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Abstract 
 
 
The paper presents an algorithm for transforming Timed Influence Nets (TIN) into Time 
Sliced Bayesian Networks (TSBN). The advantage of TINs lies in their ability to 
represent both causal and time-sensitive information in a compact and integrated manner. 
They are used to help a decision maker model the causal and temporal interdependencies 
among variables in a system. The TIN formalism offers a suite of analysis tools that can 
be used by a user to analyze the impact of alternate courses of actions on likely outcomes. 
An even larger, and more robust suite of analysis tools exists for TSBNs. These 
algorithms also allow analyses that are not available in the TIN formalism, e.g., provision 
for incorporating real-time information in the form of evidence regarding certain 
variables and calculating its impact on the rest of the system. The knowledge acquisition 
process of TSBNs, however, is intractable for large models. This paper is an attempt to 
combine the advantages of both modeling paradigms, TIN and TSBN, into a single 
formalism by providing a mapping from a TIN to a TSBN. The proposed formalism uses 
the TIN approach for the model building and the TSBN for analysis and evaluation. A 
system analyst, in this combined approach, interacts with a TIN, and the analysis results 
obtained on the TSBN are mapped back to the TIN, making the transformation 
completely hidden to the analyst.  
 
1. Introduction 
 
The easy access to domain-specific information and cost-effective availability of high 
computational power have changed the way people think about complex decision 
problems in almost all areas of application, ranging from financial markets to regional 
and global politics. These decision problems often require modeling of informal, 
uncertain, and unstructured domains in order for a decision maker to evaluate alternates 
and available courses of actions. The past few years have witnessed an emergence of 
several modeling and analysis formalisms that try to address this need. The modeling of 
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an uncertain domain using Probabilistic Belief Networks, or more commonly known as 
Bayesian Networks (BNs), is considered to be the most used and popular of all such 
formalisms. The BN approach requires a subject expert to model the parameters of the 
domain − random variables − as nodes in a network. The arcs (or directed edges) in the 
network represent the direct dependency relationships between the random variables. The 
arrows on the edges depict the direction of the dependencies.  The strengths of these 
dependencies are captured as conditional probabilities associated with the connected 
nodes in a network. A complete BN model requires specification of all conditional 
probabilities prior to its use. The number of conditional probabilities on a node in a BN 
grows exponentially with the number of inputs to the node. The requirement of 
specifying an exponentially large number of conditional probabilities presents a, at times 
insurmountable, modeling challenge. Cheng et al. [1994] developed a formalism, at 
George Mason University, called CAusal STrength (CAST) logic, as an intuitive, and 
approximate language to elicit the large number of conditional probabilities from a small 
set of user-defined parameters. The logic requires only a pair of parameter values for 
each dependency relationship between any two random variables. The CAST logic is 
used as a knowledge elicitation interface to an underlying BN. The approach was 
subsequently named Influence Nets [Rosen and Smith, 1996].  The Influence Nets require 
a system modeler (or subject expert) to specify the CAST logic parameters instead of the 
probabilities. The required probabilities are internally generated by the CAST logic with 
the help of user-defined parameters. The Influence Nets are, therefore, appropriate for 
modeling situations in which it is difficult to fully specify all conditional probability 
values and/or the estimates of conditional probabilities are subjective and estimates for 
the conditional probabilities cannot be obtained from empirical data, e.g., when modeling 
potential human reactions and beliefs.  

 
Both Bayesian Networks and Influence Nets are designed to capture static 

interdependencies among variables in a system. A situation where the impact of a 
variable takes some time to reach the affected variable(s) cannot be modeled by either of 
the two approaches. In the last several years, efforts have been made to integrate the 
notion of time and uncertainty. Wagenhals et al. [Wagenhals et al. 1998] have added a 
special set of temporal constructs to the basic formalism of Influence Nets. The Influence 
Nets with these additional temporal constructs are called Timed Influence Nets (TINs). 
TINs have been experimentally used in the area of Effects Based Operations (EBOs) for 
evaluating alternate courses of actions and their effectiveness to mission objectives. The 
provision of time allows for the construction of alternate courses of actions as timed 
sequences of actions or actionable events represented by nodes in a TIN [Wagenhals and 
Levis, 2000; Wagenhals and Levis, 2001; Wagenhals et al., 2003]. 

 
The TIN approach inherits both the advantages and disadvantages of the Influence 

Net formalism: it offers an intuitive, and compact, knowledge elicitation interface for 
modeling purposes, but lacks some important analysis techniques. Currently, the analysis 
suite of TINs lacks the ability to incorporate the real-time information/evidence coming 
from different sources during the execution of a previously selected course of action. In a 
military/political scenario, this new information might come from the surveillance system 
regarding an adversary’s actions. In an economic domain, a new development in a stock 
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market, e.g., bankruptcy filed by some corporation, might be taken into account before 
making a strategic decision. In any case, this new information results in the revision of a 
previously held belief about some variables in the system. Haider and Levis [Haider and 
Levis, 2004] have recently proposed an algorithm to overcome this limitation; however, 
the approach is applicable for a special class of evidences only. 

 
On a parallel track, scholars in the BN community extended the BN formalism to 

incorporate a special notion of time in it. The extension, called Time Sliced Bayesian 
Networks (TSBN) or Dynamic Bayesian Networks [Murphy, 2002], has gained a 
privileged status among the Artificial Intelligence community as a tool for modeling time 
and uncertainty. The approach is based on unrolling a static BN on a discrete time line 
with each time slice having an instance of a node in the network. The temporal 
dependencies are modeled with the help of edges across these time slices. Several 
sophisticated techniques for enhancing the capabilities of this approach have been 
proposed [Hanks et al., 1995; Figueroa and Sucar, 1999; Santos and Young, 1999; Galan 
and Diez, 2002]. Furthermore, several algorithms have also been proposed to compute 
the marginal probabilities of the random variables in an efficient manner [Kjaerulff, 
1992; Boyen and Koller, 1998; Doucet et al., 2000; Murphy and Weiss, 2001; and 
Takikawa et al., 2002]. 

 
The lack of a comprehensive suite of analysis techniques in the TIN formalism 

and the recent developments in the field of TSBN bring us to the topic of this paper: The 
paper is an attempt to combine the advantages of both paradigms, TIN and TSBN, into a 
single formalism by providing a mapping from a TIN to a TSBN. The proposed 
formalism uses the TIN approach for the model building and the TSBN for analysis and 
evaluation. The paper demonstrates that TINs provide a compact and an intuitive way of 
modeling dynamic domains. A system modeler, therefore, can specify the uncertainties 
and the temporal constraints, present in a problem domain, in the form of a TIN.  Once a 
TIN is fully specified, it can be converted into a TSBN using the approach presented in 
this paper. On one hand, the conversion simplifies the intractable task of knowledge 
elicitation in TSBNs by suggesting the use of TINs as a front end tool; while on the other, 
the conversion makes it possible to use a variety of analysis algorithms that have been 
developed for TSBNs.  

 
  The rest of the paper is organized as follows: Section 2 provides a technical 
background of Timed Influence Nets and Time Sliced Bayesian Networks. The algorithm 
for transforming TIN into TSBN is described in Section 3 with the help of examples. 
Finally, Section 4 discusses the conclusions and proposes directions for future research. 
 
2. Technical Background 
 
2.1 Bayesian Networks 
 
Over the last two decades, Bayesian Networks, (BNs) have become a popular way of 
modeling uncertainty in several fields of studies [Pearl, 1987; Charniak, 1991; Jensen, 
2001; Neapolitan, 2003]. A BN is a Directed Acyclic Graph (DAG) G = (V, E). The 
nodes or vertices (V) in the graph represent random variables while edges (E) connecting 
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pairs of variables represent probabilistic dependencies between them. Definitions 2.1- 2.3 
present a formal description of BNs and the related terminology. 

 
Definition 2.1 [Neapolitan, 2003] 

Given a DAG G = (V, E) and nodes X and Y in V, Y is called a parent of X if there 
is an edge from Y to X, Y is called a descendent of X and X is called ancestor of Y if 
there is a path from X to Y, and Y is called a nondescendent of X if Y is not a 
descendant of X. 
 

Definition 2.2 [Neapolitan, 2003] 
Suppose we have a joint probability distribution P of the random variables in some 
set V and a DAG G = (V, E). We say that (G, P) satisfies the Markov Condition if for 
each variable X ∈  V, {X} is conditionally independent of the set of all its 
nondescendent given the set of all its parents. 
 

Definition 2.3 
 Let G = (V, E) be a DAG and P be the joint probability distribution of V. If (G, P) 
satisfies the Markov Condition then B = (V, E, P) is called a Bayesian Network and P 
can be written as 

∏
=

=
n

i
iin xpaxPxxP

1
1 ))(|(),.....,(  

where pa(x) represents the set of all parents of x and x ∈  V. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Sample Bayesian Network 
 

Figure 1 shows an example of a BN having four binary variables, namely, A, B, 
C, and D. The text in the figure shows the prior and conditional probabilities associated 
with the root and non-root nodes, respectively. The joint distribution of all the variables is 
computed as the product of these probabilities. For example, P (A, ¬B, C, D) is computed 
as 

 
P (A, ¬B, C, D) = P (D | ¬B, C) P (C | A, ¬B) P (A) P (¬B) 

P(D | B, C)     = 0.95 
P(D | B, ¬C)   = 0.80 
P(D | ¬B, C)   = 0.70 
P(D | ¬B, ¬C) = 0.02 

P(C | A,B)      = 0.98 
P(C | A, ¬B)   = 0.75 
P(C | ¬A, B)   = 0.90 
P(C | ¬A, ¬B) = 0.05 

P(A) = 0.20 P(B) = 0.05



       

  6

The other values in the joint distribution can be computed in a similar fashion. 
Once the computation of joint distribution is completed, it can be used to determine the 
marginal probabilities of the variables of interest. Several algorithms have been 
developed for various graphical structures of BN that compute the marginal probabilities 
in an efficient way by propagating probabilities without first calculating all the joint 
distribution values.   

 
The random variables in a BN could be either discrete or continuous. Binary 

random variables are considered a special case of discrete random variables. The 
approach in this sequel, assumes that all the variables in a BN have binary states. The 
presented approach can be extended to more general cases.  
 
2.2 Time Sliced Bayesian Networks 

 
A TSBN works by discretizing time and creating instances of variables in a BN for each 
point in the time interval under consideration. The process starts with the identification of 
static cause and effect relationships among the variables and then by repeating the same 
structure for multiple time slices. Links are drawn between variables having temporal 
dependencies. Suppose, in the model of Figure 1, the probabilities of node A and B at 
time t depend upon their probabilities at time t-1. Then, the probabilities of A and B at 
time 1 are influenced by their respective probabilities at time 0; the probabilities at time 2 
are influenced by the probabilities at time 1, and so on.  These temporal dependencies can 
be captured in a TSBN as shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
      0           1            n        time 

Figure 2: A Time Sliced Bayesian Network 
  

Depending upon the situation, the state of a variable at time slice t may depend 
upon the states of influencing variables in preceding time slices ranging from t-1 to 0, 
i.e., the conditional probability of X at time t depends upon the set of influencing variable 
(the parents of X) at time slices ({t-1} or {t-1, t-2} or ….or {t-1,t-2,….,t-k}). In this 



       

  7

context, a TSBN can be seen as an order ‘k’ Markov Chain. Typically, the TSBNs are 
built as order one Markov Chain, i.e., the future is conditionally independent of the past 
given the present. One more assumption that simplifies the specification of a TSBN is 
that the changes in the state of variables are caused by stationary processes. In other 
words, it is assumed that the conditional probabilities do not change over time, i.e.,  

 
P(xt | pa(xt)) = P(xt-1 | pa (xt-1))   t = 1, …., n 

 
In the sequel, a TSBN is assumed to have stationary conditional probabilities and 

of order one Markov process, unless stated otherwise. 
 
2.3 Timed Influence Nets 
 
As mentioned earlier, Influence Nets simplify the intractable task of eliciting Conditional 
Probability Tables (CPTs) from subject experts, especially when a node in the net has 
many parents. They use CAST Logic as an interface for eliciting CPTs. The logic has its 
origin in ‘Noisy-OR’ approach [Agosta, 1991; Drudzel and Henrion, 1993; Heckerman 
and Breese, 1996]. The CAST logic not only simplifies the elicitation of CPTs, but it also 
provides a mechanism to obtain information from various experts and then combine their 
individual assessments in a mathematical manner. The exact details of the CAST logic 
algorithm are beyond the scope of this paper. The interested reader should refer to Chang 
et al. [1994] and Rosen and Smith [1996]. 
 

Timed Influence Nets extend the capabilities of Influence Nets by allowing the 
provision of specifying several types of temporal information. These types can be broadly 
classified into two categories. One is related to the delays present in a problem domain 
while the other is related to the actionable events. The delays present in the domain 
represent the amount of time it takes for knowledge about a change, in the status of any 
variable, to be propagated to the node that is affected by that change. In TINs, this 
phenomenon is modeled by associating delays to arcs and nodes. The delay on an arc 
represents the communication delay, while a delay on a node represents the information 
processing delay. The second type of temporal information in TINs is associated with the 
actions taken in a course of action. Wagenhals et al. [Wagenhals et al., 2003] have called 
this type an input scenario. It describes the time at which the actions are taken and the 
intervals during which these actions are maintained. Actions in this context refer to the 
random variables that are modeled as root nodes in the corresponding TIN. In Bayesian 
literature, these actions could correspond to having the evidence on the root nodes. It is 
assumed that the actions occur instantaneously. Because of the dynamic nature of the 
problem, it is possible that the state of an action is changed during a course of actions. 
Thus, an action can be true during a particular time interval and false in another. 
Furthermore, these actions can be repeated an arbitrary number of times. It should be 
mentioned that causal strengths in TINs do not change over time. It is, therefore, assumed 
that like TSBNs, the changes in the state of variable in TIN are caused by stationary 
processes. The following items characterizes a TIN: 
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1. A set of random variables that makes up the nodes of a TIN. All the variables in 
the TIN have binary states. 

2. A set of directed links that connect pairs of nodes. 
3. Each link has associated with it a pair of CAST Logic parameters that shows the 

causal strength of the link (usually denoted as g and h values). 
4. Each non-root node has an associated CAST Logic parameter (denoted as 

baseline probability), while a prior probability is associated with each root node. 
5. Each link has a corresponding delay d (where d > 0) that represents the 

communication delay.  
6. Each node has a corresponding delay e (where e > 0) that represents the 

information processing delay. 
7. A pair (p, t) for each root node, where p is a list of real numbers representing 

probability values. For each probability value, a corresponding time interval is 
defined in t.  In general, (p, t) is defined as  

 
([p1, p2,…, pn], [[t11, t12], [t21, t22], …., [tn1, tn2]] where ti1 < ti2 and tij > 0 
      ∀  i = 1, 2, …., n and j = 1, 2  

 
Formally, a TIN is described by either of the following definitions (Definitions 

2.4a, b, c). 
 
Definition 2.4a 

A Timed Influence Net is a tuple (V, E, C, B, DE, DV, A) where 
V: set of Nodes,  
E: set of Edges,  
C represents causal strengths: E ! { (h, g) such that  -1 < h, g < 1 },  
B represents Baseline / Prior probability: V ! [0,1],  
DE represents Delays on Edges: E ! N,  
DV represents Delays on Nodes: V ! N, and  
A (input scenario) represents the probabilities associated with the state of actions and 
the time associated with them. 

A: R ! {([p1, p2,…, pn], [[t11, t12], [t21, t22], …., [tn1, tn2]] ) such that pi = [0, 1],  
tij  ! Z  and ti1 < ti2, ∀  i = 1, 2, …., n and j = 1, 2 where R ⊂  V } 

 
Definition 2.4a can be further simplified by reducing some of the elements in the 

tuple. The elements C, B in the tuple are used to approximate conditional probabilities, 
which in turn, are used to represent the joint distribution P of the random variables in V.  
 
Definition 2.4b 

Given a TIN (V, E, C, B, DE, DV, A), the elements C, B can be replaced by P that 
represents the joint distribution of the variables in V.The transformation is done by 
CAST Logic. 

TIN = (V, E, C, B, DE, DV, A) !  TIN = (V, E, P, DE, DV, A) 
 

The elements DE and DV in the Definitions 2.4a and 2.4b represent the delays 
associated with the edges and nodes, respectively. The delay associated with a node can 
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be remodeled by adding it to the delays on its incoming arcs and removing it from the 
corresponding node. For example, consider the TIN shown in Figure 3 (a).  
 
 
 
 
 
 
         

(a)           (b) 
Figure 3: Reassignment of Node Delays 

 
The delays on the links between A-C and B-C are 2 and 1 time units, respectively. 

The delay associated with the node C is 2 time units. Figure 3(b) shows the equivalent net 
with the node delay transformed to the edge delays. This transformation yield the 
following definition for TINs. 
 
Definition 2.4c 

Given a TIN = (V, E, P, DE, DV, A), the elements DE and DV can be mapped into an 
equivalent D that represents the transformed delays associated with the edges E in a 
TIN. 

TIN = (V, E, P, DE, DV, A)   !   TIN = (V, E, P, D, A) 
 
 
3. Transformation from TINs to TSBNs 
 
The existing algorithms for TINs propagate the influence of actions in the forward 
direction only, i.e., the probabilities are propagated from source (input nodes) to sink (or 
target nodes) through intermediate nodes. This presents an analysis and computational 
limitation of TINs for situations where observations, regarding states of non-root nodes in 
a TIN, arrive during the execution of a selected course of action. An approximation 
algorithm [Haider and Levis, 2004] has been proposed for incorporating such 
observations. The algorithm, however, puts certain restrictions on the timing of input 
evidence, thus making it impractical for some cases. One way of overcoming this 
limitation is to transform a TIN into a TSBN. The exact details of the transformation 
algorithm are presented in this section.  
 
3.1 The Algorithm 
 
The transformation algorithm first determines the required number of time slices by 
taking the maximum length of the paths that exist between the root nodes and the target 
node. More slices are added later when a course of action is selected. The additional 
slices are determined by looking at the largest time stamp associated with the actions in 
the selected course of action.  Later, the connections between the nodes are established 
based on the time delays associated with the arcs that connect two nodes in the TIN. The 

3

42 

21 
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subsequent indices of a root node (representing actionable events) are also connected 
except for the time when an action is taken. The exact algorithm is presented in Table 1. 
 
Table 1: The Transformation Algorithm 

 
3.2 Application of the Transformation Algorithm 
 
This section illustrates the transformation algorithm with the help of an example.  The 
example model is shown in Figure 4. The TIN in the figure shows a hypothetical crisis 
that arose on a piece of land, belonging to a peaceful country, but annexed by a hostile 
country B.  The objective of building this model is to explore the possibility of a peaceful 
solution of the crisis, or, in other words, the objective is to determine the probability that 
country B would agree to withdraw its forces based upon certain actions taken by the 
international community. There are four nodes in the TIN, namely, A, B, C, and D. The 
description of these nodes is shown in the figure. The text besides the links represents the 
delays associated with them. For instance, the link between B and C has a delay of 1 time 
unit while the link between C and D has a delay of 3 time units, and so on. The steps 
involved in the transformation algorithm are shown in Figure 5.  

Given TIN = (V, E, P, D, A) 
1. Find the maximum path length between the root nodes and target nodes, i.e., 
 M = ][max ,, jiji

P  where 

Pi,j: path between nodes i and j such that i, k ∈  V and ¬∃  (k, i) ∈  E 
 
2. Construct a TSBN (V1, E1, P1) where 
 V1: ∀  ν ∈  V add νi to V1 where i = 0, 1, …, M 
       = {νi | ν ∈  V, i = 0, 1, …., M} 
 E1 = {(xi, yj) |  i = max (0, j – D(x, y)); x, y ∈  V  and  i, j = 0, 1, …., M}  

P1: P when indices are ignored 
For example, P(yi | xi) = P(y | x) when x, y ∈  V and xi, yj ∈  V1. 

     
This step draws the nodes in the TSBN for M time slices. The connections are drawn 
between the non-root nodes and their parents. The following step is required once an 
input scenario is determined. 
 
3. Let S = maximum time stamp associated with the root nodes as provided by the 
input scenario: 

(a) Add S additional time slices in the TSBN obtained in the previous step by 
following the procedure outlined in Step 2. 

(b) The resultant network is the modified TSBN (V1, E1, P1) where 
V1 = {νi | ν ∈  V, i = 0, 1, …., M+S} 
E1 = {(xi, yj) |  i = max (0, j – D(x, y)); x, y ∈  V  and  i, j = 0, 1, …., M+S } 
P1: P when indices are ignored 

(c) Let R1 = Set of Root Nodes where R1 ⊂  V1. ∀  r ∈  R1 connect rt-1 to rt where 
t = 1, 2, …, M+S, unless t is the time at which the variable is set to a state. 
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Step 1: In this step, the maximum path length between the root nodes (A and B) and the 

target node (D) is determined. The path A-C-D has the maximum length of 5. 
Thus, M is set to 5.  

Step 2: This step draws the nodes in the TIN for M time slices in the corresponding 
TSBN. The step is shown in Figure 5(a). After drawing the nodes for 5 time 
slices, the connections between the nodes are drawn. The delays on the arcs in the 
TIN determine the indices of the connected nodes in the corresponding TSBN. 
For instance, the delay between B and D is 2. The connections between instances 
of B and instances of D are determined as shown below:  

D5 is connected to B3 as max (0, 5-2) = 3   
D4 is connected to B2 as max (0, 4-2) = 2 
M  
D0 is connected to B0 as max (0, 0-2) = 0 

Similarly, the connections between instances of C and instances of D are determined as 
follows: D5 is connected to C2 as max (0, 5-3) = 2 

M  
D0 is connected to C0 as max (0, 0-3) = 0 

The process is shown in Figures 5(b) and 5(c). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: A Simple Timed Influence Net 
Step 3: Let the input scenario is given. This step adds additional nodes and links in the 

TSBN based upon the selected course of actions provided as an input scenario. 
Suppose in the input scenario, action A is taken at time 2 while action B is taken 
at time 1. The maximum time stamp associated with the actionable nodes is 2, 
therefore this step adds two more slices to the TSBN and connects the parents and 
children as described in the previous step. Furthermore, the connections are added 
between the nodes representing actionable events as explained in Step 3(c) of the 
algorithm. For instance A0 and A1 are connected but since A is taken at time 2 
therefore there is no connection between A1 and A2. The connections, however, 
are drawn between A2 and A3 and between A3 and A4, etc. Similarly, as B is 

2 1 

3 

2 

A 

D 

C 

B 
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taken at time 1 therefore connections are made between B1 and B2, B2 and B3, 
etc. while B0 is not connected to B1. The final TSBN is shown in Figure 5(d).  

Once a TSBN is obtained from the corresponding TIN, the task of real time 
execution monitoring can be accomplished by entering observations in the model that 
arrive during the execution of the selected course of action. Suppose in the model of 
Figure 5(d), the evidence regarding variable D is received. The evidence states that D 
happens to be true at time 4. In the figure, all the indices of D equal to or greater than 4 
are set to true. Thus D4, D5, D6, and D7 in Figure 5(d) become the evidence nodes. This 
new information revises the belief about the state of other non-actionable variables (non-
root nodes) in the problem domain. For instance, this information would change the 
initial belief about C at time 1, 2, and onwards. If the time associated with the new 
information is greater than the number of slices drawn in the TSBN then more slices 
could be added to it. For example, if the new information says that D occur at time 9 then 
the system modeler can add few more slices with the help of step 2 of the transformation 
algorithm in order to observe the impact of this new information on C at time 6 and 
onwards. 

It can be noticed in Figure 5(d) that variables in the TIN only depend upon the 
previous states of their parents and do not depend upon their own previous states. This is 
due to the fact that there is no link from node Xt-1 to node Xt, where X belongs to the set 
of non-root nodes. There can be situations in which a variable’s state at time t may 
depend upon its own state at a previous time stamp. In TSBNs, this issue is addressed by 
adding a link between different instances of the same variable at different time slices. The 
process is shown in Figure 6 where the links in bold show the connection between (Ct-1, 
Ct) and (Dt-1, Dt). In TINs this requirement can be modeled by adding self-loops to such 
nodes, as shown in Figure 6. This self-loop represents the dependency of the state of a 
variable at time t on its previous state.  
 
4.  Conclusions 
 
The paper presented a transformation algorithm for converting Timed Influence Nets into 
Time Sliced Bayesian Networks. The transformation provides the equivalence that exists 
between TINs and a class of TSBNs. Furthermore, the approach suggested in the paper 
delivers the advantages of both modeling paradigms to a system modeler. On one hand, it 
simplifies the knowledge elicitation process of TSBNs by suggesting TINs as a front end 
tool for modeling time and uncertainty; while on the other, it enhances the current 
capabilities of the TINs by providing the modeler ability to enter evidence that arrives 
during plan execution. In other words, the approach suggests that TINs be used for model 
building and course of action selection process, and TSBNs for execution monitoring of 
the selected course of actions. The task of inference in TSBNs, however, is 
computationally intractable. Thus, there is a tradeoff between the available approximate 
and exact algorithms in terms of accuracy and the time to compute probability of the 
variable of interest. The future research would focus on determining a set of inference 
algorithms (exact or approximate) that works better with the class of TSBNs that are 
obtained from TINs as a result of the transformation.  



       

  13

Figure 5: Steps Involved During the Transformation Process 
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Figure 5: Steps of the Transformation Process 
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Figure 6: TSBN of Figure 5(d) with Dependencies Among Instances of Non-root Nodes 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7: Timed Influence Net with Self-Loop 
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