
2004 Command and Control Research and Technology Symposium

 - 1 -

OPERATIONAL AGILITY

COMPOSING AND ORCHESTRATING MISSION CAPABILITY
PACKAGES THROUGH BUSINESS PROCESS EXECUTION

LANGUAGE (BPEL)

Gary R. Shaffer

Center for Advanced Information Technology,
Science Applications International Corporation

4161 Campus Point Court
San Diego, CA 92121

Phone: 858-826-5746
Fax: 858-826-5617

gary.r.shaffer@saic.com

2004 Command and Control Research and Technology Symposium

 - 2 -

Abstract

One aspect of the Department of Defenses’ vision for Net-Centric Operations and
Warfare is composing and orchestrating Mission Capability Packages from various
disparate and geographically dispersed web services into mission-oriented application as
required by the operational situation. This allows mission-oriented capabilities to be
quickly composed in response to new challenges, requirements, or demands. In other
words, Operational Agility. Today, web services can communicate with each other,
advertise themselves, and be discovered and invoked using industry-wide specification.
However, until recently, orchestrating these fine grained services together into coherent
course grained solutions required non standard methods and procedures that were
generally not interoperable with other organizations. Business Process Execution
Language (BPEL) for Web Services (BPEL4WS) mitigates the issue of interoperability
by providing a set of constructs, based on XML, that can be used to define the semantics
of how process communicate and exchange data, control the flow of data from one
services to another, and the order in which to invoke services. Furthermore, subject
matter experts using graphical designer tools and not software developers writing
software components can compose the processes. This will allow mission-oriented
capabilities to be quickly composed in response to new challenges, requirements, or
demands.

“…leveraging information technology and innovative network-centric concepts of
operations to develop increasingly capable joint forces. Our ability to leverage the power
of information and networks will be key to our success…”

Deputy Secretary of Defense Paul Wolfowitz

Introduction

To implement Secretary Wolfowitz’s vision, what is needed is greater horizontal
integration focused on warfighting capabilities. Currently, our military’s C4ISR
infrastructure suffers from highly stove-piped systems and integration that is at best
vertically focused along the functional lines of Intelligence, Surveillance, and
Reconnaissance (ISR), Command and Control (C2), and Fire Control (FC). Under the
transformational initiative called FORCEnet, the Navy has defined the notion of
Engagement Packs. FORCEnet Engagement Packs (FnEP) [1][2] are an “alignment tool”
that focuses on improving the speed and the effectiveness of command and control,
improving tactical force integration, and expanding combat reach through real-time
orchestration of engagement assets. Specifically, the development of FnEPs accelerates
the development and “operationalization” of FORCEnet and will allow the Navy to

2004 Command and Control Research and Technology Symposium

 - 3 -

realize FORCEnet operational capabilities by achieving flexible, adaptable, and net-
centric warfighting capabilities to address both conventional and asymmetric threats.

FnEPs create a construct for integrating Intelligence, Surveillance, and Reconnaissance
Command and Fire Control information exchange requirements across the engagement
chain. FnEPs are the operational construct for how the Navy will make FORCEnet a
reality. The concept integrates FORCEnet factors (sensors, networks, warriors, command
and control, platforms and weapons) to yield Combat Reach Capabilities (CRCs) which
are, in turn, combined to form packs – combinations of naval and joint assets used to
engage the enemy.

Figure 1. FORCEnet Engagement Packs [3]

As depicted in Figure 1, FnEPs integrate command and control, sensor information, and
fire control systems into a mission specific engagement chain. This increases the Navy’s
offensive and defensive combat reach, reduces timelines, and reduces integration and
interoperability problems. FnEPs accomplish this by optimizing distributed sensor-
weapons-target pairing linkages such that the Navy will have the ability to implement
new innovative concepts with existing Naval and Joint systems. It is envisioned that each
of these capability (Integrated Fire Control (IFC), Common Operational Picture (COP),
Mission Planning (MP), Composite Combat Identification (CCID), etc.) will be
composed of tens, if not hundreds or thousands of disparate and distributed visualization
and data oriented web services and authoritative data sources. It is entirely possible that
aggregations will occur on multiple levels (aggregates of aggregates of aggregates…).

Web Services are self-contained, modular business process applications that are based on
the industry-standard technologies such as eXtensible Markup Language (XML), Simple
Object Access Protocol (SOAP), Web Services Description Language (WSDL), and
Universal Description Discovery and Integration (UDDI). Their purpose is to enable
users to connect different components in a platform- and language-independent manner

2004 Command and Control Research and Technology Symposium

 - 4 -

across organizational boundaries. However, none of these standards allow defining the
business or process semantics of Web Services. In other words, they provide no
semantics for linking of services together into a coherent operational process or
composition. Thus, today’s Web Services are isolated and opaque. Breaking isolation
means connecting services and specifying how collections of services are jointly used to
realize more complex functionality. A process specifies the potential execution order of
operations from a collection of services, the data shared between these services, the
transactional states, which partners are involved and how they are involved in the
process, joint exception handling for collections of services, and other issues involving
how multiple services and organizations participate.

The first question one must ask is how does one provide the ability to dynamically re-
configure and re-allocated assets “on-the-fly” to re-constitute a new capability due to
changing mission requirements in a way that supports cross-mission engagements?

Technology is a good thing but by itself, doesn’t solve the needs of the DoD nor does it
necessarily help its deployed forces accomplish their mission. It can be argued that in
many ways, technology even gets in the way. In some ways, it can be said that
Microsoft’s PowerPoint is the most widely use mission-planning software in the world.
The challenges of building a commanders briefing collaboratively, across components
distributed from a Unified Combatant Commands HQ to ones in the AOR are well
known. A tremendous amount of time and energy is expended nightly in building the
daily situation briefing for commanders such as USCENTCOM’s General Abizaid.

Each directorate is responsible for its portion of the briefing. It is usually performed by
each JOC watch officers and several subordinates and consumes anywhere from one to
four hours for each person involved. For example, The J2 (INTEL) watch office and his
staff are responsible for building out the intelligence portion of the briefing. This includes
collecting intelligence summaries, imagery from satellites, intercepts, annotations,
estimates, etc., into one or more slides. Another example is that of the METOC watch
officer. This watch stander is responsible for developing slides which detail the effect of
current and forecasted weather on the planned operations for the coming days. When the
weather effects slides are completed, they are incorporated into the J3 (OPS) set which is
then combined with the other directorates’ slides into a complete briefing for approval by
the JOC Chief.

On a recent visit to COMTHIRDFLT an officer, who regularly pulls duty as the METOC
watch officer, was asked what steps he went though in preparing his inputs into the
commanders daily briefing. What he told us was eye opening! He started out by stating
that he had a loose leaf binder in his office that contained all of the notes and/or
instructions on how to compute the effects of weather on operations. These have been
given to him by the officer that he replaced and have been modified over time. More
importantly, they are not used by other watch standards in his or other commands.

2004 Command and Control Research and Technology Symposium

 - 5 -

The second question one must ask how can technology help reduce the workload placed
on our armed forces in a way that allows the warfighter (subject matter experts), not
programmers, to take advantage of them to accomplish their duties?

The third question one must ask is how can technology capture corporate knowledge
before the person who has that corporate knowledge moves on to better and brighter
things?

Hopefully, the remainder of this paper will answer these two questions.

Business Process Execution Language

Business Process Execution Language (BPEL) for Web Services (BPEL4WS) represents
the merging of IBM’s Web Services Flow Language (WSFL) [4], which provides support
for graph-oriented processes, and Microsoft’s web services for business process design
(XLANG) [5], which is based on structural constructs for business processes. In May
2003, the second release of the specification (version 1.1) authored by IBM, Microsoft,
BEA, SAP, and Siebel Systems was ratified by Organization for the Advancement of
Structured Information Standards (OASIS) [6] and software vendors such as SUN,
Oracle, BEA, IBM, Microsoft, and others have all indicated that support for BPEL will
be included in future releases of their respective products.

BPEL allows specification of processes and how they relate to services. This includes
specifying how a process makes use of services to achieve its goal, as well as specifying
services that are provided by a given process, procedures, policy or doctrines. It specifies
the potential execution order of operations from a collection of services, the partnerships
required and joint exception handling for collections of web services. Long running
transactions can be specified between sets of web services thus increasing reliability and
consistency for services. Processes specified via BPEL also prescribe the exchange of
messages between services that compose the process. These messages are WSDL
messages of operations of the port types involved in the roles of the service links
established between the process and its partners. They are fully executable and portable
between BPEL-conformant environments. A BPEL process interoperates with the
services of its partners, whether or not these services are implemented based on BPEL.
Finally, BPEL supports the specification of business protocols between partners and
views on complex internal operational processes.

Because each BPEL is a web service, a BPEL can orchestrate the interaction and data
flow between other BPELS as well, thus providing the ability to build more complex
automated workflows while preserving data encapsulation [7].

The general relationship between the standards involved is summarized in Figure 2.
BPEL uses WSDL to specify actions that take place in a process and to describe the
services provided by a process. WS-Transaction [14] specifies a protocol for the long-
running transaction model defined in BPEL as well as atomic transactions between
regular services. Applications created with BPEL are called process-based applications.
This kind of application structure splits an application into two strictly separated layers:

2004 Command and Control Research and Technology Symposium

 - 6 -

the top layer, or process, is written in BPEL and represents the flow logic of the
application. The bottom layer, or services, represents the function logic of the application.

Figure 2. BPEL4WS’ relationship to other standards [8]

This layering has several advantages over more conventional approaches. Because they
have been separated, either one can be changed without any impact on the other services
within the application or on the services that the process represents. In addition, the
application can be developed and tested in two separate stages: the process can be
developed and tested separately from the development and testing of the individual
services. This approach provides great flexibility in evolving an application in an
environment in which incremental development takes place.

In a BPEL process, everything is XML, including the messages that are passed into and
returned from the BPEL process, the messages that are exchanged with external services,
and any local variables used by the flow itself. The types for all of these messages and
variables are defined with XML Schema, usually in the WSDL file for the flow itself or
in the WSDL files for services it invokes. Therefore, all variables in BPEL are XML
documents, and any interesting BPEL process will spend a fair amount of its code
manipulating those XML variables.

Conceptually, processes written in BPEL are “flow-chart” expressions of an algorithm. A
process is decomposed into discrete steps, known as “activities” and is associated with a
specific XML tag:

• <invoke> is used to invoke an operation on a given web service
• <receive> is used to wait for some external web service to invoke a given

operation of the process
• <reply> is used to generate a response to an input/output operation
• <assign> is used to copy data from one place to another
• <wait> is used to wait for some specific period of time
• <throw> is used to signal that some error condition has occurred
• <terminate> is used to terminate a process instance
• <empty> simply does nothing

2004 Command and Control Research and Technology Symposium

 - 7 -

More complex expressions of functionality can be achieved by aggregating primitive
activities using the any of the “structure” activities:

• <sequence> provides the capability to define an ordered sequence of steps
• <while> provides the capability to loop until some specified criteria is met
• <switch> is analogous to the case statement found in most modern programming

languages
• <flow> indicates that collections of steps are executed in parallel
• <pick> provides the ability to execute one of several alternate paths within a

process flow

Listing 1 depicts a portion of a BPEL in its XML form.

Listing 1. BPEL Source for Operational Process

BPEL also allows one to recursively combine the structured activities to express
arbitrarily complex algorithms that represent the implementation of a service. Once
deployed, BPEL processes are exposed to other organizations as web services to be
consumed as normal web services using the “find”, “bind”, and “execute” paradigm.

2004 Command and Control Research and Technology Symposium

 - 8 -

Figure 3. An Example Operational Process

Figure 3 depicts an example operational process that could be to determine the effects of
weather on operations for a specified location. Input for this process flow is the
International Civil Aviation Organization (ICAO) 4-letter airport identifier code. The
process itself is a single thread that is instantiated by some caller via the <receive> tag. It
then makes two synchronous calls (using <invoke>) to other external web services. The
first one to the “GetWxForcast” web service obtains the current weather conditions for
the specified ICAO. These calls are synchronous in that they wait for a reply message
from the invoked web service before they continue. Asynchronous calls do not wait for a
reply message. Instead they setup a rendezvous using another <receive> tag. The second
call is to the “GetWxEffects” web service. This web service, using the weather data
provided from the “GetWxForcast” service, computes the effects of weather on
operations based on field manual ‘FM 34-81-1’ (Weather effects on Operations). The
data retuned by the second web service are coalesced with the weather forecast from the
first and are returned to the original caller as XML using the <reply> construct.

Building Operational Processes

The power of BPEL is that one doesn’t have to be a “rocket scientist” to implement
operational processes in BPEL. A basic understanding of the nomenclature and standards
(i.e., what is WSDL), where to find web services (a UDDI) and the capabilities they
provide is all that is needed. Through the use of a graphical BPEL design tool, Subject

2004 Command and Control Research and Technology Symposium

 - 9 -

Matter Experts (SMEs) expose external web services then drag-n-drop these web services
along with BPEL actions onto the designer window to build a process flow diagram.
Figure 4 depicts screenshot of Collaxa’s graphical BPEL Designer tool [9].

As depicted, a web service can be placed in the process flow from the list on the left of
the screen. An SME would then drag desired web service actions from the right onto the
process flow to define how data will be pulled, aggregated, and transformed. Each action
has requisite properties (input/out variables) that can be defined. On the left is the client
interface, displaying operations exposed by the process (initiate in this case) and
asynchronous callback operations (onResult). In the middle of the window is a link to
edit the Process Map for the flow (visual representation of the flow logic) and any global
XML variables defined for the flow (“input” and “output” in this case, which are created
automatically by the New Project wizard). An Inspector pane will be shown on the right
once you drill down into the process map view.

Figure 4. Subject Mater Experts Build Operational Processes using BPEL

Once the SME has finished building the process flow, the BPEL Designer can auto-
generate the new BPEL web service. The tool will also build the new web services
WSDL. The last step is for the SME to register (deploy) the new web service. This will
load it into the BPEL execution engine and make it and its WSDL available throughout
the enterprise. At this point, it can be used like any other web service. It can be called by
other external web services, even other BPEL processes. It can be combined
(aggregated) with other BPEL processes to form more complex functionality.

2004 Command and Control Research and Technology Symposium

 - 10 -

UML, BPEL, and Model Driven Architectures

The Unified modeling Language (UML) is a language for modeling systems and is the
most widely known Object-Oriented modeling notation in use today. It has a graphical
notation which is readily understood, and contains a rich set of semantics for capturing
key features of object-oriented systems. UML is widely used in the development of
object-oriented software and has also been used, with customizations, for component-
based software, business process modeling, and systems design. This enables the
considerable body of UML experience to be applied to maturing Web services
technologies.

The ability to extend UML is essential to this concept. UML can be customized to
support the modeling of systems that will be completely or partially deployed to a Web
services infrastructure. This approach enables BPEL based operational processes to be
incorporated into an overall system design utilizing existing software engineering
practices. Additionally, the mapping from UML to BPEL4WS permits a model-driven
development approach in which executable operational processes can be automatically
generated from UML models.

IBM’s work in this area is centered on the use of Activity Diagrams and Stereotypes as a
way of categorizing elements of a model [11]. For instance, if you have a class
representing a “Target”, you could attach a stereotype of <<entity>> to indicate that it
represents a data object. This information is used it to guide the behavior of a model
translator. Stereotypes can be added to most elements in a UML model. A UML Profile is
used to define a specific set of extensions (the BPEL Stereotypes) to the base UML in
order to represent a particular domain of interest. Using this concept, processes are
represented as a class with the stereotype <<Process>>. The attributes of the class
correspond to the state of the process (variables in BPEL). Table 1 maps the UML to its
corresponding notion in BPEL.

Table 1. UML to BPEL mapping

UML Stereotype BPEL

<<process>> class BPEL process definition

Activity graph on a <<process>> class BPEL activity hierarchy

<<process>> class attributes BPEL variables

Hierarchical structure and control flow BPEL sequence and flow activities

<<receive>>, <<reply>>, <<invoke>> activities BPEL activities

Activity graphs are used to describe the behavior of a class. The actions to be performed
are shown as Entry conditions to the activity; for example, Track ID (a variable) is set to
the result of the correlation service. The partners with which the process communicates

2004 Command and Control Research and Technology Symposium

 - 11 -

are represented by the UML partitions (also known as swimlanes): Sensor, Correlation,
TDBM, and COP. Activities that involve a message send or receive operation to a partner
appear in the corresponding partition. The arrows indicate the order in which the process
performs the activities. This is depicted in Figure 5.

Figure 5. BPEL Process as a UML Activity Diagram

Using current UML development tools, such as Rational’s XDE, or ArgoUML, to take
models of processes and convert them into their corresponding BPEL and WSDL files
necessary to implement that process is a powerful argument for Model Driven
Architectures (MDA) as proposed by the Object Management Groups (OMG) [10].
MDAs aims to raise the level of abstraction at which development occurs which in turn,
delivers greater productivity, better quality, and insulation from underlying changes in
technology.

SPAWAR Distributed Services Commercial Area Announcement

In response to SPAWAR’s Distributed Services Commercial Area Announcement (CAA)
[12], SAIC and its partners defined a System of Systems based on a Service Oriented
Architecture that promulgated the tenets of an Enterprise Services Bus (ESB). Our

2004 Command and Control Research and Technology Symposium

 - 12 -

approach incorporated a set of lightweight, Distributive Service centric components that
were application-server-independent. It offered up a set of Core, Enterprise, and Mission
specific services such as:

• Authentication and Authorization Services which isolated our Identity
Management solution from the bus.

• A Registry Service for registering distributed services.
• A Messaging/Alert Service which implemented the Publish/Subscribe paradigm

for information flow.
• An Orchestration Service based on a commercially available BPEL server from

Collaxa.
• Commercial and Open Source portal products.
• A set of legacy/mission applications comprising mission planning, medical, strike

packages, hazardous plume analysis, logistics, and weather.
• A set of authoritative data source for medical, blue and blue forces, intelligence,

and weather.

The architectural vision for this bus is the FORCEnet Government Reference
Architecture (GRA) [13] which promulgates Dynamic Force Composition.

One of the appeals of using an ESB is that MCPs are built purely in terms of these
services, and the exact location and implementation details of these services are
transparent to the warfigther. This location transparency gives the engineers a lot of
flexibility in terms of where they host services and also allows services to be relocated at
a later stage without disruption to existing MCPs.

Our focus was on providing an architectural framework that allows for the decoupling of
interface objects from implementation objects and exposing interfaces to enable third-
party integration with that object code. Emphasis was placed on platform-, system-, and
vendor-independence in a distributed environment to obtain the greatest dissemination of
knowledge in the shortest period of time, thereby providing the warfighter with an agile
system that can adapt to the dynamics of the current operation situation.

Our implementation of the ESB does not require all existing applications from Global
Command and Control System – Maritime (GCCS-M) and/or other candidate systems to
be rewritten as services; however, any common service provided by those applications
should be exposed as a Service using open standards and distributed services
technologies. This means a Service can be implemented as a simple Service wrapper
(façade), translating the Service interface calls into the application-specific access
methods and business logic. The ability to integrate legacy systems in this fashion
preserves prior investments and leverages knowledge gained to enhance the systems’
value by increasing the user base and enabling shared business processes and data.

To demonstrate the viability of this approach, the team developed a scenario in which the
services and their respective underlying legacy mission applications could sense, fuse,
and present actionable knowledge to the warfighter. The scenario for this demonstration

2004 Command and Control Research and Technology Symposium

 - 13 -

was centered on the release of anthrax against friendly U.S. ground forces by a rogue
battalion-sized artillery group.

Operational Process Example: WMDAnalysis

The scenario used to demonstrate the Distributed Services developed for the SPAWAR
05 CAA used a fairly elaborate Warfighter’s business process developed around the idea
of automatically responding to alerts generated by WMD sensor alarms. Core Services,
legacy mission applications exposed as web services and authoritative data sources where
brought together as a System of Systems that could sense, fuse, and present actionable
knowledge to the decision maker. In this instance, the watch standers of a JTF stood up in
support of Operation Iraqi Freedom (OIF). The goals of this operational process are:

1. Initiate hazardous plume analysis.
2. Notification of all deployed units within Area Of Interest (AOI) that a release has

occurred so that they can take appropriate action such as raising the MOPP status
or moving upwind, etc.

3. Provide relevant medical information to downstream medical facilities and
personnel with respect to casualty data.

4. Start gathering information/knowledge for the JTF’s Joint Planning Group (JPG)
so they can start Course Of Action (COA) planning immediately upon activation.

2004 Command and Control Research and Technology Symposium

 - 14 -

Figure 6. WMD Analysis Portlet

For the DS CAA demonstration, the portlet depicted in Figure 6, was presented to the
operator and initiates the BPEL process (this could have been automated this by having
the underlying BPEL process subscribe to several message queues to collect all of the
requisite information). This portlet invoked an asynchronous BPEL process that was
aggregated from several other asynchronous BPEL processes. This process is depicted in
Figure 7 (for this paper, the diagram has been collapse to hide most of the programmatic
details).

2004 Command and Control Research and Technology Symposium

 - 15 -

Figure 7. BPEL Process Diagram for WMD Analysis

After initialization, the process branches (using the <flow> tag) into two parallel
processes. It is also important to note that this operational process orchestrates other
BPEL processes that actually call the required web services and allow their results to be
consumed by other processes in the flow in an asynchronous manor. One branch invokes
the “hpacAsync” BPEL process which in turn invokes the Hazardous Plume Analysis
Capability (HPAC) Web Service (initiate (hpacAsync)). This initiates the development of
a “Probability of Mortality” plume overlay for display on a COP. It also provides a
casualty estimate for the indigenous population. Once the plume data is returned
(onResult (hpacAsync)), the branch them invokes the “alertHpacAsync” BPEL process
which in turn invokes the Alert Service Web Service (initiate (alertHpacAsync)) which
publishes the plume data on the supplied message queues. Once the alert has been
published, this branch waits to rendezvous with the second branch.

2004 Command and Control Research and Technology Symposium

 - 16 -

The second branch invokes the “coinsAsync” BPEL process which invokes the Coalition
Interoperability System (COINS) developed for CINC-21 to obtain a list of all coalition
personnel within the AOI. The “assign” step extracts personnel identifiers from the
resultant XML data. This data is then fed into the “jmewsAsync” BPEL process which
invokes the Joint Medical WorkStation (JMeWS) Web Services. This authoritative data
source uses the data to compute an initial list of personnel who have been/not been
vaccinated against Anthrax. On return from the “jmewsAsync” process, the second
branch rendezvous with the first branch. It then uses the data collected from both
branches to compute a preliminary detailed coalition casualty estimate and publish it.
Finally, it aggregates the data from HPAC about the expected indigenous population
casualties with the coalition and blue forces casualty information to provide a complete
casualty summary which is them published to the Alert Service for consumption by
others.

Several other BPEL processes were developed in support of COA development:

• Invoke the JMeWS web service to obtain a list of available medical treatment
facilities within the AOR.

• Invoke the MIDB web service to obtain a list of airfields within a radius of 125
miles of the AOI.

• Invoke the JMeWS web services to obtain a list of available decontamination and
medical supplies with the AOR

• Invoke the eNTCSS web service to obtain a list of available operationally ready
aircraft (FMC/MC) that could potentially participate in an evacuation. This data
was further constrained buy the list of airfields returned by the MIDB web
service.

• Invoke the JMeWS and COINS web services to obtain lists of available medical
personnel.

Operational Process Example: METOC Watch Officer

The example depicted in the figure below, illustrates a challenge dealt with by JTF staff
officers on a daily basis; building the commanders daily situation brief and is based in
part from inputs from several officers stationed at COMTHIRDFLT. In gathering data
for the various PowerPoint slides, the metrology officer (METOC) performs a repetitive
task daily to gather weather forecast data, compare it against defined doctrine, and
aggregate results to determine not just the weather conditions in a defined operating area
but its effects on operations. For example, if the cloud ceiling is below 5000 m but above
1000m, then fixed wing operations are degraded (yellow status). If the cloud ceiling was
below 1000m then fixed wing operations are severely impacted (status red). Calculating
these values across the many different mission areas is time consuming, complicated, and
error prone.

2004 Command and Control Research and Technology Symposium

 - 17 -

Figure 8. Auto Generating JTF Commander’s Update Brief

In the Figure 8, Step #1 represents a web application built to simplify the staff’s
collaborative challenge of building the brief. In it, there are links for each of applicable
slides. It is here the METOC officer selects the “Weather Effects on Operations” slide
link. From the METOC officer’s view point, a web page displays, the watch officer then
selects a location (operating area), and the window is updated with the locations current
weather data. Additionally, the browser window displays the correctly updated
red/yellow/green stoplight style statuses of operations for each desired mission area
(fixed win, Infantry, SOF, and ISR).

Behind the screen a series of actions have been executed. When the location is entered
and the get data button is selected on the “Wx Effects on OPS Slide Editor HTML Page”,
the GetWxEffectsAtLocation BPEL process is invoked via an HTTP call. This starts the
modeled workflow process, which first invokes a GetWxForecast web service (Step #2)
to get the current weather conditions at a given location (wind, temp, cloud ceiling,
visibility). The resultant XML data is returned to the operational process. Next it
invokes another web service, GetWxEffects (Step #3) and feeds it the XML output from
Step #2 as its input. This web service uses the weather conditions data at a given location
to calculate mission status codes for the various mission areas. The business rules for
these calculations are governed by doctrine. Most likely, this particular web service has
been build and maintained but the organization responsible for METOC doctrine. Again,
the output from this web service is sent back to the OP as XML data. The OP then
transforms the returned XML data into its WSDL defined output format.

2004 Command and Control Research and Technology Symposium

 - 18 -

At this point, the METOC officer sees the result of the BPEL process in the form of an
updated HTML page. He then reviews the results, adds comments as needed and changes
the slides status to complete. The officer in charge of building the PowerPoint brief can
now, via the web, view and monitor the status of the slides. This process can be repeated
daily, in less time, and accurately. As an added benefit, the same web services can be
made available to other commands as well. The METOC operational process provides
constancy across the DoD enterprise as well. Its business rules are doctrine driven thus
insuring all operational commands throughout the DoD determine mission capabilities in
a constant manor. Staff focus has moved from gathering and entering information into a
PowerPoint slide to analyzing the effects of the information on executing operational plan
and planned missions.

Summary

Under FORCEnet, Operational agility is accomplished by composing, then orchestrating,
Mission Capability Packages from various disparate and geographically dispersed
services into mission-oriented application as required by the operational situation. BPEL
removes the software developer from the loop and hands the role back to subject matter
experts who better understand the operational requirements of the current mission, thus
allowing mission-oriented capabilities to be quickly composed in response to new
challenges, requirements, or demands in ways we have never seen before. The results will
be profound. Naval capability packages will be readily assembled from forward-deployed
forces. These forces, along with their respective MCPs, will be tailored to meet the
mission needs of the Joint Force Commander. They will be sized to the magnitude of the
task at hand.

References

[1] Robert Woodrow Hesser and Danny Michael Rieken. FORCEnet Engagement Packs:
“Operationalizing” FORCEnet to Deliver Tomorrow’s Naval Network-Centric Combat
Reach Capabilities…Today. Masters Thesis, Naval Postgraduate School, December
2003.

[2] FORCEnet Engagement Packs are also known as FEP.

[3] Phil Charles. FEP Analysis Efforts Briefing. FORCEnet Engagement Packs
Workshop, Naval Station Norfolk, Feb 18-19 2004. UNCLASSIFIEID Briefing can be
downloaded from https://ekm.netwarcom.navy.mil

[4] http://xml.coverpages.org/wsfl.html

[5] http://xml.coverpages.org/xlang.html

[6] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

2004 Command and Control Research and Technology Symposium

 - 19 -

[7] For a description and definition of orchestration, see the Burton Group: Orchestrating
Web Services: Driving Distributed Process Execution through Workflow Technology,
December 18, 2003.

[8] Frank Leymann and Dieter Roller. Business Processes in a Web Services World. IBM,
1 August 2002. http://www-106.ibm.com/developerworks/webservices/library/ws-
bpelwp

[9] http://www.collaxa.com/home.index.jsp

[10] http://www.omg.org/mda/index.htm

[11] Keith Mantell, From UML to BPEL. IBM, 9 September 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-uml2bpel

[12] This CAA can be downloaded from https://e-commerce.spawar.navy.mil under
solicitation number N00039-03-R-0030

[13] Office of the Chief Engineer, SPAWAR 05. FORCEnet Government Reference
Architecture (GRA) Vision, version 1.0, 08 April 2003.

[14] http://www-106.ibm.com/developerworks/webservices/library/ws-transpec

Author Bio

Gary R. Shaffer is currently the Chief Technologist for SAIC’s Center for Advanced
Information Technology. He has over 16 years of experience developing systems for the
U.S. Navy and the Department of Defense working for SAIC. He holds a Masters degree
in Software Engineering and a Bachelors degree in Computer Science.

Science Applications International Corporation

SAIC, a fortune 500 Company founded in 1969, is the largest employee-owned high-tech
company in the U.S. with annual revenue in excess of $6 billion and over 43,000
employees with offices in more than 150 cities worldwide. Based in San Diego, SAIC
offers a broad range of research and engineering expertise in technology development
and analysis, computer system development and integration, technical support services,
and computer software and services. SAIC works to solve complex technical problems in
the areas of information technology, systems integration, telecommunications, national
and international security, health systems and services, transportation, environmental
systems and engineering, and space. Visit on the World Wide Web at:
http://www.saic.com/

Disclaimer

2004 Command and Control Research and Technology Symposium

 - 20 -

SAIC DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE
INFORMATION GIVEN HERE. ANY USE MADE OF, OR RELIANCE ON, SUCH
INFORMATION IS ENTIRELY AT USER’S OWN RISK.

Copyright

This paper and all contents are Copyright © 2004 by Science Applications International
Corporation (SAIC). Permission to make digital or hard copies of this work in its entirety
is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies bear this notice.

