

Submitted to:
2004 Command and Control Research and Technology Symposium

The Power of Information Age Concepts and Technologies
Topic: C4ISR/C2 Architecture

Computing and communications infrastructure for network-centric warfare:
Exploiting COTS, assuring performance

James P. Richardson, Lee Graba, Mukul Agrawal

Honeywell International
3660 Technology Drive
Minneapolis, MN 55418

(612) 951-7746 (voice), -7438 (fax)

james.p.richardson@honeywell.com

lee.graba@honeywell.com

mukul.agrawal@honeywell.com

1

mailto:james.p.richardson@honeywell.com
mailto:lee.graba@honeywell.com
mailto:mukul.agrawal@honeywell.com

Abstract

In network centric warfare (NCW), the effectiveness of warfighters and their platforms is
enhanced by rapid and effective information flow. This requires a robust and flexible computing
and communications software infrastructure, and a degree of system integration beyond what has
ever been achieved. The design of this infrastructure is a tremendous challenge for a number of
reasons. We argue that an appropriately architected software infrastructure can employ COTS
software to realize much of the required functionality, while having the necessary degree of
performance assurance required for military missions.

Perhaps the biggest challenge is system resource management—allocation of computing and
communications resources to COTS and custom software alike so that performance requirements
can be met. We describe an approach to system resource management appropriate to the NCW
environment.

2

1 Introduction

Network centric warfare has been defined as:

…an information superiority-enabled concept of operations that generates
increased combat power by networking sensors, decision makers, and shooters to
achieve shared awareness, increased speed of command, higher tempo of
operations, greater lethality, increased survivability, and a degree of self-
synchronization. In essence, NCW translates information superiority into combat
power by effectively linking knowledgeable entities in the battlespace.[1]

We view an NCW-enabled military force as a hierarchical, enterprise-scale monitoring and
control system utilizing personnel, equipment, and information technology to achieve the
commander’s objectives. (See Figure 1) At the bottom of the hierarchy are individual
autonomous and manned platforms, the humans who operate them, and dismounted soldiers. The
lowest-level loops perform safety-critical control functions such as vehicle control and weapons
control. Slightly higher up are supervisory control functions such as mission management, which
typically have a human in the loop but with unmanned platforms will be increasingly automated.
Moving up the hierarchy, classic control functions give way to C4ISR, logistics, and related
information-rich monitoring and control functions that nonetheless are intended to achieve
desired objectives within specific timelines in the face of adversarial action, a possibly hostile
environment, and uncertainty about the current situation.

Collaborate

D
ire

ct

A
bs

tr
ac

t,
Fu

se

Intelligence
Functions

Abstract

Fuse

Monitor

Assess

C2
Functions
Plan

Direct

Act

Information
Our & Their

Organization

Materiel

Objectives, Plans

The Situation

The Physical
Environment

Figure 1. NCW-enabled military force as a hierarchical, enterprise-scale control system

3

Each loop involves monitoring the current situation, assessing it with respect to objectives,
developing a plan to progress toward the objectives, and executing that plan. Executing a plan
may involve providing objectives (or commands) for lower-level loops and monitoring their
execution. These lower loops may collaborate (“self-synchronize”) without direct intervention by
the supervisory loop. For the lowest-level loops, planning (better known as control synthesis) is
typically done at design-time, and the resulting control strategy is executed at run-time.

A rich variety of information flows up, down, and across the control hierarchy. In general,

A warfighter’s information needs depend on his functional role and place in the hierarchy. •

•

•

•

•

•

•

•

Information at higher levels of the hierarchy has broader scope but less detail. Information
is abstracted and fused as it moves up the hierarchy.

The information seen by different warfighters, though different, must be consistent.

The DoD calls this “information world” the Global Information Grid (GIG), and has laid out an
excellent set of requirements for it [2]. The information world supports operations in the physical
world, where (most of) the battle takes place. The information world meets the physical world at
various sensors and weapon systems.

Designing a computing and communications infrastructure to support this hierarchical
monitoring and control system is a tremendous challenge for a number of reasons, including:

The sheer size of the system (or really, system of systems). The Army’s Future Combat
System, large as it is, is just one component that must interoperate effectively with other
components in the system, not just within the Army but also the other services.
Interoperability has been defined as the ability of two or more systems or components to
exchange information and to use the information that has been exchanged.[6]

The need to evolve incrementally from the current computing and communications
infrastructure.

The large number of US and allied military organizations whose procurements must be
coordinated to achieve the necessary interoperability.

The unique requirements that the military mission and environment places on the
computing and communications infrastructure.

In this paper, we focus on the design of the computing and communications software
infrastructure at the tactical level, where the information world meets the physical world of the
battlefield; where C4ISR, logistics, and similar information-rich functions meet vehicle and
weapons control; and where communications bandwidth, power, and other resources are at a
premium and under enemy attack. We address the following issues:

Certain forms of system or component failure can be life-threatening. How can a system
this large and complex be integrated with the required level of assurance that functionality
and performance guarantees will be met? In particular, different parts of the system have
different assurance requirements, but still need to be integrated.

4

Mission goals, system workload, and system resource availability all vary over time. How
can scarce system resources be put to their best use in support of mission goals? In
particular, the system must adapt to changes in resource availability due to unintentional
system failures, hostile actions, and compromised components.

•

•

•

•

•

•

•

Information superiority is key to network-centric warfare. How can each warfighter get the
information he or she needs in this highly dynamic environment?

System architects must resist the urge to start with a clean sheet of paper. (“Our
requirements are different!”) Existing commercial off-the-shelf (COTS) components and
information technology standards should be exploited wherever possible to reduce time to
fielding and system lifecycle costs, and to enhance interoperability. COTS components
must be integrated without changing any source or even binary code. Which NCW
requirements can be met by existing COTS components and standards, and where will
research and development be needed?

We identify key requirements related to system integration, system resource management, and
information management, and propose specific design approaches that exploit COTS technology
wherever possible. For example, COTS technology from the avionics industry (such as ARINC
653) can be applied for highly safety-critical components. At the network level, protocols such as
RSVP provide mechanisms to define resource requirements.

Perhaps the biggest gap where COTS technology does not provide a solution is system resource
management. Computing and communications resources must be allocated and controlled so that
mission-critical information flows and application functions are performed reliably in the
dynamic network-centric warfare environment. The problem is even more challenging when
these mission-critical functions are performed in part by resource-intensive, resource-unaware
COTS application software. We propose an approach to system resource management that uses:

Commanders’ policy to determine the criticality of each information flow and application
function as a function of mission goals.

Application-specific quality of service specifications such as information freshness and
accuracy, mapped to system-level resource requirements such as network bandwidth and
delay.

A distributed resource management system that allocates to each information flow and
application function the CPU time, network bandwidth, and other resources it needs to
operate, consistent with its criticality, quality of service requirements, and resource
availability. Reallocation occurs dynamically in response to changing mission goals,
system workload, and resource availability. Isolation of different traffic streams ensures
that a lower criticality channel does not adversely impact higher criticality channels.

COTS time-space partitioning and hypervisor- technology to enforce CPU and memory
resource allocations and to isolate applications from each other to enable integration of
applications with differing assurance requirements without changes to any application
software. The approach is more dynamic and adaptive for C4ISR application functions but
provide tighter validation for vehicle control functions. Enforcement of network resource

5

allocations and isolation of information flows across the network remain a challenge,
though point solutions exist.

Section 2 outlines our hardware/software architectural assumptions as the context for subsequent
discussions. Section 3 lists key requirements for system integration, system resource
management, and information management. Section 4 outlines design approaches these
functions, including opportunities for COTS exploitation and applicable standards. Section 5
summarizes our recommendations.

2 Architectural Assumptions

Figure 2

Figure 2. Assumed hardware and network architecture for an NCW environment

 shows the hardware and network architecture we assume for an NCW environment.
Vehicle and weapons control functions require hard real-time behavior. The controllers, sensors,
and actuators that perform these functions are linked by a real-time network such as CAN
(Controller Area Network) or MIL-STD-1553. Supervisory control applications implemented on
general-purpose processors within the vehicle typically require only soft real-time performance,
and can utilize an IP-based wired network. C4ISR applications that span vehicles must use a
wireless networks, and due to the nature of those networks must accept soft real-time behavior
with delivery times and reliability commensurate with the quality of the network link.

VehicleVehicleVehicle

µC
on

tro
lle

r
Se

ns
or

A
ct

ua
to

r

Se
ns

or

A
ct

ua
to

r

Se
ns

or

µC
on

tro
lle

r

General
Purpose

Processor

Wired Network

Wireless Network

General
Purpose

Processor

General
Purpose

Processor

General
Purpose

Processor

Control Network

Radio
e.g. JTRS

µC
on

tro
lle

r
Se

ns
or

Ac
tu

at
or

Se
ns

or

Ac
tu

at
or

Se
ns

or

µC
on

tro
lle

r

General
Purpose

Processor

Wired Network

Control Network

Radio
e.g. JTRS

µC
on

tro
lle

r
Se

ns
or

Ac
tu

at
or

Se
ns

or

Ac
tu

at
or

Se
ns

or

µC
on

tro
lle

r

General
Purpose

Processor

Wired Network

Control Network

Radio
e.g. JTRS

Figure 3 shows the protocol stacks involved. Real-time control networks typically have a three-
layer stack (application, link, physical) because the routing provided by the network layer is not
required. The intra-vehicle wired network and the wireless network are ideally part of the same
IP-based network, linked by a router within the vehicle. In this way, intra- and inter-vehicle

6

communication is accomplished using the same IP-based communication services, the only
difference between intra- and inter-vehicle communications being the quality of service
available.

General-
Purpose

Processor

General-
Purpose

Processor

General-
Purpose

Processor µController

Vehicle

Hardware

System
Services

Application
Services

Applications

Hardware

System
Services

Application
Services

Applications

Hardware

System
Services

Application
Services

Applications

Physical & Link
Layer Protocols

Application

Hardware

System
Services

Application
Services

Applications

Layer Protocols

Physical & Link
Layer Protocols

Transport & Network

Application

Layer Protocols

Layer Protocols

Phys.

Transport & Network

Application

Layer Protocols

Layer Protocols

Router
& Link & Link

Phys.

Figure 3. Intra- and inter-vehicle protocol stacks

Figure 3 also shows a coarse breakdown of software functions within each compute node into
applications, application services, and system services.

Applications implement user-visible components of system functionality. Application services
are those functions, used by multiple applications, that are aware of the structure of the
processing and/or data they handle. Application services include naming services, ORB services,
information management (addressed in this paper), workflow management, etc. Applications
may vary widely in the application services they use.

System services are those functions that manage computing and communications resources:
CPU, memory, communications bandwidth, storage, I/O devices, etc., but have little or no
knowledge of the purpose to which those resources are put. System services include typical
operating system services (e.g. POSIX), transport and lower-level communications services
(TCP, UDP, IP, IEEE 802.x, etc.), time service, distributed transaction management, etc. Every
application requires at least CPU and memory resources; many applications also require
communications and storage resources. System resource management, addressed in this paper, is
a system service whose purpose is to allocate system resources to applications so that system
performance requirements are met.

3 Key Requirements

Detailing a complete set of requirements for a system of this scale is well beyond the scope of
this paper. In this section, we list some key requirements related to system integration, system
resource management, and information management.

3.1 System Integration and Resource Management

Interoperability—One purpose of a NCW system is to avoid a system of stovepipes that are
unable to interoperate, and which are unable to take advantage of commercial software
innovations. In order to make this change, a NCW system must be written with standard
protocols and API’s in mind, and must support legacy applications and COTS applications, as

7

well as applications written specifically for the NCW system. Support for COTS operating
systems would provide much of this capability.

Resource Management—It can also be said that the purpose of a NCW system is to deliver to
the warfighter the information he needs, when he needs it, and with the required quality. Due to
the greater integration in a NCW system, information can be easily passed from sensors in the
battlefield to computers that aggregate and process the information and to the warfighter who
must take action. Delivering that information on time depends on the summed latency of all the
networking and processing segments between the source and destination for the information.
The latency of each segment is dependent on the capacity of the segment and the loading
(network traffic, processor load) of the segment. In addition, many of the segments will be
supporting multiple applications. Multiple information flows may be using each network link,
and each computer may be supporting multiple applications. If the warfighter is to rely on
timely information delivery, the latencies of these segments, and the resource allocations that
determine them, must be explicitly managed, controlled, and protected.

Static Resource Management—The allocation of resources to meet computing and
communication performance within a system is not new to military systems, or complex
distributed systems. Typical weapons systems, such as tanks or airplanes, have fixed sets of
applications that are assigned to fixed sets of computers and networks within the vehicle. These
assignments are carefully done in an integration lab before system deployment to assure that all
applications can meet their performance requirements. Typically the integration process requires
multiple cycles of testing, tuning of application priorities, and possibly reassignment of
applications to processors and networks in order to meet performance measures. In cases in
which performance goals cannot be met through these means, additional processors and/or
networks may need to be added. This process is manual and time-consuming, but it is necessary,
especially with applications that are safety- and mission-critical.

Dynamic Resource Management—In the NCW environment, there will still be 'self-contained'
vehicles that contain their own processors and networks, and for which many applications have
been assigned to processors and networks ahead of time. However, some processors within
those vehicles will host C4ISR applications, some of which must be assigned dynamically, on an
as-needed basis. Additionally, some NCW applications will span across vehicles, and the set of
participants in an application (computing nodes, networks, sensors) that will be available to host
these applications can be changing frequently, as mission needs change. The key issue here is
that as these applications are deployed and started, the luxury of a manual integration process to
assure that performance requirements can be met is not available. Essentially, what has
traditionally been done in an integration lab must be done in the field, in a dramatically shorter
time frame. If this is not done correctly, an application that is started may push the usage of a
resource (such as a processor) to its capacity, resulting in some or all applications using that
resource to get less performance that they need.

For this reason, a system for explicitly and automatically managing these resources and the need
for these resources by the applications must be provided. Such a system should provide an
admission protocol for dynamically starting an application. During admission, the resource
requirements for the applications must be presented to the admission system, which will check
for the availability of the resources, and then reserve the resources before allowing the

8

application to start. The resource management system would serve as a broker to the resources,
making sure that resources are not over-committed.

Automation—Resource allocation must be done automatically; otherwise, the number of
decisions that must be made could potentially overwhelm a system administrator, and those
decisions would not be made quickly enough. When the resource broker must resolve
conflicting needs for resources, it needs some way of making decisions. For instance, if two
separate applications require 60% of a processors time, how will the resource management
system react? One approach would be to only support one of the applications, and refuse to start
the other. In order to make this decision, the resource management system must understand
some notion of importance; the more important of the two applications would be admitted, while
the less important would not. Here, importance is an abstract notion taking into account many
factors such as the importance of an application to the mission and the rank of the person
requesting the application. The resource management system must balance the needs of all
applications in the context of what is needed for mission success, and allocate resources
accordingly.

Graceful Degradation—The previous example points out the harshness of either/or admission
decisions, and motivates the need for flexibility in resource allocations. Some applications may
work best at a particular QoS (Quality-of-Service), but will work acceptably at a lower QoS. An
example is an application that ideally would run at a periodic rate of 100 Hz, but can operate in a
degraded mode at 60 Hz, which also results in a lower resource usage. In the example above, if
the application with lower importance can get by with 40% processor usage, then both
applications can be admitted, because the summed resource usage would be less than or equal to
100%. For this reason, it is believed that specifying a acceptable resource range, rather than a
desired resource point value, is desired. During operation, some applications can be gracefully
degraded in order to fit in more important applications.

Adaptability—Adaptability is also a key requirement of the system, due to the changeable
nature of the NCW environment. The set of applications operating will be changing, the set of
resource available (processors, networks) will be changing, and the performance of wireless
networks will be changing (due to mobility and environmental factors). Without the ability to
adapt, the NCW warfare infrastructure will be brittle, with each change possibly breaking
something. The primary tool available to the resource management system is to adjust the
resource usage of applications in response to changes. A good example is the admission of an
application when other applications are already utilizing resources. If the application can fit
within the available capacity, no adaptation is required. However, if it cannot and it is of higher
importance than other applications, the other applications will be 'throttled back', i.e. have their
resource allocations adjusted downward, within the limits of their requested resource range, so
that the higher priority application can be fitted in. Specifying a resource range for an
application, rather than a fixed value, is a necessity for this type of capability; otherwise, the only
way to accommodate the new application is to terminate or move others.

Application QoS—Resources would be typically allocated at a low level, such as a processor
time allocation or a network bandwidth level. However, the needs of an application would
typically be expressed in application-specific terms. For instance, in a sensor-to-shooter chain,
the application may need a bounded latency for sensor information to be processed, aggregated,

9

interpreted, and forwarded to the warfighter, and yet assuring that latency requires the
reservation of several different resources. One approach to this is to require the application to
specify each individual resource when it is admitted. Another approach is to specify the QoS
requirement at an application level, and provide a means to translate that application-level QoS
into resource level QoS’ so that the individual resources can be reserved. Translations in the
other direction are useful also; they allow constraints in a low-level resource to be translated into
an application-level constraint.

Resource Isolation—Equal in importance to resource allocation is the enforcement of those
allocations. Otherwise an application might state a resource need, but then use much more than
its allocation, and take away resources from other applications, causing them to under-perform.
This is an especially important point when you consider the presence of safety- and mission-
critical applications, and COTS applications.

Safety-critical applications are those whose failure could cause death, dismemberment, or
substantial equipment and/or property damage. Mission-critical applications are those whose
failure could compromise the mission in which they are a participant. Typically, safety- or
mission-critical applications receive more scrutiny of their software, both through testing and
reviews of the design and implementation, than less critical applications. The review process
primarily concentrates on the correctness of the application, but it must also be shown how the
application might be affected by other applications. If a safety-critical application can have the
resources available to it reduced by an adjacent rogue application, then either that application
must be examined as well to assure that it won't misbehave, or some sort of barrier must be
provided to assure that it cannot adversely affect the safety-critical application.

The first approach can be expensive, since all applications must receive a high level of scrutiny,
and all possible combinations of applications and resources must be examined. In a NCW
environment, the number of combinations is unbounded, since the combinations of applications,
vehicles, and environmental conditions are unbounded. This approach generally only works
when the number of combinations can be kept relatively small, and when new applications do
not enter the overall system.

The second approach is well known, and usually takes the form of physical partitioning, which is
separating safety- or mission-critical applications from other applications. For instance, in a
nuclear power plant, computers and networks that control the fuel rods are physically separated
from the computers and networks on which the accounting applications are used. However, in
commercial avionics systems, the notion of logical partitioning, in the form of time-space
partitioning, is well accepted. Time-space partitioning is a way of partitioning the time and
space of a resource, such as the processor or network. Space partitioning of a processor is really
just allocating and guaranteeing a certain amount of memory for an application, while time
partitioning is allocating and guaranteeing a certain amount of processor time for an application.
The key attribute of time-space partitioning is that it provides the type of 'resource isolation'
necessary to guarantee allocated processor resources to an application.

This 'resource isolation' capability is attractive for COTS applications as well. COTS
applications are attractive from a cost and functionality standpoint, but often the size of the
application and the lack of source code make it more difficult to assure the resource needs of the

10

application, and its ability to adversely affect safety-critical applications. If source code is
available, but it must be modified to assure that it will live within resource constraints, it will
lose many of the attributes that make COTS attractive. Modification of a COTS product to target
a non-standard infrastructure raises the cost of the application, and since it is a variation off the
main branch of the product, it is likely to receive less attention in maintenance from the original
vendor. Therefore, it is desirable to be able to execute COTS applications 'out of the box'. With
time-space partitioning, a COTS application can be given an enforced allocation, and there
would be no concern that the COTS application would consume more than its share of processor
time.

On a network, time- and space-partitioning is allocating and guaranteeing a time slot for the
delivery of a data item over the network, or allocating a portion of the network bandwidth for a
specific data item. The viability of this approach is very dependent on the type of network. In
general, we must recognize that an application’s QoS can only be as good as what the underlying
resources will provide. In particular, it is impossible to get absolute guarantees across inter-
vehicle wireless networks that cannot provide absolute guarantees. In particular, applications that
are intolerant of excessive latencies cannot rely on network transport in which the latency cannot
be guaranteed to be bounded.

By design, control networks provide deterministic behavior. Some networking standards, such
as those for automotive busses (TTP, FlexRay), and commercial avionics busses (SafeBus
(ARINC 659), ASCB-2) explicitly support the notion of time-space partitioning, typically
through static allocations of time slots. Others, such as CAN, provide a level of determinism
through a non-preemptive priority system. Wired IP networks typically do not provide
deterministic behavior, although special adaptations, such as AFDX (ARINC 664), are able to
provide a level of partitioning through an allocation of send and receive bit rates, and specialized
switch designs. In general, the strength of the guarantees one can make for transportation over
the network is highly dependant on the network. Applications that require determinism cannot be
dependent on non-deterministic elements, or they must adapt to the non-determinism.

3.2 Information Management

The Information Management function implements the information flows shown in Figure 1 to
give warfighters current, accurate, consistent views of the battlespace state. Information
management includes functions for storage, retrieval, search, transmission, and dissemination of
information in support of network-centric monitoring and control applications. It also includes
functions for creating and maintaining models of information and information transformations.

In today’s military force, the problem is not so much gathering the information as getting it to the
warfighters who need it, when they need it, without overwhelming them with irrelevant
information. Lack of interoperability among stovepipe systems currently prevents effective
information dissemination.[5] If that problem were solved, the problem would then be to provide
the warfighter some way to get the information he needs within the mass of available data.

Information Management must meet several key requirements:

Interoperability—Interoperability at the application level requires communicating applications
to have a common interpretation of the information they share. This is difficult to achieve for a

11

“business process” as complex as warfighting, but is imperative, especially if the shared
information is to be interpreted by application software as well as human beings.

Multiple implementations—It must be possible for different nodes to have different,
independently-developed implementations of Information Management, possibly with different
levels of functionality and performance, while still being interoperable. Given the scope of the
Global Information Grid and the variety of systems that must interoperate, it is not reasonable to
require all systems to use the same implementation or implementations from the same vendor.

Types of information—Information Management must support the following types of
information:

Structured, record-oriented information. •

•

•

Documents—text documents, imagery, and other large pieces of unstructured information.

Low-volume, time critical information—both structured and unstructured—that is relayed
across the network but may never be recorded in persistent storage.

Information search and access—Individual warfighters will generally receive information from
a few sources appropriate to their place in the command hierarchy, with the option to search for
other sources as needed. The dissemination occurs through a combination of push
(publish/subscribe) and pull (query, browse, download).

Profiles—The warfighter (and/or his commander, acting on the warfighter’s behalf) must be able
to define his information needs precisely. This definition is called a profile. The profile can
include the type of information required (e.g. high-resolution imagery), subject matter,
geographic area, publication date and time, etc. The profile may be dynamic, meaning that it
varies over time as a function of factors such as the warfighter’s current location or task, the
current situation, or environmental conditions.

Effective use of available bandwidth—Information dissemination requires bandwidth, which is
often in short supply in the tactical environment. This bandwidth should be used efficiently.
Profiles help with this, since they define what information warfighters actually need; other
information need not be disseminated.

There are other obvious economies that should be realized. The commonality of information
needs among warfighters should be recognized and duplicate transmissions avoided. When
publishing a large body of information, incremental changes should be transmitted rather than
retransmitting each complete updated version.

Further economies can be achieved using information quality of service and policy, as described
next.

Information quality of service—A profile states what information a warfighter needs. It must
also be possible to specify timeliness, accuracy, and possibly other dimensions of information
quality of service. Information Management must meet these requirements whenever sufficient
system resources are available, and degrade gracefully when they are not.

12

Timeliness requirements depend on the nature of the information and its intended use. In many
cases, information that arrives late may be of little or no use. The GIG CRD[2] distinguishes
between survival information and planning information. Survival information is information that
a recipient requires to avoid danger, to defeat an enemy, or to prevent fratricide. It is typically
small in volume (<12KB) and must be delivered within a few seconds after the source generates
it.

Timeliness requirements affect bandwidth utilization. If information management has more lead
time for delivering information, it can make more efficient use of available bandwidth by
smoothing out communications workload peaks and valleys.

There are at least two kinds of information accuracy that affect bandwidth utilization. First, some
kinds of information, e.g. imagery, are available at different resolutions. The lower the
resolution, the lower the bandwidth requirement. The second kind arises in publish-subscribe.
The information source, e.g. a track report, may undergo frequent small changes. Disseminating
each change can consume significant bandwidth. A subscriber may be content to receive less
frequent updates, each providing the net change since the previous update.

Policy—There will be times when the bandwidth available cannot support all information needs.
This bandwidth should be used to disseminate the information that makes the greatest
contribution to mission success. Less critical information should be disseminated with lower
quality of service, or not at all. The information dissemination function must be able to adapt to
available resources, disseminating the most critical information possible under the
circumstances.

Information Management must allow commanders to establish a policy that defines the criticality
of any information flow. The policy may determine criticality as a function of the information
type, source, recipient, and other factors. Each commander in the hierarchy can define a policy at
a level of scope and detail appropriate to his/her mission. Individual commanders’ policies are
then merged so that the relative criticality of any two information flows that compete for the
same resources can be determined.

Integration with system resource management—System resource management allocates
resources in the common currencies of bandwidth, delay, CPU time and the like. Application
clients of Information Management state their resource requirements indirectly in terms of
information volume and information quality of service. Information Management must map
these application-level requirements to explicit resource requirements so they maybe requested
and allocated. It must also mediate between applications and system services when quality of
service requirements must be renegotiated due to changes in resource availability. Similarly,
Information Management must compute the criticality of each system resource request (transport
connection, CPU slot, etc.) based on commanders’ policy.

Information flow awareness—Commanders must be able to monitor the flow of information
across the network, determine how effectively information is being delivered, and understand the
impact of changes in workload, resources, and policy.

13

4 Approach

The overall system is an
interoperable set of systems. If
we consider a single node in the
systems, the overall NCW
software at the particular node
can be layered as shown in

. Together, application
services and system services
form the software infrastructure.

Figure 4

•

•

•

Applications—Applications
implement user-visible com-
ponents of system functionality.

Application Services—Applicatio
that are aware of the structure of
include naming services, ORB
etc. Applications may vary widely

System Services—System serv
communications resources: CPU
etc., but have little or no knowle
services include typical operatin
communications services (TCP
transaction management, etc. Eve
many applications also require co

The key to our approach is the foc
overall system. The main challenge
levels of assurance for different a
information assurance (encryption, e
by providing an environment that
resource constraints, and guarantee
mechanisms to define, and enfor
applications.

First, we discuss a set of technologie
We then describe our approach to m

4.1 Some Applicable Technologi

4.1.1 Common Operating Envir

One of the common approaches to
use the same set of System and App
approach, all applications are devel
maintained. This common API (sup
Hardware

System Services

Application Services

Applications

Software
Infrastructure

Figure 4. Top-Level Software Decomposition
n services are those functions, used by multiple applications,
 the processing and/or data they handle. Application services
services, information management, workflow management,
 in the application services they use.

ices are those functions that manage computing and
, memory, communications bandwidth, storage, I/O devices,
dge of the purpose to which those resources are put. System
g system services (e.g. POSIX), transport and lower-level
, UDP, IP, IEEE 802.x, etc.), time service, distributed
ry application requires at least CPU and memory resources;
mmunications and storage resources.

us on integrating pre-existing and COTS software into the
 is in supporting different APIs, and providing appropriate
pplications. The assurance must be provided, in not only
tc.) but also resource and timeliness guarantees. This is done

 COTS applications expect but provides for and enforces
s timing behavior. In particular, System Services provide
ce Information and Resource QoS specifications of the

s that we believe are important to meeting our requirements.
eeting the specific requirements mentioned earlier.

es

onment & “Middleware” Technologies

solving the integration problem is to force all applications to
lication Services, and perhaps the same OS services. In this
oped to a common API, which is separately developed and
posedly) meets the performance needs of all the applications

14

and provides a common integration framework. The Future Combat System (FCS) program is
using this approach for integration. The FCS System-of-Systems Common Operating
Environment (SOSCOE) layer provides a common API and framework for integrating all FCS
applications. There are likely to be multiple implementations (editions) of the FCS SOSCOE API
to meet multiple sets of performance requirements.

While this approach is valid in principle, there are some caveats to keep in mind:

• As technologies evolve, the features provided by the COE are insufficient. In some cases, the
COE may be adapted to use these new technologies, but in general, it is impractical.

• If existing software is modified to use the COE, porting and validation costs may be
prohibitive and the resulting software will not interoperate with other existing systems it
currently operates with.

• COTS and third-party packages are usually written to a different set of specifications, and
they will never be updated to use the COE.

• In some cases, the performance and reliability characteristics and resource requirements of
each application are so different that it is impractical to define a common API with these
differing requirements.

Thus, the middleware may become a bottleneck, not only in performance but also in deployment
schedule, and becomes a critical path item for almost all development.

Our approach is to say that the COE is common
only to the extent that the performance and
reliability requirements of the two applications
are similar. Applications executing over these
COEs are integrated together using partitioning
approaches described later.

4.1.2 Use of Desktop Commercial Operating
Systems

Traditional desktop commercial OS’s such as
Windows, and Linux (and its various deriva-
tives) may directly be used for applications that
need these OS’s and no additional applications
need to be executed on the same node. For some
applications, it is possible to use variants of
Linux (such as TimeSys, or RT-Linux) for soft-
real-time applications.

Another major reason why COTS OS’s are hard
to use is that they are designed with different
criteria in mind. In particular, lower reliability
requirements and large volumes drive their cost low

15
9. DISCLAIMER OF WARRANTIES. To the maximum extent
permitted by applicable law, Microsoft and its suppliers provide to you the
SOFTWARE PRODUCT, and any (if any) support services relating to the SOFTWARE
PRODUCT (“Support Services”)

AS IS AND WITH ALL FAULTS; and Microsoft and its
suppliers hereby disclaim with respect to the SOFTWARE PRODUCT and Support
Services all warranties and conditions, whether express, implied or statutory, including,
but not limited to, any (if any) warranties, duties or conditions of or related to:
merchantability, fitness for a particular purpose, lack of viruses, accuracy or
completeness of responses, results, workmanlike effort and lack of negligence. ALSO
THERE IS NO WARRANTY, DUTY OR CONDITION OF TITLE, QUIET
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR

NON-INFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE
OR PERFORMANCE OF THE SOFTWARE PRODUCT AND ANY SUPPORT

SERVICES REMAINS WITH YOU.

10. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND
CERTAIN OTHER DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, IN NO EVENT SHALL MICROSOFT
OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL

DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO,
DAMAGES FOR: LOSS OF PROFITS, LOSS OF CONFIDENTIAL OR OTHER

INFORMATION, BUSINESS INTERRUPTION, PERSONAL INJURY,
LOSS OF PRIVACY, FAILURE TO MEET ANY DUTY (INCLUDING OF GOOD
FAITH OR OF REASONABLE CARE), NEGLIGENCE, AND ANY OTHER
PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY
WAY RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE
PRODUCT OR THE SUPPORT SERVICES, OR THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES, OR OTHERWISE UNDER OR IN
CONNECTION WITH ANY PROVISION OF THIS EULA, EVEN IF MICROSOFT
OR ANY SUPPLIER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Figure 5. Typical End-User License
Agreement
er. Figure 5 shows a representative end-user

license-agreement. Their business models are based on quick upgrade cycles, whereas NCW
systems’ lifecycle durations are many orders of magnitude longer. We then architecturally need
to decide: “how far down do we go with COTS.” Many of these problems can be mitigated for
C4ISR systems if these OS’s can be used with a Time-Space partitioned or Hypervisor-
constrained environments.

4.1.3 Use of Time-Space Partitioned Operating Systems

The Avionics industry has always had a need to reduce certification costs. As a strategy for this
cost reduction, the concept of “Time-Space Partitioning” is well established within the industry.
Time-Space Partitioning enables isolation of applications in not only space, but also time. This
ensures that an errant application partition will not affect the correct behavior of another
application partition. In particular, it supports coexistence of applications with differing
assurance and resource requirements by enforcing that applications execute within well-defined
and constrained time windows, and interact with each other through well-defined interfaces that
ensure that the interfaces are safe from interference from other applications. One of the main
standards for time-space partitioning at the CPU is ARINC653 [8], and is now available through
many commercial Real-Time OS products (such as LynxOS-178, Greenhills Integrity-178B,
VxWorks AE653, etc.). There are other time-space partitioning strategies using the Rate-
Monotonic scheduling policies that have been successfully employed in Avionics architectures
(e.g. Honeywell’s Primus Epic architecture for business jets).

ARINC653 based time-space partitioned operating systems have very limited support of
traditional OS services. This limitation exists to simplify validation and verification of avionics
software. Thus, these operating systems are not directly applicable to dynamic NCW
requirements. However, time-space partitioned OS’s excel at ensuring applications from each
other, and in enforcing application resource constraints. The capability to dynamically create
additional partitions, and allocate resources to these new partitions will be important for
dynamic NCW applications.

The underlying OS for the business and regional commercial avionics market’s Primus Epic™
architecture (called DEOS™) provides time-space partitioning based on Rate-Monotonic
Analysis based CPU scheduling and complete space partitioning. This enables better response
time for interrupt driven and aperiodic applications, while retaining the performance parameters
for periodic applications.

4.1.4 Use of Multiple Operating Systems

Once again, because of the number and variety of NCW applications, they will be written for
different Operating Systems. Any NCW system must allow these operating systems to coexist in
the same network. Imposing a single OS for all applications is hard due to the varied
requirements (e.g., if we use out-of-the-box Linux, what are we going to do about safety-critical
applications?)

4.1.5 Hypervisor- or Virtualization- Based Approaches

Another interesting OS technology of interest is the “Hypervisor.” Hypervisor essentially
partitions a CPU and re-exports the same (or possibly emulating another) instruction set to its

16

applications. It can be used to execute multiple operating systems concurrently, each with its
own set of resources independent of the other OS instances. For example, in IBM’s blade
architecture, the CPUs may be subdivided (or joined together) using the Hypervisor, with a
“partition” executing OS/360, AIX or Linux.

Hypervisor based approaches have not been widely tried in the industry but hold great promise
for multi-platform applications. In particular, for the NCW system, COTS applications would
execute on their “native” OS with resources managed by the Hypervisor. This approach holds
great promise in reducing overall system costs and reducing deployment delays.

4.1.6 Communications Services

Communications Services are obviously key to
Network Centric Warfare. As shown in F ,
there are three very different classes of networks
in a system.

igure 6

At the highest level is a set of wireless networks
connecting various platforms and soldiers.
Examples of such network protocols and
products are JTRS, WIN-T, and LINK16. In the
long term, these networks will likely support the
Internet Protocol-suite—particularly TCP and IP.
The inter-platform networks are shared RF and
are subject to hostile attacks, infiltration,
jamming and intermittent service losses and
overloads. The bandwidth available on these
networks is constrained and is only a fraction of
the bandwidth available within the vehicle.

The platform (a vehicle such as a C2 vehicle,
NLOS-C, UGV, or UAV) typically will have an
in-vehicle network connecting various computing
nodes on the platform. This network is typically
wired. While it may be subject to temporary ov
interference and security violations. This network
traffic with possibly some non-real-time traffic. T
possible failures.

Finally, there are a number of Control Networks in
in control systems. Most high-rate and real-time co
networks. Examples of such networks are CAN,
networks (except CAN) are very deterministic, and
network. Most safety-critical control is done over t
one or more such networks in the vehicle, with one o

17
Vehicle

µC
on

tro
lle

r
Se

ns
or

A
ct

ua
to

r

Se
ns

or

A
ct

ua
to

r

Se
ns

or

µC
on

tro
lle

r
General
Purpose

Processor

Wired
Network

Wired
Network

Wireless
Network

Control NetworkControl Network

Radio

Figure 6. Communication Networks in a
NCW System
erloads, it is not as susceptible to outside
 may have a combination of soft-real-time
his network is likely to be redundant for

the vehicle. These are special networks used
ntrol loops are executed across these control
 MIL-STD-1553B, ARINC659, etc. These
 usually provide built-in redundancy in the

hese networks. We expect that there will be
r more subsystems over the same network.

Figure 7 shows some
traffic characteristics
of different types of
data sent across these
different networks.

• The highest
criticality messages
tend to be
exceptions or
alarms, and certain
urgent messages
(e.g. Check Fire).
Delays or loss in
transmission of
such information
may lead to loss
life or mission failure. T

• The second most critic
controlled) are control
and armament control
operations, commands
fashion; otherwise, ope
unstable behavior of th
of the joystick) or aperi

• The third category is w
simulation data, sensor
logging-, and sensor- da
battlefield planning and

• Finally, there are a nu
well displays of the co
not bursty; however, t
streams may have highe

It is important to recogni
networks. In principle, it i
applications agnostic to the
differences in their characte

4.1.7 Isolation through

One common way to isola
boxes for these application
well. The same issues occu
Le
ve

ls
 o

f C
rit

ic
al

ity

Time

• Periodic streams/not bursty

Data display
• Monitoring

• No. of streams change
• Periodic streams/not bursty

Data display
• Monitoring

• No. of streams change

Data display
• Monitoring

• No. of streams change

Data files/logging
• Not bursty, variable volume
• Aperiodic and periodic

Data files/logging
• Not bursty, variable volume
• Aperiodic and periodic

Control loops
• Periodic traffic
• Process-critical data
• No. of streams fairly static

Control loops
• Periodic traffic
• Process-critical data
• No. of streams fairly static

Exceptions/Commands
• Aperiodic, bursty
• Mission/Safety-critical data

Exceptions/Commands
• Aperiodic, bursty
• Mission/Safety-critical data

Data Characteristics

Planning
• Bursty, variable volume

Planning
• Bursty, variable volume

Figure 7. Traffic Characteristics for Different Classes of Data
hese kinds of messages exist over all three categories of the network.

al category of messages (depending on the specific process being
loop inputs and outputs. High-rate control loops such as propulsion
are typically closed across the in-vehicle control network. For tele-
must be received from the operator to the control system in a timely
rator-induced oscillations may occur in the control system causing

e system. These messages may be periodic (e.g. giving periodic state
odic (giving only movements of the stick as they occur).

here most of the communication traffic will lie. It includes planning,
 reports, battle command execution, and most other activities. Most
ta tends to be variable volume but not very bursty. On the other hand,
 execution information is bursty and variable volume.

mber of applications displaying information from the battlefield, as
ntrol system inside a vehicle. These streams tend to be periodic and
he number of streams may change over a given time-period. Some
r criticality.

ze the significant differences between the three different types of
s a good idea to develop APIs and middleware layer that makes the
 actual network. In practice, it is extremely hard due to the significant
ristics.

 Hardware Separation

te hard- and soft- real-time applications is to use different hardware
s. In some cases, the separation extends to individual networks as

r with security and information-assurance issues.

18

These issues are well-known and are not discussed in this paper.

4.2 Our Integration Approach

Our main integration approach is to use a combination of time-space partitioned OS’s and
specific instances of commercial OS’s on a Hypervisor-based OS. While this approach has not
yet been proven, it shows great potential in not only meeting the real-time and safety-critical
needs of NCW applications, but also in enabling direct use of COTS and legacy applications.
The virtualization and time-space partitioning approaches essentially define a resource
“straightjacket” for applications that enforce and guarantee their resource requirements, thereby
providing some level of determinism even for applications never so designed.

4.2.1 Support for Multiple Environments

Our goal is to provide the environ-
ment an application expects. The
environment includes not just the
operating system, but also a set of
resources available for the execution.

Figure 8 shows a possible mechanism
for using Virtualization (or
Hypervisor) technology to achieve
support for multiple OS
environments. The Hypervisor creates
hard resource containers in which
applications (and OS’s) can reside.
These resource containers guarantee
and enforce resources available to
each of the partitions. In this example,
App1 and App2 have a fixed amount
of resources available, whereas App3
and App4 share resources given to the p
partitioning of physical resources, each wit
happens to dynamically created application
allocated partitions, we will need to dynam
one or more statically allocated partitions.

F

The biggest concern in our approach is t
ARINC653 OS technologies deal with only
we believe that a time-space partitioned bu
vehicle main network, resource reservation
can be used.

For the inter-vehicle network, there can b
provided must take into account the unrelia
most applications have not assumed any fix
ARINC653Windows
Linux

Network

Hypervisor

App2

Linux

App3

Linux

App1

Windows

Hypervisor

App2

Linux

App2

Linux

App3

Linux

App3

Linux

App1

Windows

App1

Windows

Hypervisor

App2

Linux

App2

Linux

App3App1

Windows

App1

Windows

App4

Linux

igure 8. Providing Multiple OS APIs through use of

Virtualization
articular partition. The figure also shows physical
h its own supported OS. A key question here is what
s and resource allocations for them. For dynamically
ically allocate these Hypervisor partitions, or share

he allocation of network resources. Hypervisor and
 the CPU side of the problem. For Control Networks,
s such as TTP would be a good choice. For the intra-
and policing through limiting outputs from each node

e no absolute guarantees. Any guarantees that are
bility of the inter-vehicle radio network. Historically,
ed bandwidth allocation from the radio network, so it

19

would not be a problem to not provide absolute guarantees for pre-existing applications. New
applications must be adaptable to the reliability issues in the network.

4.2.2 Multi-Resource Management

The infrastructure would provide an API and framework to provide explicit management of
resources. The important parts of it are:

• An admission system for automatically controlling and allocating access to resources

• A means of expressing QoS needs both at the application level and the resource level, with
the ability to translate between the two

• Support for specifying a range of QoS’ in order to allow flexibility to adjust resource
allocations as the situation evolves.

• Tied to policy to enable automatic trade-offs, thus favoring some applications over others
according to their contribution to mission goals.

• The ability to adapt to changing situations, including the admission of new applications, the
termination of applications, the reduction or elimination of some resources, and changing
military priorities.

• Reliance on the underlying OS and network system to provide resource isolation, thus
protecting the allocations of applications.

All applications would either need to express their QoS needs or accept best effort performance.
In addition, each application type would need to provide translation code to translate application
QoS needs to resource QoS allocations, and vice versa. To start a QoS-aware application would
first require an admission process, in which the application-level QoS is translated into resource-
level QoS’, and then the availability of these resources is checked. All the resources for the
application would need to be reserved; if some resources were insufficient, the overall
application QoS would need to be adjusted to be consistent, or the admission of the application
would fail.

The ability to adapt is key. When an admission request is made, it may be that insufficient
resources exist, with some being tied up by admitted applications. However, if the application,
according to its current policy, is more important than the applications that are running, it will
make sense that the other applications be ‘throttled back’, thus freeing up resources for the new
application. On the other hand, if an application terminates, the resources that it was using must
be freed up for new applications, or used to ‘throttle up’ existing applications. This is also true
when the capacities of various resources change. A distributed application in which the capacity
of one network link is reduced may need to have the other resource allocations for that
applications reduced in order to be consistent; it makes no sense for upstream parts of a
distributed application to produce data faster than downstream elements can process it.

Another crucial part of the admission process is the tie in to the underlying OS, especially with
time-space capabilities. For the CPU resource, allocations of resources should lead directly to
new partitions with time and space guarantees.

20

4.3 Information Management

This section outlines approaches for meeting the Information Management requirements listed in
Section 3.2.

Much of Information Management can be implemented using COTS products that implement
vendor-neutral APIs and protocols. The ability to run this software “out of the box” in the NCW
environment, as described above, results in significant saving in cost and time to deployment
compared to custom development.

4.3.1 Information Stores

The three types of information listed in Section 3.2 require different kinds of information stores:

Structured, record-oriented information can be stored in a SQL-compliant relational database,
where it can be queried, inserted, updated, and deleted.

•

•

•

Documents (text, imagery, etc.) can be stored in the operating system’s file system. A
document’s descriptive metadata (author, date created, etc.) can (for some operating system)
be stored in the file system itself or in an associated relational database. Alternatively, both the
document and metadata can be stored in a relational database that supports storage of large
binary and character objects. The DoD is defining standard descriptive or “discovery”
metadata.[7]

Low-volume, time critical information can be stored in a main-memory database. There are
several available commercially for the embedded system market. Many implement a subset of
the SQL language for query and update operations. These are appropriate for storing both
structured data and unstructured data (such as text messages) with associated descriptive
metadata.

Information stores such as these will reside on many nodes across the system of systems.
Applications need to be able to locate these information stores, read and update them, and
disseminate their contents on a regular basis via publish/subscribe.

4.3.2 Locating Information Stores

Two vendor-neutral directory standards, X.500 and Lightweight Directory Access Protocol
(LDAP) can be used to catalog the information stores so that applications can locate them. X.500
was defined as part of the OSI protocol suite, but can also be run on top of TCP. LDAP has been
developed more recently, and is more widely implemented. Both use the same model of directory
information, so that the same directory can be made available for access via either protocol. Both
support white page (lookup by name) and yellow page (lookup by search predicates over
attributes) operations.

LDAP and X.500 support replicated, distributed directories. That is, the directory need not be
stored at a single node. (In the NCW environment, this would be an unacceptable single point of
failure, and would have low availability due to intermittent network connectivity.) Rather, the
directory tree can be broken into fragments, and each fragment stored on one or more nodes. For
instance, each vehicle could store the directory entries for all its information stores. The

21

X.500/LDAP referral capability allows a client application to query one directory server, and be
referred if necessary to another directory server where the information can be found.

X.500 and LDAP both support client authentication, so that directory read and update can be
controlled. However, the LDAP access control model has not yet been standardized, so access
control behavior may differ from server to server.

X.500 and LDAP are general-purpose directories that can record entries for many kinds of
objects—persons, organizational units, network nodes, etc. The advantage of using these
standards for locating information stores is that they build on the DoD X.500 and LDAP
infrastructure already in place.

4.3.3 Accessing Information Stores

Once an application locates an information store, it must be able to locate, read, update, and
delete specific documents or records, and create new ones.

For document stores, LDAP can be used to locate specific documents using yellow-page lookup
against the associated descriptive metadata. Once the desired document(s) are located, they can
be accessed using FTP. Similarly, a client can use FTP to create a new document in the store,
and create an associated directory entry. All these operations are subject to access control.

Remote access of SQL databases is nothing new and can be implemented in the NCW
environment. Unfortunately, the ISO/IEC standard Remote Database Access (RDA) protocol, the
only vendor-neutral application protocol for executing SQL statements against remote databases,
has seen little vendor acceptance. Each database (Oracle, DB2, MySQL, etc.) has its own client-
server protocol. Therefore each client node that needs to access a particular remote database
must have software specific to that database (e.g. an ODBC or JDBC driver) installed. The
purchasing power of the U. S. Government might be used to encourage COTS database vendors
to comply with the RDA standard.

Furthermore, the ISO/IEC SQL standard is very complex, and specific products vary in the
completeness and correctness of their implementations. To avoid vendor lock-in, developers
must avoid vendor-specific SQL features or standard features that are not widely implemented.

A reasonable alternative to sending explicit SQL to remote databases for execution is to define
application-specific database query and update services (procedures) that can be invoked
remotely via web services, CORBA, or other vendor-neutral protocol. This may be desirable in
any case to enhance database security and integrity, but is definitely less flexible than ad-hoc
SQL queries.

4.3.4 Publish-Subscribe and Information Replication

In the NCW environment, accessing remote information stores is problematic because of
intermittent communications connectivity and/or limited bandwidth. A widely-used alternative is
to selectively push information from node to node via asynchronous messaging so that
applications can access it locally when they need it. This push model is often implemented using
message-oriented middleware such as IBM’s MQSeries. Tactical messaging protocols such as
Link 16 also use this approach.

22

We propose a variation of the usual message-oriented publish-subscribe paradigm that better
meets the requirements stated in Section 3.2: profiles, effective use of available bandwidth,
information quality of service, and integration with system resource management. The concept of
operations can be summarized as follows.

Each node has one or more information stores. Applications produce and consume data by
writing to and reading from the local information stores; they do not concern themselves with
inter-system communications.

To the extent that there are multiple copies of the same information on different systems, those
copies must be kept more or less synchronized. Information Management uses inter-system
communication, in the form of messaging (or file transfer, in the case of a document store), to
maintain this synchronization. Each message encodes a change in state of the information store
at the message source; the same change of state must be effected at the message destination to
keep the information stores synchronized. More precisely, as shown in Figure 9, a view of the
information store at Node A must be kept synchronized with a compatible view of the
information store at Node B. If an update to the information store at Node A does not affect the
shared view, no message to Node B is required. These views extend the usual notion of an
information dissemination profile.

Information at Node A Information at Node B

Replication via
Asynchronous

Messaging

Shared
Information

Shared
Information

Figure 9. Selective replication of information across nodes.

“More or less synchronized” means that an application can tolerate some delay between the time
the information it needs is produced on a different system and the time it is available locally for
consumption. The tolerable delay could vary from a fraction of a second to hours or more. The
application may also tolerate some inaccuracy in its local copy of the information—it may not
care about small changes in data values. An application’s information quality of service (IQoS)
requirements include its accuracy and delay tolerances for specific information elements. These
might be specified at design time as part of the system-of-system model, or at run-time.

XML-based message formats are a natural choice for the inter-system messages, but other
formats (e.g. J series) can also be used. As stated earlier, each message represents a state change
of the (a view of) the local information store. Consequently, the message contents should be
compatible with DoD standard information models.

Inter-system communication is assumed to have limited bandwidth and/or time-varying
connectivity, bandwidth, or cost. When Information Management performs inter-system
communication to maintain data synchronization, it exploits applications’ IQoS requirements to
optimize use of available communications resources. In general, lower IQoS requirements reduce

23

the communication resources required to maintain adequate synchronization. Information
Management must translate IQoS requirements to system-level QoS requirements (chiefly
network bandwidth and delay requirements) prior to requesting those resources. This translation
is relatively straightforward if rate at which applications update their local information stores is
known.

This concept of operations differs from the usual approach to distributed information
management in commercial and military vehicle systems. In that approach, applications
explicitly invoke communications services to send and receive information between systems.
This could be called the message-oriented approach. Our approach, in contrast, is state-oriented
because applications merely store and retrieve information locally, with no notion of how this
information might be shared across systems. Information Management is responsible for:

Detecting the presence of new information in a local information store, •
•
•
•

•
•
•

•

•

•

Sending appropriate messages (or files) to other systems,
Receiving these messages on the remote systems, and
Using them to update the remote systems’ information stores.

The decision to send a message, and the message content, are based on

The content of messages previously sent,
The current information state at the sending system, and
The recipients’ IQoS requirements

Information Management makes this decision, relieving applications of this responsibility.

5 Summary

In this paper, we have summarized the goals and intent of Network Centric Warfare, identified
key requirements, and proposed an approach to the infrastructure necessary to meet those
requirements.

There remain questions that need to be answered for our approach:

No commercial software package or operating system exists that provides both time-space
partitioning and hypervisor-like capabilities. What would be the required effort to build this
capability? Would this capability be built on top of a particular OS, or would it sit between
the hardware and the hosted OS’?

The resource management capabilities described do not appear to exist in a COTS package,
and have only been demonstrated in research environments. What is required to mature the
technology such that it is suitable for deployment?

What is the impact of resource reservation protocols in a complex wireless network? For a
network supporting many distributed applications, might resource adjustments in one
application lead to adjustments in others, causing changes to ripple through the network.

24

25

References

1. David S. Alberts, John J. Garstka, and Frederick P. Stein. Network Centric Warfare:
Developing and Leveraging Information Superiority. 2nd Edition (Revised). DoD C4ISR
Cooperative Research Program, Washington, D.C., 1999. Available at
http://www.dodccrp.org/Publications/pdf/ncw_2nd.pdf

2. U. S. Joint Forces Command Capstone Requirements Document: Global Information Grid.
August 30, 2001. Available at http://handle.dtic.mil/100.2/ADA408877

3. Department of Defense Joint Technical Architecture, version 6.0, October 3, 2003. Available
at http://jta.disa.mil/

4. L. Peter Deutsch, The Eight Fallacies of Distributed Computing. Available at
http://java.sun.com/people/jag/Fallacies.html.

5. Gen. Kevin Byrnes, remarks at Annual Meeting of the Association of the U. S. Army,
October 6, 2003. Available at
http://www.ausa.org/www/news.nsf/0/53E45CC12023D80E85256DB80050064C?opendocu
ment

6. Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York, NY: 1990.

7. Deputy Assistant Secretary of Defense, Department of Defense Discovery Metadata
Specification (DDMS) Version 1.0. 29 September 2003.

8. Avionics Application Software Standard Interface, ARINC Specification 653, Published:
January 1, 1997. Aeronautical Radio, Inc. Also, Draft 3 of Supplement 1 to ARINC653,
published July 15, 2003.

http://www.dodccrp.org/Publications/pdf/ncw_2nd.pdf
http://handle.dtic.mil/100.2/ADA408877
http://jta.disa.mil/
http://java.sun.com/people/jag/Fallacies.html
http://www.ausa.org/www/news.nsf/0/53E45CC12023D80E85256DB80050064C?opendocument
http://www.ausa.org/www/news.nsf/0/53E45CC12023D80E85256DB80050064C?opendocument

	Computing and communications infrastructure for network-centric warfare:�Exploiting COTS, assuring performance
	Abstract
	Introduction
	Architectural Assumptions
	Key Requirements
	System Integration and Resource Management
	Information Management

	Approach
	Some Applicable Technologies
	Common Operating Environment & “Middleware” Techn
	Use of Desktop Commercial Operating Systems
	Use of Time-Space Partitioned Operating Systems
	Use of Multiple Operating Systems
	Hypervisor- or Virtualization- Based Approaches
	Communications Services
	Isolation through Hardware Separation

	Our Integration Approach
	Support for Multiple Environments
	Multi-Resource Management

	Information Management
	Information Stores
	Locating Information Stores
	Accessing Information Stores
	Publish-Subscribe and Information Replication

	Summary
	References

