving vehicle halve every 10 minutes. 
  
In addition, the standard deviations, σ, of the circular location errors for moving entities grow pro-
portionately with time even though those entities do not change their direction or behaviors. That is, 
∆t after a moving entity has been detected σ2 = TLE2 + TVE2 ∆t2 where TLE is the target location 
circular error standard deviation and TVE is the target velocity circular error standard deviation for 
the detection. The likelihoods for the location of moving battlefield entities should also be recom-
puted as well as aged.  The quality associated to the location moving entities may diminish quickly. 
 
 

5. Determining Fusion Candidates 
 
The second step in the representation of fusion [7] is to determine if two observations are candi-
dates for fusion. Two observations of same type battlefield entities are candidates for fusion if their 
aged Quality Level 3 likelihoods for Location knowledge must meet some threshold, β, and their 
estimated locations are close. That is, the square of the distance between their estimated locations is 
less than {σ12 + σ22}χ2(α) where σi is the standard deviation of the circular location error for ob-



servation i and χ2(α) is the value that a chi-squared variable with two degrees of freedom exceeds 
with probability α. The parameters α and β vary by type of entity. For infrastructure observations β 
may equal 25% while for equipment observations β may equal 75% or 90%. Usually α equals 10% 
or 5%. 
 
The knowledge matrices for each observation must be scored using the threshold value, β, from 
above. For Location knowledge, if G1

-1(β) is level 5,4,3, or 2, the score for Location is 12. If G1
-1(β) 

is level 1, 0, or –1 the score for Location is 8, 4, or 2.4, respectively. For Identification and Track-
ing (if moving) knowledge, if G1

-1(β) is level 5 or 4, the score is 12. If G1
-1(β) is level 3, 2, 1, 0, or –

1 the score is 9.6, 7.2, 4.8, 2.4, or 0, respectively. The score for Identification and Tracking is ap-
proximately 2.4 times the expected quality level for the column. We use this modified scoring 
method since it considers more of the information in the column.  
 
For each of the knowledge matrices sum the scored values and divide by either 24 or 36 (if mov-
ing). This yields a correlation probability, P1 or P2, for knowledge matrix 1 or 2. The likelihood that 
both knowledge matrices come from observations of the same entity is P1▪P2. In a stochastic simula-
tion the two observations will be fused if a sampled uniform random variable is less than P1▪P2. In a 
deterministic simulation the two observations will be fused if P1▪P2 is greater than 50%. If the fu-
sion test fails we will pick the observation with the highest correlation probability. The last step al-
lows us to discard observations with poor quality. In [7] only observations for aggregate or order of 
battle entity types are scored. We score the observations for all entity types. 
 

6. Combining Knowledge Matrices 
 
The third step in the representation of fusion [7] is to combine the observations to be fused along 
with their knowledge matrices. Suppose two observations with associated knowledge matrices G 
and H have been selected for fusion. We will assume that  both observations have been obtained in 
a probabilistically independent fashion, and the knowledge matrix of the fused observation will not 
contain likelihood values less than those of G or H. 
An implicit formulation for the fused knowledge matrix, F=(Fi,j) may be derived as 
  

Fi, j  = 1 - (1 - Gi, j)( 1 - Hi,j). 
 

Alan Steinberg suggested this equation as an extension to The Dempster-Schafer Theory of Evi-
dence [8]. For a stochastic simulation, if g=(gi) and h=(hi) are the uniform sampling vectors associ-
ated with G and H respectively, the fused vector f=(fj) is 
 

fj=1-(1-gj)(1-hj)[1-ln{(1-gj)(1-hj)}]. 
 
The sampled quality levels for each type of knowledge, j, may be obtained from F-1(fj). This is an 
implicit approximation since using the actual fusion process would produce an observation with a 
knowledge matrix containing likelihoods no less than those of F. Preliminary experiments seem to 
indicate the difference between explicit and implicit likelihoods is not great. If one wishes to substi-
tute for the implicit computation of fj the calculation from an explicit fusion process, say, using a 
Kalman filter [9] for Location knowledge, one may so. The appropriate entries in the knowledge 



matrix should then be recomputed. Either way the resulting fused observation will have a knowl-
edge matrix better than the either of the fused observations. 
 
Suppose Figure 3.3 is the knowledge matrix, G, for one observation and Figure 6.1 is the knowl-
edge matrix, H, for an observation on a commander’s common operational picture (COP)[1][10].  
 

 Type of Knowledge 
Quality 
Level 

Loca-
tion Track Identity Activity Capa-

bility Intent 

5 0.0 0.0 0.1 0.3 0.0 0.0 
4 0.2 0.0 0.6 0.4 0.0 0.0 
3 0.7 0.0 0.8 0.5 0.7 0.0 
2 0.9 0.7 0.9 0.6 0.8 0.3 
1 0.95 0.8 0.95 0.7 0.9 0.4 
0 0.99 0.9 0.98 0.8 0.92 0.5 

 
Figure 6.1 COP Observation Knowledge Matrix 

 
Further suppose that both are candidates for fusion and that the fusion test has been passed. The 
fused knowledge matrix, F, is presented in Figure 6.2.  
 
 

 Type of Knowledge 
Quality 
Level 

Loca-
tion Track Identity Activity Capa-

bility Intent 

5 0.0 0.0 0.1 0.3 0.0 0.0 
4 0.44 0.0 0.6 0.4 0.0 0.2 
3 0.94 0.0 0.8 0.5 0.7 0.6 
2 0.99 0.91 0.99 0.6 0.8 0.93 
1 0.998 0.98 0.998 0.7 0.99 0.94 
0 0.9999 0.995 0.9999 0.8 0.994 0.95 

 
Figure 6.2 Fused Knowledge Matrix (F) 

 
If the uniform sampling vector for G is g=(0.75, 0.84, 0.9, 0.6, 0.52, 0.3) and for H is h =(0.38, 
0.24, 0.6, 0.52, 0.48, 0.3) then the fused uniform sampling vector is f=(0.56, 0.62, 0.83, 0.49, 0.40, 
0.16). The sampled quality level vector of the resulting fused observation is F-1(f) =(3,2,2,3,3,4). 
That is, the observation used by the simulation will have a 20 meter circular location error, with 
known actions, capability, and primary objective. The Identity of the observation can only be classi-
fied as tracked or wheeled in the simulation. 
 

7. Knowledge Matrix Inference 
 
At this point we have obtained our goal to represent not only how observations are fused but also 
how that fusion improves the quality of that observation. But more is possible in the fourth step of 



the process. The likelihoods in the fused knowledge matrix, and thus the information reported to the 
simulation, may be improved using inference rules patterned after expert system judgment. Refer-
ence [7] presents a set of rules derived from the U.S. Army All Source Analysis System (ASAS). 
For example, one of these rules states that if, at the 90% threshold, the quality level for Location is 
3, i.e., FLoc(3)≥0.9, and the quality level for Track is 2, then the quality levels for Identity, Activity, 
and Capability at the 90% threshold may be increased to 3, 2, and 2, respectively. The resulting in-
ferred knowledge matrix is presented in Figure 7.1. The improved cells have been shaded. 
 
 

 Type of Knowledge 
Quality 
Level 

Loca-
tion Track Identity Activity Capa-

bility Intent 

5 0.0 0.0 0.1 0.3 0.0 0.0 
4 0.44 0.0 0.6 0.4 0.0 0.2 
3 0.94 0.0 0.9 0.5 0.7 0.6 
2 0.99 0.91 0.99 0.9 0.9 0.93 
1 0.998 0.98 0.998 0.9 0.99 0.94 
0 0.9999 0.995 0.9999 0.9 0.994 0.95 

 
Figure 7.1 Inferred Knowledge Matrix 

 
Now the Identity of the vehicle revealed to the simulation using F-1(f) may be classified. This would 
be an important improvement if this vehicle were actually a civilian automobile or an armored per-
sonnel carrier. Other such inference rules are implemented in GCAM. 
 

8. Summary 
 
This paper has presented the underlying methodology for the representation of fusion that has been 
implemented in RAND’s GCAM simulation of ground combat. It is based upon the concept of a 
knowledge matrix that captures the quality of an observation. It is applicable to infrastructure, 
equipment, aggregate, and order of battle observation types. In addition, the implicit fusion algo-
rithm we have presented allows the quality improvements due to fusion to be represented and used 
by decision-making entities in the simulation. 
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