
A Scalable and Extensible Interactive Scenario Architecture for
Distributed Command and Control Simulations

Magy Seif El-Nasr
Assistant Professor

School of Information
Science and Technology

Pennsylvania State
University

314 IST Building

University Park, PA 16802

magy@ist.psu.edu

Rashaad E.T. Jones
PhD Candidate

School of Information
Science and Technology

Pennsylvania State
University

314 IST Building

University Park, PA 16802

rjones@ist.psu.edu

Michael McNeese
Associate Professor

School of Information
Science and Technology

Pennsylvania State
University

314 IST Building

University Park, PA 16802

mmcneese@ist.psu.edu

A Scalable and Extensible Interactive Scenario Architecture for
Distributed Command and Control Simulations

Magy Seif El-Nasr
Assistant Professor

School of Information
Science and Technology

Pennsylvania State
University

314 IST Building

University Park, PA 16802

magy@ist.psu.edu

Rashaad E.T. Jones
PhD Candidate

School of Information
Science and Technology

Pennsylvania State
University

314 IST Building

University Park, PA 16802

rjones@ist.psu.edu

Michael McNeese
Associate Professor

School of Information
Science and Technology

Pennsylvania State
University

314 IST Building

University Park, PA 16802

mmcneese@ist.psu.edu

Abstract
Interactive virtual environments are becoming increasingly popular for their
utility in virtual training, distributed decision-making and collaborative
environments. Some of these applications rely on a scenario that is revealed to
the user as he/she interacts with synthetic objects and characters that inhabit
virtual worlds. The development and authoring of interactive dynamic scenarios
is often hard and difficult to accomplish using current techniques. Many
interactive scenario developers use decision trees, which yield very limiting and
unfulfilling training experiences, because they do not stimulate learning or
thinking beyond the scripted paths. Some researchers proposed plan-based
interactive narrative architectures, which, although superior to decision trees, do
not scale and do not address user’s goals and intentions, yielding inflexible
scenarios that do not adapt suitably to players’ goals or behaviors. In this paper,
we propose a dynamic scenario architecture that aims at enhancing scalability
and reuse by using a multi-agent layered problem solving technique.
Additionally, the interactive scenario architecture will automatically adapt to
users’ goals by integrating a user model and a user monitoring technique.

1. Introduction
Elaborate interactive 3D virtual environments populated with embodied synthetic
characters are becoming a significant component for many military and command and
control applications, including training, assessment, and experimental distributed
decision-making and learning environments. In this paper, we focus on the design and
development of effective user-centric dynamic scenario architecture that automatically
adapts to users’ behaviors.

We argue that for a dynamic scenario system to be effective in training, assessment, or
team decision-making assessment, the architecture should address several issues: (1)
dynamic modulation of the scenario to adapt to users’ behaviors, (2) modulation of the
scenario to adapt to the scenario objectives and learning strategies, and (3) integration of

user feedback and adaptation of scenarios through agents’ behaviors based on user’s
feedback and actions.

Addressing these problems is hard due to many reasons. First, current techniques for
interactive scenario rely on the use of decision trees, which, due to their exponential
growth, are hard to author and modify. In addition, predicting users’ behaviors is
difficult. Thus, a decision tree-based architecture leads to very limiting and unfulfilling
experiences, because they do not stimulate learning or thinking beyond the scripted paths.
This drawback has hindered many interactive scenario-based applications.

Some researchers recognized this fact and searched eagerly to find a solution. Mateas and
Stern proposed a HAP-based architecture for interactive narrative (Mateas and Stern
2000, 2001). Young proposed a plan-based interactive narrative architecture, where plans
are revised depending on users’ actions (Young 2000). Peter Weyhrauch proposed an
interactive drama manager that uses game theory to select a story event given the current
story state (Weyhrauch 1997).

These explorations present major achievements to break the norm of decision tree-based
interactive scenarios. Although these projects have succeeded in developing interactive
dynamic scenarios that are more adaptable and maintainable than decision tree-based
scenarios, they still suffer from several drawbacks. They are difficult to debug and
maintain. The use of plan-based techniques limits the architecture’s scalability. In
addition, they do not integrate user’s goals or intentions in their scenario generation
system, which limits their scenario variations and adaptation.

Alternatively, we are proposing a dynamic interactive scenario architecture that integrates
a user modeling approach and divides problem solving among several layers. The
contribution of the methods described in this paper will impact the research on interactive
scenario architectures in two directions. First, we present an interactive scenario
architecture that enhances scenario adaptation by integrating two constructs that have
been used by screenwriters and actors: (1) a user model to adapt the scenario dynamically
to users’ goals (Mckee 1997), and (2) a user monitoring technique to evaluate the failure
or success of character behavior (Bennedetti 1994); some example user monitoring
techniques include monitoring users’ actions to infer agreement or to evaluate that his/her
attention is directed towards the desired object/character. In a second direction, the paper
proposes an architecture that enhances scalability and reuse by using a multi-agent
layered problem solving technique. This technique enhances scalability by dividing the
problem into smaller problems, and thus reducing the number of rules and predicates
processed at each layer. The architecture also enhances reuse since it decouples scenes,
scenario events, and character behaviors into components. It is worth noting that
scalability and reuse are important qualities for interactive scenario architectures,
especially considering the complexity of the authoring process.

In this paper, we will first discuss previous research. We will then describe the proposed
dynamic scenario architecture defining the scenario structure and its representation. In the
following section, we will show the integration and implementation of this architecture in
a command and control-based simulation called, Neocities.

2. Previous Research

The need for scalable and effective interactive narrative or dynamic scenario
architectures that adapt to users’ interactions provides an incentive for many researchers
to explore the utility of applying AI-based problem solving techniques to interactive
scenarios. In this section, I will describe a few attempts.

Some researchers developed character-centric interactive narrative architectures where
the narrative emerges as a product of user’s interaction with an environment populated
with synthetic agents. Examples of these architectures include The Sims, Creatures, Catz,
Dogz, and Woggles (loyall 1997). Researchers focusing on the character-centric approach
usually focus on character development (loyall 1997, Bates 1992, Bates et al. 1992,
O’Rielly 1996, Aristotle 1967). Since the narrative or scenarios are not represented
within the architecture, the utility of such architecture for authored interactive scenarios1
is unclear.

Mateas and Stern proposed a HAP-based architecture for interactive narratives (2001).
Young proposed a plan-based interactive narrative architecture, where plans are revised
depending on users’ actions (2000). Peter Weyhrauch proposed the use of game theory to
adapt the scenario to user’s behaviors (1997).

Young proposed an interactive narrative architecture that uses planning (Young 2000).
Young’s approach relies on re-planning to accommodate user’s behaviors. For example,
if the user attempts to shoot an important character, then the system, recognizing that the
character is important, will adopt a ‘gun out of bullets’ routine to prevent the user from
killing the important character. This technique is problematic and may lead to user
frustration, because it deliberately obstructs the user from his/her goal in order to keep
him/her on the story track. In addition, many performance issues may arise due to the use
of planning.

These explorations, and many others, present major achievements to break the norm of
decision tree-based interactive scenarios/narratives. Although these projects have
succeeded in developing interactive scenarios that are more maintainable than decision
trees, they do not scale and are time consuming to author. In addition, these architectures
do not integrate users’ goals or intentions or use such information to select scenario
events; thus, these architectures yield inflexible scenarios that do not adapt suitably to
players’ goals or behaviors.

3. Interactive Dynamic Scenario Architecture
Figure 1 depicts the components of the proposed interactive dynamic scenario. As shown
in the figure, the dynamic scenario architecture is composed of several components. The
scenario generation engine takes as inputs: scenario goals, the events and actions sensed
by the scenario manager from the environment, and the inferred user model. It then
generates a scenario event. This event is then given to the scenario manager who dictates
several behavioral goals to the respective agents within the simulation. Given the
behavioral goals and the current state, each agent forms a plan that achieves these
behavioral goals. This plan along with timing constraints for the actions within the plan is

1 Authored interactive scenarios describe scenarios where an author, a director, or a designer has a set of
goals that he/she wants the trainee, player, or participant to achieve or reach.

given to the scenario manager, who then synchronizes the plans to a uniform plan of
action and distributes the behavioral plan that includes timing constraints to agents. The
simulation engine takes the actions from the agents and adequately renders them with the
supervision of the scenario manager.

3.1 Scenario Generation Engine
The scenario generation engine keeps track of its current state including history of
selected scenario events, character actions, and character relationships. Given a number
of authored scenario events, the user model, and the scenario state, the scenario
generation engine first selects a scene that will satisfy the scenario objective, and then it
will select a scenario event that will satisfy the scene objective. We use a reactive
planning algorithm to select the scenes and scenario events (Firby 1989). In order to
clearly describe the scenario generation engine, it is important to explain the scenario
structure and representation. Therefore, we will first describe the scenario structure and
then detail the rest of the interactive dynamic scenario architecture.

3.1.1 Scenario Structure
The scenario is represented in two separate levels: scenes and scenario events. Scenes are
represented using the following structure:

Scene Objective: (scene-goal ?sg), where ?sg is a list of states connected by ands or ors.
When the statement ?sg is true the objective becomes true. For example:

(scene-goal (Told Electra Archemedis (story-of Electra))

where the scene’s goal is to make Electra tell her story to Archemedis.

Scene Preconditions: list of conditions concerning the scenario state, user model, and
user actions. If true they qualify the scene for being fired given that the story engine is
looking for a scene that achieves the scenic goal listed by the scene.

Behavioral plans &

Timing constraints

Characters
Action

Current
State

User Model

Scenario Manager Agent Architecture

Simulation Engine

Figure 1: Dynamic Scenario Architecture

Scenario Generation
Engine

Events and actions

Scenario Event Events and
Actions Behavior Plan

Scene Posteffects: list of states that become true upon success.

Scene Effects: list of states that become true upon firing.

Scene subgoals: (sgoal ?z)

 Where sgoal is

 (sequence sgoal) | (parallel sgoal) | (beat-goal ?y)

3.1.2 Scenario Events
Scenario events are represented using the following structure:

Event Goal: (event-goal ?bg), similar to scene goals

Event Preconditions: list of conditions concerning the scenario state, user model, and
user actions. If true they qualify the scenario event for being fired given that the scenario
generation engine is looking for an event that achieves the event goal listed above.

Event Posteffects: list of states that become true upon success

Event Effects: list of states that become true upon firing

Event subgoals: (agoal ?y)

 where agoal is

 (sequence agoal) | (parallel agoal) | (character-goal ?y) | (camera-goal ?c) | (lighting-goal
?x)

3.1.3 Selecting scenario events
A scenario event is then a collection of sequence and/or parallel event subgoals or
character, camera, or lighting goals. To get a sequence of simple goals (such as character-
goals, lighting-goals, and camera-goals), the scenario generation engine includes an
algorithm that iteratively loops selecting scenes and breaks them into simpler scenes until
a plan of simple scenes is selected. It then selects a scene from the plan to execute. The
second step is then concerned with searching for a plan of scenario events that achieves
the scene objective of the selected scene. It then selects scenario events and breaks them
into simpler scenario events, constructing a tree of event-goals and simple-goals. Once a
path is found with only simple goals, the scenario generation engine passes these simple
goals to the scenario manager, who then relays them to appropriate agents. This
deconstruction of goals to simpler goals is similar to the method described in (Loyall
1997, Firby 1989, Forbus and Kleer 1992).

Abstracting some elements that define the important focus and problem difficulty level in
the scenario is an important design element. Thus, the scenario engine allows authors to
write rules to identify shifts in difficulty level through scenario event changes. These
rules allow the scenario engine to identify the difficulty level of a specific moment,
which is represented, as discussed above, as a number (0-100); an example is as follows:

if beat#2 is followed by beat #5

and Electra is using the threatening tactic on the user

then increase dramatic intensity by 10 increments,

These rules are extremely important, because they serve as catalysts for adapting the
scenario and visual presentation to enhance and support the scenario.

3.2 Scenario Manager
The scenario manager is designed with the same functionality as the drama manager in
the Oz Project (Mateas, 1999). The scenario manager is the essential component of
dynamic scenario architecture; it serves as a hidden “intelligent agent” that controls and
monitors the scenario execution. It coordinates agents plans. These agents are not
restricted to characters in the virtual world, but they are extended to include visual agents,
such as lighting, camera, and staging.

The agents propose behavioral plans and timing constraints to the scenario manager who
is then responsible for coordinating these plans. The scenario manager uses several rules
to synchronize the scheduling of actions within the behavioral plans. It then relays the
plan with some synchronization constructs to the respective agents. The agents then
proceed to execute the actions within their plans abiding by the synchronization
constructs.

Synchronization constructs are defined as preconditions to the actions. For example, the
scenario manager may decide to have character x move from position x1 to position x2
only when character y finishes speaking. Thus, the synchronized plan given to character x
will be of the following form:

(action (walk-to (position x2))

 :precondition (not (speaking (character y)).

Furthermore, the scenario manager also coordinates the execution of the actions by
monitoring the execution and passing messages back and forth between agents.

3.3 Agent Architecture
Once a character-goal is given to an agent, the agent uses a similar technique to scenario
deconstruction to deconstruct the behavioral goals into simple actions (Forbus and Kleer
1992, Loyall 1997).

3.3.1 Behavior Representation
We are representing behaviors as follows:

Behavior goal: (goal ?cg), similar to scene goals

Behavior Preconditions: list of conditions concerning the scenario state, user model, and
user actions. If true they qualify the behavior for being fired given that the scenario
generation engine is looking for a behavior that achieves the objective listed above.

Behavior Posteffects: list of states that become true upon success

Behavior Effects: list of states that become true upon firing

Behavior subgoals: (bgoal ?y)

where bgoal is

 (sequence bgoal) | (parallel bgoal) | (action ?y) | (say ?c)

where action and say are terminal actions.

Actions are represented by an action, an adverb, and an actor; for example (Walk Electra
slowly) is a behavior where the action is walk, the actor is Electra, and the manner in
which an action is performed is slowly. Therefore, an action can be animated in different
manners defined by the adverb. For example, ‘take the sword’ is an action that is defined
as three animations ‘take sword eagerly’, ‘take sword hesitantly’, and ‘take sword
regretfully’.

3.3.2 User behavior analysis and dynamic character improvisation
Justine Cassell has argued for the use of feedback and user modeling for conversational
agents (Cassell 1998). Likewise, we argue for the use of such techniques for believable
characters. By studying acting and observing actors improvise their roles, I concluded
that current techniques do not advocate dynamic user monitoring or adapt behaviors
according to dynamic user feedback. In contrast, actors continuously monitor each other
within a scene looking for clues to evaluate their behaviors. They improvise by adjusting
their behaviors to other actors’ goals and behaviors.

Therefore, we propose the use of: (1) a mechanism for using a user model to choose
behaviors and (2) a mechanism for dynamic evaluation of success and/or failure of the
behavior using an analysis of user’s behavior. To evaluate failure or success of their
behaviors, agents will continuously monitor user’s state and actions for signals. Thus, the
interactive narrative representation is extended to include:

Failure condition:

 e.g. (and (talking (character ?z))

 (not (attending user (character ?z))))

Failure Tolerance: e.g. 90%

The failure condition example defined above identify when a character is talking, she/he
will monitor the user to ensure his attention is directed towards him/her. The tolerance for
violating this condition is high.

3.3.3 Behavioral plan generation algorithm
One major difference between this architecture and the previous work, in addition to the
use of user modeling, is in the agent’s ability to dynamically adapt to the user’s
behaviors. Agents continuously monitor mouse movements, mouse clicks for clues to
infer the direction of user’s attention and user’s goals and intentions. Given these inferred
values, the agent will continuously adjust its success or failure rates until failure reaches
the tolerance limit. If that occurs, the character will (1) declare the behavior a failure, (2)
update the user model, and (3) choose another behavior to solve the character-goal. The
algorithm can be summarized as follows:

1. Choose behavior plan given
 user stereotype,
 character goal,
 failed behaviors
2. each time tick

 2.1. monitor user action assessing current behavior
2.1.1 if failure limit reached,

2.1.1.1 fail behavior
2.1.1.2 go to step 2.

 2.1.2. Update user model

3.4 User-Modeling
A user modeling technique is used to further enhance the adaptability aspect of the
interactive dynamic scenario architecture. This component will appropriately and
automatically adapt to users’ goals by integrating a user model to adapt the scenario
dynamically to player’s goals (McKee, 1997).

The user-modeling approach we adopted was based on casual relationship between user
ability and character personality (which is inferred by the user’s actions) and scenario
events. Given a user action, the history of user actions, and the scenario state, a rule-
based system is used to adapt the user model to reflect the user’s choice. A simple
example can be “if user is unsuccessful in responding to a terrorist-related event and is
easily frustrated (judging from previous interactions), then lower the difficulty and
severity of all future events”.

The user-modeling component was first implemented and evaluated within an interactive
story called Mirage. Mirage is a full scale 3-D interactive virtual story, where a user
interacts with embodied animated agents and make choices that impact his/her life and
the simulation (Seif El-Nasr to appear). This model is currently being extended for use in
NeoCITIES.

4. Results
An initial prototype of the interactive scenario architecture was implemented in an
interactive story called Mirage (El-Nasr to appear). The result from incorporating this
architecture in Mirage yielded a more scalable and adaptable narrative when compared to
current techniques, including goal-based narrative without user modeling or monitoring,
and decision-trees. To evaluate the utility of the proposed approach and its validity for
Command and Control, we are currently integrating the architecture within an interactive
simulation called NeoCITIES (McNeese et al. 2003; McNeese, in press)

Neocities is a scaled-world simulation specifically designed for a command and control
(C2) environment. The NeoCITIES’s task is both a renovation, as well as an expansion,
of the original CITIES task (Wellens & Ergener, 1988). As with the original CITIES
task, the Neo Command and Control (C2) Interactive Task for Identifying Emerging
Situations (NeoCITIES) has been designed and developed for the purpose of studying
group collaborative decision-making processes, knowledge acquisition and knowledge
management using information acquired from multiple sources within a command and
control (C2) setting. As such, NeoCITIES is essentially an adaptable problem interface,
which allows the close examination of semiautonomous, spatially distributed decision-
making teams. These decision-making teams can be presented with several different
overarching, dynamic and detailed resource allocation problem scenarios, for which they
are required to find suitable solutions meeting the needs of given constituents and

working around various problem space constraints existing within the task. Figure 2 is a
snapshot of the NeoCITIES interface.

The scenarios designed and types of teams selected to be used in this simulation were
purposefully designed to be contextually relevant to the concerns of the Department of
Homeland Security in the areas of crisis management. These scenarios have each been
taken and adapted from news stories of recent world events or from stories in popular
media. Additionally, experts from the field (crisis management personnel that includes
DHS intelligent analysts, police and fire authorities, etc) were interviewed to assist in the
development of scenarios to provide a highly-realistic and context-relevant setting.
Following the scenario representation discussed above, we are establishing a scenario
goal for each scenario, then authoring several scenes and scenario events with
preconditions and postcondition predicates.

NeoCITIES effectively mimics distributed situated cognition in 911 and 9-11 events and
storyline. Thus, the simulation emulates the management of a city wherein crisis
management is appropriated through the joint interaction of three distinct teams (fire,
police, and hazard materials). This involves potential terrorist activities as they emerged
in New York City in 9-11 that are unexpected, complex, stressful, and very time-
pressured. Conversely, it also involves more routine activities that go on in a 911
dispatch center.

Alerts Bar Past Alerts Button

Action Menu Send
Resources

Resource
Details

Resources
Panel

DHS Threat
Level

Feedback
Meter

On-Map Event
Icon

Mini-Map

Figure 2: NeoCITIES interface

Each team has limited resources that can be placed on events to do certain commands
(user actions). Events may be single team (i.e., they only require a given team to
respond), or they can be more complex and require two or even three teams to pool
resources to assuage the activity under investigation. As the simulation begins, very few
events occur, but as it moves forward in time many events begin to popup that have to be
addressed or they start to run out of control (e.g. a fire spread from a single trash-can to
an entire building if not processed). Thus, the events in the storyline emerge, which is
defined by the user modeling component, as time moves forward.

NeoCITIES is termed a team resource allocation problem and this captures part of the
simulation functionality. Within team and across team cognition can get complicated as
decisions start to pile up potentially creating information overload problems. Behind this
basic-level logic of the scaled world is another layer however. The hidden layer consists
of teams coming to recognize a pattern--given a series of events--which something
ominous may be going on.

5. Conclusions
A dynamic scenario approach that integrates problem solving techniques within a multi-
agent architecture is presented. The proposed architecture incorporates and integrates a
user model formed by dynamically monitoring and modeling users’ behaviors. The paper
proposes a dynamic scenario architecture that decomposes problem solving or scenario
generation among several levels and uses reactive planning to generate a sequence of
goals or behaviors that will achieve the scenario goals. We argue that this decomposition
enhances scalability and reuse. The system uses user’s actions and inferred goals and
intentions to guide its decisions, thus forming a user centric approach to interactive
scenario generation and adaptation. In addition, the proposed architecture advocates the
use of agents that dynamically monitor user’s behaviors for feedback to evaluate their
behaviors. This architecture is currently being implemented in NeoCITIES, which is a
simulation specifically designed for studying group collaborative decision-making
processes, knowledge acquisition and knowledge management using information
acquired from multiple sources within a command and control (C2) setting.

References
Aristotle. (1967). Peotics.

Bates, J. (1992).The Role of Emotion in Believable Agents. Communications of the
ACM, 37 (7). 122-125.

Bates, J., Loyall, B. and Reilly, S. (1992). An Architecture for Action, Emotion, and
Social Behavior, Carnegie Mellon University, Pittsburgh.

Bates, J., Loyall, B., and Reilly, S. (1992). An Architecture for Action, Emotion, and
Social Integrating Reactivity, Goals and Emotion in a Broad Agent, Carnegie Mellon
University, Pittsburgh.

Benedetti, R. (1994). Actor at Work, 6th ed. Englewood Cliffs: Prentice-Hall.

Cassell, J. (1998). A Framework for Gesture Generation and Interpretation. in Pentland,
R.C.a.A. ed. Computer Visiion in Human-Machine Interaction, Cambridge University
Press, New York, 191-215.

Jones, R. E. T., McNeese, M. D., Connors, E. S., Jefferson Jr., T., & Hall, D. (2004). A
 distributed cognition simulation involving homeland security and defense: The
 development of NeoCITIES. Proposal submitted to HFES Conference, LA.
K. Forbus, K., & de Kleer, J. (1993). Building Problem Solvers. MIT Press.
Loyall, A. B., & Bates, J. (1997). Personality-Rich Believable Agents That Use

Language. Paper presented at the Autonomous Agents, Marina Del Rey.
Mateas, M. (1999). An Oz-Centric review of interactive drama and believable agents. AI

Today: Recent Trends and Developments.
Mateas, M. (2001). Interactive drama. Research Proposal, Carnegie Mellon University,
 Pittsburgh.
Mateas, M., & Stern, A. (2000). Towards integrating plot and character for interactive

drama, Socially Intelligent Agents: The Human in the Loop AAAI Fall
Symposium.

McKee, R. (1997). Story:Substance, Structure, Style, and the Principles of Screenwriting.
New York: HarperCollins.

McNeese, M. D. (in press). How video informs cognitive systems engineering: Making
experience count. To be published in the International Journal of Cognition,
Technology, and Work.

McNeese MD and the MINDS Group (2003) Acquiring, accessing, assessing and
sharing knowledge in distributed cognition: A cognitive science perspective.
Presentation for the 2003 ONR Review. Penn State University, University Park, PA.

Seif El-Nasr. (to appear). An Interactive Narrative Architecture based on Filmmaking.
International Journal for Intelligent Games and Simulation.

Wellens, R & Ergener, D. (1988). The C.I.T.I.E.S. game: A computer-based situation
assessment task for studying distributed decision making. Simulation & Games,
19(3), 304-327.

Weyhrauch, P. (1997). Guiding interactive drama. PhD Thesis. Pittsburgh: Carnegie
Mellon University.

Young, M. (2000). Notes on the use of plan structures in the creation of interactive plot,
AAAI Fall Symposium on Narrative Intelligence, MA.

