
1

Effects-Based Design of Robust Organizations

Student Paper Submission
(Suggested Track: Modeling and Simulation)

Sui Ruan1

E-mail: sruan@engr.uconn.edu

Candra Meirina1

E-mail: meirina@engr.uconn.edu

Haiying Tu1

E-mail: haiying.tu@uconn.edu

Feili Yu1

E-mail: yu02001@engr.uconn.edu

Krishna R. Pattipati1,2

1University of Connecticut, Dept. of Electrical and Computer Engineering
371 Fairfield Road, Unit 1157

Storrs, CT 06269-1157
Fax: 860-486-5585

Phone: 860-486-2890
E-mail: krishna@engr.uconn.edu

*This work was supported by the Office of Naval Research under contract #N00014-00-1-0101.
1Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT 06269-1157, USA.
2Correspondence: krishna@engr.uconn.edu



1

Effects-Based Design of Robust Organizations
Sui Ruana, Candra Meirinaa, Haiying Tua, Feili Yua, and Krishna R. Pattipatia

Abstract— Effects-based design of robust organizations
seeks to synthesize an organizational structure and its
strategies (resource allocation, task scheduling and coor-
dination), to achieve the desired effect(s) in a dynamically
changing mission environment. In this paper, we model the
dynamic system associated with the mission environment
(e.g., environment faced by a joint task force with a
military objective [8] or the competitive environment
confronted by a consumer electronic company striving to
increase its market share) as a finite-state Markov Decision
Process (MDP)[1][2][7]. Using this model, we determine a
near-optimal action strategy that specifies which action to
take in each state of the MDP model by Monte Carlo
control method. The action strategy determines a range
of possible missions the organization may face. The range
of missions and platform utilization measures, in turn, are
used to synthesize a robust organizational structure.

Keywords: Organizational Design, Markov Deci-
sion Processes, Reinforcement Learning, and Monte
Carlo Control Method.

I. INTRODUCTION

A. Motivation

Market environments and battlespaces are dy-
namic and uncertain. Organizations seeking to
achieve the desired effects in such environments
are confronted with the following: 1) parts of the
environment can not be controlled directly; 2) var-
ious exogenous events may impact the state of the
environment; 3) the interactions between potential
organization’s actions and the dynamics of the envi-
ronment may result in consequences that can not be
predicted a priori with certainty. Consequently, or-
ganizations need to plan for potential contingencies,
be flexible and adaptable. In other words, they need
to be robust learning organizations. In this paper,
we apply concepts from Markov Decision Processes
(MDP), reinforcement learning, Monte Carlo con-
trol method, and mixed integer optimization, as in
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[1]-[5] and [16], to prescribe an optimal decision
strategy and the concomitant organization structure
to achieve desired effects in an uncertain mission
environment.

Over the years, research in organizational
decision-making has demonstrated that a strong
functional dependency exists between the specific
structure of the mission environment and the
resulting optimal organizational structure and
its decision strategy. That is, the optimality of
an organization design depends on the mission
environment and the organizational constraints [15].
Such organizations, termed congruent, are expected
to perform well. Incongruence to environmental
dynamics hinders the organization’s ability to
achieve the desired effects, results in a higher cost,
or likely to encounter adverse effects.

Agility is arguably one of the most important
characteristics of successful information age or-
ganizations [8]. Agile organizations do not just
happen. They are the results of an organizational
structure, command and control approach, concepts
of operation, supporting systems, and personnel that
have a synergistic mix of the right characteristics.
Agile organization is a synergistic combination of
the following six attributes: Robustness, Resilience,
Responsiveness, Flexibility, Innovation and Adapta-
tion [8]. Robustness is the ability to retain a level of
effectiveness across a range of missions that span
the spectrum of conflicts, operating environments,
and/or circumstances. An organization designed to
cope with dynamic and stochastic mission environ-
ments is said to be robust in the sense that it can
cope with a range of contingencies.

B. Related Research

Over the past several years, mathematical
and computational models of organizations have
attracted a great deal of interest in various fields of
scientific research [15]. Many research efforts have
focused on the problem of quantifying the structural
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(mis)match between organizations and their tasks.
When modeling a complex mission and designing
the corresponding organization, the variety of
mission dimensions (e.g., functional, geographical,
terrain), together with the required depth of model
granunality, determine the complexity of the design
process [14]. Model-driven synthesis of optimized
organizations for a specific (deterministic) mission
environment have been widely studied by the
operations research community [12][13].

On the other hand, planning and machine learning
in uncertain and dynamic environments have been
largely studied by the control and artificial intelli-
gence community. In this vein, reinforcement learn-
ing, a computational approach for understanding
and automating goal-directed learning and decision-
making [1]-[4], has become a dominant approach
for dealing with stochastic planning problems.

C. Scope and Organization of Paper
In section II, we provide an overview of our

organization methodology based on MDP, Monte
Carlo control method, reinforcement learning, and
mixed integer optimization techniques. In section
III, we formulate the dynamic environment as a
finite state MDP, and formalize the objectives of
the organizational design problem. In section IV,
we apply Monte Carlo control method to prescribe
near-optimal action strategies for the MDP model.
Section V provides an integer programming formu-
lation for the congruent organization design prob-
lem. Simulation results are presented in Section VI.
Finally, the paper concludes with a summary and
future research directions in section VII.

II. ORGANIZATIONAL DESIGN METHODOLOGY

The methodology applied in this paper is shown
in Fig. 1. In this study, we are considering a
dynamic military mission environment, and the
design of a robust organization for accomplishing
the mission. The mission is represented via tasks
and platforms (assets). There are three type of
tasks considered in this paper, viz., mission tasks,
time critical tasks, and “mosquitoes” (trivial tasks).
Mission tasks are those that must be executed, are
known in advance, and typically have precedence
restrictions in the form of a dependency graph
[9][10]. Time critical tasks are those whose

occurrence is uncertain, are time sensitive, and may
have substantial impact on the mission. Mosquitoes
are the relatively trivial tasks whose occurrence is
highly uncertain, but have insignificant impact on
the mission. Each task is characterized by a set
of resource requirements [12]. A platform (asset)
represents a physical entity of an organization
that provides resource capabilities used to process
the tasks. Each platform has a specific resource
capability. Successful task execution requires
that the task’s resource requirements are met by
the overall resource capabilities of the platforms
allocated to that task.

We model the dynamic environment as a finite
state Markov Decision Process (MDP) [3][4][7].
The MDP is characterized by its state and action sets
and by the the transition probability matrix. Given
any state and action, pair (s,a), the probability that
the next state is s′ is given by

℘a
ss′ = Pr{st+1 = s′|st = s, at = a} (1)

We assume that the structure of MDP model of
the environment is known, but the environmental
parameters ( e.g., the transition probabilities )
are unknown. Since the model parameters are
unknown, they need to be estimated (“learned”)
[3]; the estimated parameters enables us to find
a near-optimal action strategy that optimizes an
objective function.

Monte Carlo control methods [3][6] are em-
ployed to obtain a near-optimal action strategy.
Monte Carlo methods require only experience-based
sample sequences of states, actions, and rewards
from an on-line or simulated interaction with the
environment. Learning from on-line experience is
striking because it requires no prior knowledge of
the environment’s dynamics, and yet can still attain
optimal behavior asymptotically. The near-optimal
strategy from Monte Carlo control method enables
us to compute the platform (resource) utilization
measures of the near-optimal strategy. These mea-
sures are used to synthesize an organization that
implements the near-optimal action strategy.

III. MDP FORMULATION AND ORGANIZATION
DESIGN OBJECTIVES

The dynamic stochastic mission environment
consists of:
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Fig. 1. Robust Organization Design Process

• Effect set: M = {m1, m2, ..., mn}, the desired
effects, with some serving as the end goals.
There can be dependencies among the effects.

• Exogenous event set: E = {e1, e2, ..., ef},
which represents uncontrollable random events
in the environment.

• Action set: A = {a1, a2, ..., ak}, which denotes
controllable influences to achieve the desired
effects, and minimize the adverse effects of
exogenous events. For each action a, there is a
cost c(a) associated with it.

When applying this modeling approach to a C2
mission environment [9][10], the mission tasks cor-
respond to the effects, and the time critical tasks and
“mosquito” tasks correspond to exogenous events.
The actions correspond to the asset allocation used
to achieve the desired effects and suppress the
effects of exogenous events.

Organization is a team of Decision Makers
(DM ), ORG = {DM1, DM2, ..., DMD}, i.e., the
personnel or automated systems that supervise the
actions in the system. DMs coordinate their infor-
mation, resources, and activities in order to achieve
their common goal in the dynamic and uncertain
mission environment [12]. The constraint imposed
on each DM is in the form of its limited resource
handling capability. In this paper, we experiment
with the resource handling capability of each DM
as a workload threshold. The DM’s workload is

a combination of internal workload and external
workload [12][13].

The dynamic mission environment is modeled
as a finite state Markov Decision Process (MDP ).
The main sub-elements of the MDP follow the
mission characteristics cited earlier. They are as
follows:

• States: S = {s1, s2, ..., sz}

- Each state represents the status of effects
and exogenous events: si = (Mi, Ei)
where Mi ⊆ M denotes the achieved
effects and Ei ⊆ E denotes the existing,
but unmitigated, exogenous events.

- The initial state, sb = (∅, ∅), where no
effect has been achieved and no exoge-
nous event has appeared yet; the terminal
states, Se ⊆ S, represent the attainment of
desired end effects.

- The state has Markov property; that is the
next state depends solely on its previous
state and action, as in Eq. (1).

• Actions: A = {a1, a2, ..., ak}.
• Reward mechanism:

– Reward : When an end state is reached, a
fixed reward r(se) > 0 is accrued by the
organization.

– Penalty : When undesirable end effects are
reached, a penalty r(sh) < 0 is imposed on
the organization.
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– Action cost: Whenever an action ai ∈ A

is pursued, a cost c(ai) is incurred.

The objectives of the design problem are to:

1) Find an optimal closed-loop action strategy,
viz., a mapping from state to action, to max-
imize the expected net reward.

2) Design an organization, i.e., the allocation of
platforms to decision makers, such that the
overall workload of the organization is min-
imized, subject to constraints on each DM’s
workload capability.

The MDP problem posed above is a
stochastic optimal control problem[1][2]. Dynamic
programming (DP) [2] is widely used to characterize
the optimal solution. However, it suffers from
“the curse of dimensionality”, meaning that its
computational requirements grow exponentially
with the number of state variables. In addition,
DP needs the complete parameters of the model.
However, in real world applications, the transition
probabilities are rarely known. Instead, we could
gain knowledge of the system from sampled data,
and train the strategy. We propose Monte Carlo
control methods [3][6] to achieve the objective
of obtaining a near-optimal strategy for the MDP
model without a complete knowledge of the MDP
parameters (i.e., when the transition probabilities
are not known). Monte Carlo method requires only
that the MDP model generate a set of sample
state transitions, but not the complete probability
distributions of all possible state transitions. The
Monte Carlo method learns these quantities from
an on-line simulation. This, in turn, enables us
to obtain an optimal strategy [3] without prior
knowledge of the environment’s dynamics. An
agent-based simulator, such as the one in [11], can
provide a vehicle to operationalize various mission
episodes utilized in the Monte Carlo method.

Platform (resource) utilization measures of the
near-optimal strategy are employed to design an
organizations that is congruent with the mission en-
vironment. In this paper, the expected total workload
of the organization is minimized. An organization
tuned to such a strategy is robust in the sense that
it covers a range of missions that are most likely to
materialize in the dynamic environment.

IV. MONTE CARLO METHOD FOR
NEAR-OPTIMAL ACTION STRATEGY

Monte Carlo methods are ways of solving the
reinforcement learning problem based on averaging
sample returns [3][6]. In Monte Carlo methods,
we assume that the experience is divided into
episodes, and that all episodes eventually terminate
regardless of which actions are selected. It is only
upon the completion of an episode that value
estimates (estimation of the expected reward of
state, and state-action pair) and policies (strategy,
the mapping from states to actions) are changed.
Monte Carlo methods are thus incremental in
an episode-by-episode sense [3][6], but not in
a step-by-step sense. The term ”Monte Carlo”
is often used more broadly for any estimation
method whose operation involves a significant
random component. Here, we use it specifically for
methods based on averaging complete returns.

Monte Carlo methods could be applied to eval-
uate state-value of any given strategy, viz., the
mapping of states to actions, by averaging the
returns from sample episodes. Starting from Monte
Carlo policy evaluation, it is natural to alternate
between evaluation and improvement on an episode-
by episode basis. After each episode, the observed
returns are used for policy evaluation, and then the
policy is improved at all the states visited in the
episode [3]. In addition, Monte Carlo methods are
particularly attractive when one requires the value of
only a subset of the states. One can generate many
sample episodes starting from these states, averag-
ing returns only from these states, and ignoring all
others.

The complete Monte Carlo control algorithm,
which combines Exploring Starts (ES) and ε-greedy,
is given in Figure 2. The ES technique starts an
episode by randomly choosing the initial state. The
concept of ε− greedy means that most of the time
an action that has maximal estimated action value is
chosen, but with probability ε an action is selected
at random. That is, all non-greedy actions are given
the minimal probability of selection, ε

|A(s)|
, and the

remaining bulk of the probability, 1 − ε + ε
|A(s)|

,
is given to the greedy action [3], where |A(s)| is
the cardinality of action set, A(s) in state s. This
enables the Monte Carlo control method to get out
of local minima.
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Monte Carlo Control Algorithm
(Monte Carlo ES and ε-greedy combined)

Initialize:
∀si ∈ S, a ∈ A(si)

• Q(si, a) (value function of si and a) ← arbitrary positive real
number,

• π(si) (state action mapping function of si) ← arbitrary action,
• Returns(si, a)← empty list

Repeat
1) Generate an episode, ρ, using exploring starts [3] and π.
2) For each pair si, a appearing in the episode ρ:

• R← return following the first occurrence of si, a.
• Append R to Returns(si, a)
• Q(si, a)← average(Returns(si, a))

3) For each s in the episode:
π(si)← arg maxa Q(si, a) with probability 1− ε
π(si)← rand(A(si)) with probability ε

V (si)← maxa Q(si, π(si))

4) ε→ 0

Until V (si), ∀si ∈ S converge, i.e.,
∑

si∈S |
V (si)−V ′(si)

V (si)
| ≤ δ

Fig. 2. Monte Carlo control method with Exploring Starts and ε-greedy

Note that, applying a simple Monte Carlo control
method, based on only exploring starts [3], is not
satisfactory, i.e. some states are rarely visited,
while some other states form cycles. An ε−greedy
[3] method is often combined with the ES method.
A fixed ε is not efficient. A large ε yields slow
convergence and tends to oscillate; with a small ε,
it is difficult to eliminate the possible state cycles.
Typically, one chooses εi → 0 such that

∑
i εi →∞.

For example, with εi = ε
N+i

, N = (2, 6), the results
are satisfactory.

In the Monte Carlo control algorithm, all the
returns for each state-action pair are accumulated
and averaged, irrespective of which policy was in
force and when they were observed. Convergence
of the Monte Carlo control method is assured
because the changes to the action-value function
decrease over time. A formal proof has not yet
appeared, and it is one of most fundamental open
questions in reinforcement learning [3][4].

V. ORGANIZATION DESIGN

In a C2 environment [10], each mission task
can be modeled as a desired effect, while time
critical tasks and “mosquito” tasks can be viewed
as exogenous events. A Task is an activity that
entails the use of relevant resources (provided
by organization’s platforms) and is carried out
by an indvividual DM or a group of DMs to
accomplish the mission objectives [12]. Each task
Ti(i = 1, ..., N) has resource requirements specified
by the row vector [Ri1, Ri2, ..., RiL]. A platform is
a physical asset of an organization that provides
resource capabilities and is used to process tasks.
Each platform belongs to a unique platform class.
For each platform class Pm (m = 1, ..., K), we
define its resource capability vector [rm1, ...rmL],
where rml specifies the number of units of resource
type l available on platform class Pm [12]. We have
assume that the number of platform classes and
the available platforms in each platform class is
known. In the MDP model, each action ai is a set
of platforms P (ai) = [xi1, xi2, ..., xim], specifying
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the numbers of platforms of each class needed to
pursue the action. The workload of each decision
maker in the organization embodies the activity
of supervising the platforms and coordinating the
platforms with other decision makers to pursue the
action collaboratively to achieve the desired effect
and mitigate the effects of exogenous events.

Starting from the near-optimal strategy, we can
design the organization structure which is congruent
to this strategy. In this paper, we only study the
organization as the ownership of each platform
of every platform class, so that the expected total
workload of the organization is minimized with
each decision maker’s workload constraint satisfied.

Let [n1, ..., nm] be the available numbers of
platforms for platform classes [P1, ..., Pm]. Let
[xi1, ..., xim] be the numbers of platforms of each
platform class for action ai. Define [X1, ..., Xm]
as the numbers of platforms for any action. Since
the occurrence of actions in the optimal strategy is
probabilistic, so is [X1, ..., Xm].

Let yki be the the number of platforms of
class Pi allocated to DMk. For the organization
ORG = (DM1, ..., DMD), the workload WLk of
DMk, k ∈ {1, ..., D} is approximated as:

WLk = α
m∑

i=1

yki

ni

E(Xi)

+β
m∑

i=1

m∑

j=1

[
yki(nj − ykj)

ninj

E(XiXj)]

∀k = 1, ..., D (2)

where
∑m

i=1
yki

ni
E(Xi) quantifies the internal

workload of DMk, which accounts for the super-
vision of platforms that DMk owns. The internal
workload of DMk incurred by platform class Pi is
proportional to

- expected number of platforms of class Pi, i.e.,
E(Xi);

- the proportion of platforms of class Pi that
DMk owns, i.e., yki

ni
;

That is, the larger is the value of E(Xi), the
higher is the workload imposed on platform class
Pi; the larger the proportion of platforms of class
Pi owned by decision maker DMk, i.e. yki

ni
, the

higher is the workload from class Pi on DMk. The

term
∑m

i=1

∑m
j=1[

yki(nj−ykj)

ninj
E(XiXj)] quantifies the

external workload, i.e., the coordination effort of
DMk cooperating with other DMs in the organi-
zation to execute tasks. The external workload on
DMk incurred by the platform classes Pi and Pj is
proportional to

- joint expectation of numbers of platforms of
classes Pi and Pj, i.e., E(XiXj);

- the proportion of platforms of class Pi that
DMk owns, i.e., yki

ni
;

- the proportion of platforms of class Pj that
DMk doesn’t own, i.e., (nj−ykj)

nj
.

Here, the higher order expectations of joint numbers
of platform classes, e.g., third order expectation
E(XiXjXw), i, j, w ∈ {1, ..., D}, are ignored.
User specified constants α and β define the weights
on internal and external workloads.

Thus, the total workload of all DMs is:

WLall = α
m∑

i=1

E(Xi)

+β
m∑

i=1

m∑

j=1

[(1−

∑D
k=1 ykiykj

ninj

)E(XiXj)] (3)

The optimization problem associated with
organizational design is as follows:

objective : min WLall = α
∑m

i=1 E(Xi)

+β
∑m

i=1

∑m
j=1[(1−

∑D

k=1
ykiykj

ninj
)E(XiXj)]

(4)
s.t. WLk = α

∑m
i=1

yki

ni
E(Xi)

+β
∑m

i=1

∑m
j=1[

yki(nj−ykj)

ninj
E(XiXj)] ≤ Ck

∀k = 1, ..., D
∑D

k=1 yki = ni ∀i = 1, ..., m

yki ∈ I+ ∀k = 1, ..., D ∀i = 1, ..., m (5)

Note that E(Xi) is the expected number of
platforms of class Pi, and E(XiXj) is the joint
expectation of numbers of platform classes Pi and
Pj.

These expectations are approximated by their
sample means:

Xi ≈ E(Xi)

XiXj ≈ E(XiXj), ∀i, j ∈ {1, ..., m} (6)



7

This problem, defined in Eq.(5), is typically a
nonlinear constrained integer optimization problem,
which is NP-hard. We applied MINLP (Mixed
Integer Nonlinear Programming) algorithms in
TOMLABTM [17] optimization software to solve
the above integer programming problem. The solver
package minlpBB for sparse and dense mixed-
integer linear, quadratic and nonlinear programming
was employed for this problem.

VI. SIMULATION

A. Simulation Model
We illustrate our approach to effects-based

robust organization design using a simple joint-
task-force scenario that can be operationalized in
the distributed dynamic decision-making (DDD-III)
war-gaming simulator [9]. In the example system,
there are four platform classes, i.e., P1, P2, P3,
P4, as defined in Table I, and three mission tasks
(desired effects), i.e., M1, M2, M3, and three time
critical tasks (exogenous events), i.e., T1, T2, T3,
as defined in Table II. The dependencies among
mission tasks are shown in Fig. 3.

The following three types of resources are con-
sidered:

- ASUW – Anti-SUbmarine Warfare
- STK – STriKe warfare
- SOF – Special/ground Operations

Rules of the simulation model, which are un-
known to the learning agent, are as follows:

- All mission tasks should be executed by satis-
fying the dependency constraints;

- All time critical tasks, if they ever appear, have
to be completed before the final mission task
is completed;

- Each resource contributes to the task accuracy;
the more resources are allocated to a task, the
higher is the probability of completing the task.

- If the final mission task is achieved, the game
is won and a reward of 5,000 units is earned;

- If there are three time critical tasks existing in
the system, the game is lost and a penalty of
3,000 units is incurred.

B. Monte Carlo Simulations
By using the Monte Carlo control method as

shown in Fig. 2, we obtain a near-optimal (sta-
ble) action strategy via 85000 runs (episodes). The

TABLE I

PLATFORMS

Platform Name Number ASUW STK SOF Cost
P1 F18s 3 0 2 0 100
P2 FAB 5 1 0 0 80
P3 FOB 3 1 1 1 160
P4 SOF 2 0 0 1 60

Reward (Win) 5000
Penalty (Lose) -3000

TABLE II

MISSIONS AND TIME CRITICAL TASKS

Mission Name ASUW STK SOF
M1 NB - Naval Base 2 0 2
M2 AB - Air Base 0 6 0
M3 PRT - Sea Port (final goal) 2 2 0
T1 SCUD - missile launcher 1 1 0
T2 PH - Hostile ship 1 0 1
T3 TSK - complex ground task 0 1 1

optimal action strategy, i.e., the mapping of states
to actions, viz., the combinations of platforms,
and values of states, are as listed in Table III.
The comparison of net rewards from the near-
optimal strategy obtained by Monte Carlo control
method and a randomized greedy strategy from
2000 runs are shown in Fig. 4. The greedy strategy
chooses randomly, at each state, one of the five
most economically feasible platform combinations.
After 10000 runs (sample episodes), the average net
reward of the near-optimal strategy is 2985, while
the average net reward of the greedy strategy is
only 2127. Thus, the near-optimal strategy provides
a 40% better reward than the greedy strategy.

C. Organization Design Results
The platform utilization statistics, i.e., the sample

mean of the numbers of platforms of each class

x

x

x

�
�

�
�

�
��*

H
H

H
H

H
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M1 : Naval Base

M2 : Air Base

M3 : Sea Port

Fig. 3. Effect Dependency
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Fig. 4. Comparison of Net Reward Distributions

TABLE III

NEAR-OPTIMAL STRATEGY

State Action (Platforms) State Value
P1 P2 P3 P4

∅ 1 1 1 3 2777.72
M1 3 0 0 0 3008.48
M2 0 2 0 2 3565.36
T1 1 2 0 1 2115.63
T2 0 2 0 2 2174.47
T3 1 0 0 1 2291.07

T1, T2 1 1 0 0 1796.93
M1, T1 3 0 0 0 2270.26
M1, T2 0 2 1 2 2278.97
M1, T3 3 0 0 0 2100.65
M2, T1 0 2 0 2 2407.18
· · · · · · · · ·

M1, T1, T2 1 0 1 1 1693.73
M1, M2 1 2 0 0 3221.11

M1, M2, T1 1 2 0 1 2358.82
· · · · · · · · ·

Xi, i ∈ {1, ..., m} and the sample mean of joint
numbers of platform class pairs XiXj, i, j ∈
{1, ..., m} are listed in Table IV. Using MINLP
algorithms in TOMLABTM , we can obtain the
congruent organization for the near-optimal strategy
as shown in Table V.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a methodology for
designing a robust organization for stochastic and
dynamic environments. The dynamic environment
can be modeled as a finite state Markov Decision
Process. Using Monte Carlo control methods,
a near-optimal action strategy is obtained. An

TABLE IV

PLATFORM UTILIZATION STATISTICS

P1 P2 P3 P4

Xi 1.2 2.3 3.1 2

XiXj P1 P2 P3 P4

P1 1.5 0.75 0.25 1.00
P2 0.75 1.916 0.25 1.58
P3 0.25 0.25 0.333 0.667
P4 1.00 1.583 0.667 2.667

TABLE V

DECISION MAKER PLATFORM OWNERSHIP

Expected Workload
DM P1 P2 P3 P4 Workload Constraint

(α = 1, β = 1)
DM1 1 3 1 1 5.7065 8
DM2 1 1 1 1 4.9265 6
DM3 1 1 1 0 3.3766 6

organization congruent to this strategy is designed
by solving an integer optimization problem.

Simulation results support the conclusion that
the Monte Carlo control methods are effective
in achieving the near-optimal strategies in real
world applications, where the system parameters
are uncertain. Formulation of organizational design
problem and mix-integer optimization algorithms
provide nice vehicles to realize the design of
organizations that are congruent with their dynamic
and uncertain environments.

We are pursuing future research along the follow-
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ing directions:
- Incorporate realistic mission environments into

the MDP model.
- Include additional organizational structure ele-

ments into the design process, e.g., command
structure, information flow structure.

- Study the mechanisms of organizational adap-
tation via agent-based simulations.

REFERENCES

[1] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal
Control: The Discrete-Time Case, Athena Scinetific,
1996.

[2] D. P. Bertsekas, Dynamic Programming and Optimal
Control, Athena Scientific 2001.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, The MIT Press.

[4] L.P. Kaelbling, M. L. Littman, and A. W. Moore, Re-
inforcement learning: A survey, Journal of Artificial
Intelligence Research, 4:237-285.

[5] P. R. Kumar and P. Variya, Stochastic Systems: Estima-
tion, Identification, and Adaptive Control, Prentice-Hall,
Englewood Cliffs, NJ.

[6] G. Tesauro and G. R. Galperin, On-line Policy Improve-
ment Using Monte-Carlo Search, Advances in Neural
Information Processing: Proceedings of the Ninth Con-
ference.

[7] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming, Wiley-Interscience
Publication.

[8] D. S. Alberts and R. E. Hayes. (2003), Power to the
Edge: Command Control in the information Age, Infor-
mation Age Transformation Series, CCRP Publications.

[9] D. L. Kleinman, P.W. Young, and G. S. Higgins, The
DDD-III: A tool for empirical research in adaptive
organizations, Proc 1996 Command Control Res Technol
Symp, NPS, Monterey, CA, June 1996.

[10] D. L. Kleinman, G. M. Levchuk, S. G. Hutchins and W.
G. Kemple, Scenario Design for the Empirical Testing of
Organizational Congruence, 8th International Command
and Control Research and Technology Symposium, Mon-
terey, CA, June 2003.

[11] C. Meirina, G. M. Levchuk, and K. R. Pattipati, A Multi-
Agent Decision Framework for DDD-III Environment,
8th International Command and Control Research and
Technology Symposium, Monterey, CA, June 2003.

[12] G. M. Levchuk, Y. N. Levchuk, J. Luo, K. R. Pattipati
and D.L. Kleinman, Normative Design of Organizations
Part I: Mission Planning, IEEE Trans. on SMC: Part A
Systems and Humans, Vol. 32, No. 3, pp. 346-359, May
2002.

[13] G. M. Levchuk, Y.N. Levchuk, J. Luo, K.R. Pattipati
and D. L. Kleinman, Normative Design of Organizations
Part II: Organizational Structures, IEEE Trans. on SMC:
Part A Systems and Humans, Vol. 32, No. 3, pp. 360-
375, May 2002.

[14] G. M. Levchuk, Y. Levchuk, J. Luo, F. Tu and K.
R. Pattipati, A Library of optimization Algorithms for
Organizational Design, 2000 Command and Control
Symposium, Monterey, CA, June 26-28, 2000.

[15] K. M. Carley and Z. Lin, Organizational design suited
to high performance under stress”, IEEE transactions on
System, Man and Cybernetics, Volume 25, 1995, pp.221-
231.

[16] G. L. Nemhauser, L. A. Wolsey, Integer and Combina-
torial Optimization,Wiley-Interscience, New York, 1988.

[17] K. Holmström, A. O. Göran and M. M. Edvall, User’s
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