
 Page 1 of 20

2004 Command and Control Research and Technology Symposium
The Power of Information Age Concepts and Technologies

C2 Assessment & Tools, #077

An Activity-Based Methodology*

for Development and Analysis
 of Integrated DoD Architectures -

”The Art of Architecture”

Steven J. Ring
The MITRE
Corporation

202 Burlington Rd
Bedford, MA

01730
781-271-8613

sring@mitre.org

Dave Nicholson
The MITRE
Corporation

7515 Colshire
Drive, McLean VA

22102
703-883-3022

dnichols@mitre.org

Jim Thilenius
The MITRE
Corporation

7515 Colshire
Drive, McLean VA

22102
703-801-8912

jethilen@mitre.org

Stanley Harris
Lockheed-Martin

Corporation
5290 Shawnee Road

Alexandria, VA
22312

703-916-7340
Stanley.harris@lmco

.com

MITRE Approved for Public Release
Distribution Unlimited

Case #04-0351

©2004 The MITRE Corporation. All rights reserved

* Activity-Based Methodology is a concept developed by
The MITRE Corporation and Lockheed Martin, Copyright © 2003

©2004 The MITRE Corporation. All rights reserved

* Activity-Based Methodology is a concept developed by
The MITRE Corporation and Lockheed Martin, Copyright © 2003

An Activity-Based Methodology*
for Development and Analysis of Integrated DoD Architectures -

”The Art of Architecture”

C2 Assessment & Tools, #077

Steven J. Ring
The MITRE
Corporation

202 Burlington Rd
Bedford, MA

01730
781-271-8613

sring@mitre.org

Dave Nicholson
The MITRE
Corporation

7515 Colshire
Drive, McLean VA

22102
703-883-3022

dnichols@mitre.org

Jim Thilenius
The MITRE
Corporation

202 Burlington Rd
Bedford, MA

01730
703-801-8912

jethilen@mitre.org

Stanley Harris
Lockheed-Martin

Corporation
5290 Shawnee Road

Alexandria, VA
22312

703-916-7340
Stanley.harris@lmco

.com

Abstract

This paper describes the Activity-Based Methodology (ABM) that establishes a common
means to express integrated DOD architecture information consistent with intent of DoD
Architecture Framework (DoDAF), Joint Capabilities Integration and Development
System (JCIDS) Process, and the Clinger-Cohen Act. The methodology consists of a
tool-independent approach to developing fully integrated, unambiguous, and consistent
DODAF Operational, System, and Technical views in supporting both “as-is”
architectures (where all current elements are known) and “to-be” architectures (where not
all future elements are known). ABM is based on a set of DoDAF Operational
Architecture (OA) and System Architecture (SA) elements symmetrically aligned to each
other from which four Operational and four System architecture elements provide the
core building block foundation of an integrated architecture. ABM enables architects to
concentrate on the Art of Architecture – that is identifying the core architecture elements,
their views and understanding how they are all related together. The associations between
these core elements form the basis of an integrated architecture data specification model.
From these core elements, several DoDAF architecture elements are rendered and several
DoDAF products are generated. ABM facilitates the transition from integrated “static”
architectures to executable “dynamic” process models. Workflow steps in creating an
integrated architecture, the art of architecting, are detailed. Numerous DoDAF integrated
architecture data analysis strategies are presented along with mapping of ABM to
warfighting DOTMLPF domains.

 Page 3 of 20

Introduction
The DoD Architecture Framework (DoDAF) provides the basis for developing and
presenting architecture descriptions in a uniform and consistent manner. It’s purpose is to
ensure that architecture descriptions developed by DoD commands, services and agencies
contain related operational, systems, and technical views, and that the architecture
descriptions can be compared and related across organizational boundaries, including
Joint and multi-national. To accomplish this, the framework defines twenty-six products
to capture specific architectural views.

Product Architecture Product Product Architecture Product
AV-1 Overview and Summary

Information
TV-1 Technical Architecture Profile

AV-2 Integrated Dictionary TV-2 Standards Technology Forecast

Table 1. All Views and Technical Architecture View Products

Product Architecture Product Product Architecture Product
OV-1 High-Level Operational

Concept Graphic
SV-1 Systems Interface Description

OV-2 Operational Node Connectivity
Description

SV-2 Systems Communications
Description

OV-3 Operational Information
Exchange Matrix

SV-3 Systems-Systems Matrix

OV-4 Organizational Relationships
Chart

SV-4 Systems Functionality
Description

OV-5 Operational Activity Model SV-5 Operational Activity to Systems
Function Traceability Matrix

OV-6a Operational Rules Model SV-6 Systems Data Exchange Matrix
OV-6b Operational State Transition

Description
SV-7 Systems Performance Parameters

Matrix
OV-6c Operational Event-Trace

Description
SV-8 Systems Evolution Description

OV-7 Logical Data Model SV-9 Systems Technology Forecast
 SV-10a Systems Rules Model
 SV-10b Systems State Transition

Description
 SV-10c Systems Event-Trace Description
 SV-11 Physical Schema

Table 2. Operational and System View Products

 Page 4 of 20

Integrated Architectures
However, before you can use architecture descriptions for any analysis purposes you
must first start with an architecture that is integrated, unambiguous, and consistent. There
are three definitions of an integrated architecture. First, a single architecture description is
defined to be an integrated architecture when products and their constituent architecture
data elements are developed such that architecture data elements defined in one view are
aligned with architecture data elements referenced in another view.1 By alignment we
mean that there is a set of symmetric OA and SA architecture elements that have similar
meanings, associations/ relationships, properties, and characteristics. A subset of DoDAF
products make up the foundation of an integrated architecture and consists of AV-1, AV-
2, OV-2, OV-3, OV-5, SV-1, and TV-1 at a minimum. In ABM, OV-4, SV-4, and SV-5
have been added as additional products necessary for an integrated architecture. The SV-
5 product, in mapping OV-5 activities to SV-4 System Functions, enables integrated OA
and SA Views within a single architecture.

For the second definition, an integrated architecture can be defined among multiple
architectures when similar or related single architectures, each based on the same set of
DoDAF integrated products and constituent aligned architecture elements, can be
combined for further development and analysis purposes. For the third definition, in a
recent memo published by Deputy Secretary of Defense 2, an integrated architecture has
been defined as an architecture consisting of different views or perspectives (operational
view, system view, and technical view) that facilitates integration and promotes
interoperability across Family-of-Systems/System-of-Systems and compatibility among
related mission area architectures. All three definitions are consistent and in agreement
with each other.

Integrated architectures usually have associated with them a time frame, whether by
specific years (e.g., 2005-2010) or by designations such as “as-is”, “to-be”, “transitional”,
“objective”, “epoch”, etc. In all cases, this reduces to either inventories of current
capability (“as-is”) or blue-prints of future capability (“to-be”) based on some future need
or objective.

Domain experts, program managers, and decision-makers need to be able to analyze these
architectures to locate, identify, and resolve definitions, properties, facts, constraints,
inferences, and issues both within and across architectural boundaries that are redundant,
conflicting, missing, and/or obsolete. The analysis must also be able to determine the
effect and impact of change (“what if”) when something is redefined, redeployed,
deleted, moved, delayed, accelerated, or defunded. In most “as-is” architectures, details
about activities, nodes, roles, systems, etc. are fully known and architectures analysis can
be readily accomplished.

 Page 5 of 20

Unlike “as-is” integrated architecture, the present approach to developing “to-be”
integrated architectures and their analysis does not fully enable them to be used for true
system engineering purposes to discover future enterprise rules, patterns, practices,
relationships, and system and organizational requirements. That is because not all
architecture details are known resulting in architecture descriptions that are based on
unknowns and abstract elements. By examining aggregations and clusters of activities,
nodes, roles, systems, etc and by performing gap analysis and assessments (i.e., which
activities are not performed by any roles), new system and organizational requirements
can be derived. This would, in turn, support justifications for future funding decisions of
new systems, their elements, their components, and their supporting operational
organizations.

Activity-Based Methodology
A new paradigm for architecture development, Activity-Based Methodology (ABM), was
developed to establish a common means to express integrated architecture information
consistent with intent of DoDAF, CADM, Joint Capabilities Integration and
Development System (JCIDS) Process and Clinger-Cohen Act. It consists of a tool-
independent approach to developing fully integrated, unambiguous, and consistent
DODAF views in supporting both “to-be” architecture and their gap analysis while still
providing for “as-is” architectures and their analysis.

ABM uses a data centric approach for architecture element and product rendering instead
of a product centric approach. A data centric approach supports cross-product
relationships based on an integrated core set of architecture building block element
primitives. These, in turn, enables several architecture elements to be automatically
generated and several architecture products to be automatically rendered. ABM was
designed to also capture sufficient representations of “static” activity/ information flow
architectures models to transition them to “dynamic” executable process models for
analysis of operational and system behavior over time and their related costs.

The Activity-Based Methodology is based on six principles:

1) There exists a set of symmetrically aligned OA and SA elements divided into
three object classes: entities, relationships, and attributes

2) Four OA and four SA object entities provide the core foundation building block
primitives of an an integrated architecture

3) The associations between the OA/SA sets of core primitives are represented by a
triple three-way set of relationships defined in an integrated architecture data
specification model

4) Architecture entities are manually entered once from a specific Framework
product

 Page 6 of 20

5) Several DoDAF relationship and attribute architecture object classes (e.g.,
Information Exchanges) can be automatically formed from core entities

6) Two DODAF products can be totally rendered graphically (e.g., OV-2, SV-1) and
two can be totally rendered as report documents (e.g., OV-3, SV-6)

Principle #1 – Symmetric Alignment of OA/SA Architecture Objects
OA and SA constituent architecture elements are symmetrically aligned with each other.
This means that there are OA architecture elements corresponding to similar SA
architecture elements. For example, Operational Activities are aligned with System
Functions, Operational Nodes with System Nodes, etc. These architecture elements can
be thought of as architecture objects and divided into three object classes: entities,
relationships, and attributes. In following an E-R-A approach to architecture objects,
Entity objects are the objects about which architecture data is collected, Relationship
objects are the associations between entity objects, and Attribute objects identify
characteristics of entity and relationship objects.

On the OA side, Information, Activities, Nodes, Roles, Processes, and CONOPS
represent the primary architecture objects. Need Lines represent associations between
Information, Activity and Node entities with the Information Exchange providing the
attributes of Need Lines. Organizations (Org) represent associations between the Role
entity objects and the Knowledge, Skills, and Abilities (KSA) attributes of the Roles.
Similar associations exist on the SA side.

 Page 7 of 20

Figure 1: Symmetrically Aligned OA/SA Architecture Objects

Principle #2 –Core OA/SA Entity Objects
Four primary object entities in each view are considered as core – i.e., those building
block primitives that make up the foundation of an integrated architecture.

Figure 2: Core DoDAF Architecture Entities

Activities (System Functions)
These represent the actions by which input (I) Information (Data) is consumed in being
transformed to output (O) Information (Data). Activities can be decomposed to sub-
activities.

Operational (System) Node
These represent the collection of similarly related Activities (System Functions) usually
at a place or location. Operational Nodes may, optionally, represent the collection of
activities performed by an organization, organization type, logical or functional grouping

 Page 8 of 20

where activities are performed. Nodes do not represent operational/ human roles - Roles
represent Roles. Nodes can be decomposed to sub-nodes.

Role (System)
These are the means by which an Activity (System Function) is performed, processed or
executed. Roles are resources, characterized by a set of Knowledge, Skills and Abilities
(KSA) assigned to humans and are analogous to job titles or job responsibilities. Systems
are material resources and are described in terms of their performance characteristics.
Roles and Systems are grouped together into a collection that represents a physical
organization or a requirement for an organization. Systems can be decomposed into sub-
systems but Roles can not be decomposed any further.

Information (Data)
These are formalized representations of data subject to a transformation process and are
the inputs and outputs of Activities (System Functions). Information (Data) can be
decomposed into its component items such that, at higher levels of an activity model, an
input/output can be considered as a “bundle” or “pipeline” while at the lower levels the
input/outputs consists of the “bundled/ pipelined” component data items. For example,
“Weather Data” could be made up of “Temperature” and “Humidity” so that “Weather
Data” is produced/ consumed at the higher activity levels but that “Temperature” and
“Humidity” are separate inputs and outputs at the lower levels. Bundled information is
usually graphically depicted as “branchs/ joins”.

Principle #3 – Architecture Data Specification Model
The associations between the OA/SA sets of core primitives are the basis of an integrated
architecture data specification model. They are all related to each other such that:

• Each Activity (System Function) that produces and consumes information (Data)
is performed at an Operational (System) Node by a Role (System)

• Each Operational (System) Node contains a Role (System) that performs an
Activity (System Function) that produces and consumes Information (Data)

• Each Role (System) in an Operational (System) Node performs an Activity
(System Function) that produces and consumes (Data)

• Information (Data) is produced from and consumed by Operational Activities
(System Functions) performed by Roles (Systems) at Operational (System) Nodes

The relationships between them can be represented by a triple set of three-way
relationships:

 Page 9 of 20

1. Operation Node • Activities • Roles

2. System Functions • System Nodes • Systems

3. Organizational Units • Roles • Systems

Figure 3 Core Architecture Entity Relationships

In the three-way association between the OA core primitives, the intersection of the
association between an Operational Activity and an Operation Node is a Role. Likewise,
in the three-way association between the SA core primitives, the intersection of the
association between a System Function with a System Node is a System. The intersection
of the association between a Role and a System is the Organizational Unit. The
association of Organizational Units with Roles already exists in DoDAF OV-4. ABM
establishes two additional associations of Organizational Units with Systems and Roles
with Systems.

 Page 10 of 20

Figure 4 Triple Associations of Core Architecture Objects

The symmetric alignment of DoDAF data centric architecture objects and their three sets
of triple associations can all be related together in an architecture data specification
model. This Architecture Data Specification Model (ADSM) consists of a set of formal
object class specification models for each of the DoDAF products and all their
constituent objects.

 Page 11 of 20

Figure 5 Architecture Data Specification Model (ADSM)

As important as it is to understand the relationships that exist between the architecture
data elements, it is equally important to understand the relationships that do not exist. For
example, Systems are not directly related to Activities. They are related, indirectly, first
to System Functions and then, via SV-5, from System Functions to Activities. Thus, from
this data model, a refined definition of an integrated architecture can be seen as one that
has its data elements related to and associated with each other according to ADSM.

Integrated OA/SA Data Architecture Analysis
In the data model it can be seen that the basic set of three-way associations is very simple
and elegant yet very powerful. From this model one can obtain a much richer and more
complete analysis on complex architectures. By examing different sets of relationships,
various types of OA/SA architecture analysis can be obtained:

• Functional Analysis - Activities and their related Functions – the “How” from
both views

• Nodal analysis - Activities and their Op Nodes and their relationships to
Functions and their System Nodes – the “Where” from both views

• Product analysis – Activities at Op Nodes producing/ consuming information and
their relations to Functions at System Nodes producing/ consuming data – the
“What” from both views

 Page 12 of 20

• People, Material and Training analysis – Roles, Systems and their Activities and
related System Functions – the “Who” analysis

• Timing and cost analysis - Time-dependent behavior and dollar cost analysis of
complex, dynamic operations and human and system resource interactions - the
“When” analysis (discussed later)

Mapping ADSM to DOTMLPF
Based on ADSM, warfighting DOTMLPF domains map to architecture objects as
follows:

Doctrine Activities, Roles Operational Nodes
Organization Org Units
Training Roles, Systems
Leadership Org Units, Roles, Systems
Material System Functions, Systems, System Nodes
Personnel Roles
Facilities Operational Nodes, System Nodes

This leads to better definitions of warfighting capabilities by being able to anticipate
effects and assess impact of change on domains and by examing usage (who/ what affects
something) and references (who/ what is affected by something).

Gap Analysis for “To-Be” Architectures
Note that for the OA view of as-is and to-be, activities and nodes are usually known. In
as-is architectures, Roles are also known. However, for to-be architectures, in most cases
Roles may or may not be known. Similarly, for the SA views of as-is and to-be
architectures, functions and nodes are usually known. In as-is architectures, Systems are
also known. However, for to-be architectures, in most cases, Systems may or may not be
known. Gap-analysis of to-be architectures reveals:

• Orphaned Activities – that is, Activities at Nodes without Roles
• Orphaned Systems – that is, System Functions at System Nodes without Systems

 Page 13 of 20

Figure 6 Gap Analysis

Based on this to-be gap analysis, by clustering and aggregating orphaned activities and
orphaned systems, a set of requirements could be derived for a needed organizational
structure and/or a needed system or, depending on how one clusters orphaned system
functions, multiple needed systems.

Principle #4 - Core Architecture Entities Entered Once
Each core architecture entity object is entered from only one Framework product. For
example, activities are only defined when creating an OV-5 activity model. For
associations between, say nodes and activities and roles, these associations are created
and managed from a three-way matrix (spreadsheet) editing facility.

Principle #5 – Automatically Forming Relationship/Attribute Architecture Objects
Several relationship and attribute architecture class objects are automatically formed from
the core building block entities. Auto generating architecture data ensures data
consistency, results in quality architecture products (by eliminating user inputs), and
speeds up the entire architecture development process. These generated relationship and
attribute architecture class objects lead to a standard, reusable collection of architecture
artifacts that can be maintained at the enterprise level and can be shared by all mission
area and program/node architects.

On the OA side, Information Exchanges and Need Lines are formed from OV-5 leaf
activities, their information inputs and outputs, and their associations to OV-2

 Page 14 of 20

Operational Nodes. On the SA side, System Data Exchanges and Interfaces are formed
from SV-4 leaf system functions, their data inputs and outputs, and their associations to
SV-1 System Nodes. The methodology does not preclude Information Exchanges being
created from non-leaf activities (parent activities) but that Need Lines (Interfaces) are
only created from Information exchanges between leaf activities (functions).

Leaf activities are those lowest in an activity model that are not decomposed any further.
Activity models are decomposed down to the appropriate level for the purposes of the
architecture. Usually, this would be to the level where an activity is capable of being i)
associated with a single operational node, ii) assigned to an individual role (person), iii)
and/ or has a single input or single output. Usually, leaf activities are some combination
of these three and subject to judgment calls. It is only when Need Lines are associated
with Information Exchanges formed from leaf activities at different nodes, that a valid
and consistent OV-2 Operational Node Connectivity diagram and OV-3 Operational
Information Exchange Matrix can be obtained. The same discussion holds for leaf system
functions on the SA side and SV-1 and SV-6.

While Information (System Data) Exchanges can be generated, their properties (transport
times, security classification, etc.) can not be automatically filled in and, therefore, must
be defined manually. This makes Information (System Data) Exchanges persistent
architecture data in that, once generated and their properties defined, they can not be
deleted. Need Lines, on the other hand, since they also auto generated but carry no
properties, can be deleted and regenerated again as the Activity model grows and
contracts with additional (or subtractive) activities, information (data) inputs/outputs,
nodes, etc.

Principle #6 – Automatically Generating DoDAF Products
On the OA side, an OV-2 can be graphically rendered from Information Exchanges and
their Need Lines formed from the four OA core entity objects. In addition, as many
individual node-centric OV-2 diagrams can be rendered as there are nodes. An OV-3 is
automatically produced since it consists entirely of the collection of Information
Exchanges (and their properties) within an architecture model. Similarly, on the System
side, an SV-1 can be completely graphically rendered from System Data Exchanges and
their System Interfaces formed from the four SA core entity objects. Also similarly, an
SV-6 can be automatically produced since it consists entirely of the collection of System
Data Exchanges and their properties.

Extended OV-3/SV-6 Architecture Data Mining Analysis
Because of the triple three-way associations between the various architecture objects as
defined in the ADSM, an extended OV-3 and SV-6 product can now be obtained to
support gap, overlap and redundancy analysis. From/ To Roles are to OV-3 and From/ To

 Page 15 of 20

Systems are added to SV-6. The associations between Roles, Systems, and their Org
Units are also added to obtain the following:

Figure 7 Architecture Data Mining with Extended OV-3/SV-6

This leads to “what if” and “if what” impact assessments between what is required and
what is delivered. Based on the relationships between each individual OV-3/SV-6
elements indirectly (via SV-5) to any to other single element or (matched) collections of
other elements, one could, for example, assess the impact of losing a System or a System
Node on Operations (Activities, Nodes, Roles, etc). In addition, one could obtain a set of
requirements for an Operational Node and a Role where such requirements would be
derived from the indirect relationship (via SV-5) between Nodes and Roles to Systems,
System Nodes, and System Functions.

Transition to Executable Architectures
The Activity-Based Methodology enables the transition to dynamic (over time)
executable models. Executable process models enable the associated time-dependent
behavior and dollar cost analysis of complex, dynamic operations and human and system
resource interactions that cannot be identified or properly understood using static
operational models - the “When” analysis3. Providing time and costs analysis of
executable architectures derived from integrated architectures is the first step in an
overall architecture based investment strategy where we eventually need to align
architectures to funding decisions to ensure that investment decisions are directly linked
to DOD mission objectives and their outcomes.

Static operational models only show that Activities “must be capable of” producing and
consuming Information. They do not provide details on how or under what input/ output
conditions information is actually produced/ consumed. They also do not explicitly
identify, for each activity, the number (capacity) of Roles needed or their ordering for the

 Page 16 of 20

case when multiple Roles perform the same activity (who operates on the first input, who
operates on the second, etc). Dynamic executable models go beyond “must be capable
of” and define precisely under what conditions information is actually produced/
consumed and the exact number and ordering of Roles. An executable architecture can
then be defined in terms of an integrated architecture as a dynamic model of sequenced
activities/ events (concurrent or sequential) performed at an operational node by roles
(within organizations) using resources (systems) to produce and consume information.

The transition is accomplished by starting with the extracted set of leaf activities to which
dynamic processing time (duration) and any statistical time distribution, average wait
time before processing, continuation strategy, activity cost, and Input/ Output conditions
are all defined. By connecting and chaining these leaf activities according to the
Information Exchanges defined between them, we can produce candidate activity thread
(scenario) models of sequenced actions. Information Exchange properties such as
transport times including any statistical time distribution, quantity, and cost are already
defined in OV-3. Roles and Systems are the human/ material resources used by each
process and they have single/ periodic (un)availability times, set up times, capacity
(quantity), processing strategies (FIFO, etc.), and hourly and fixed cost. A starting
candidate dynamic process scenario model can be auto generated from an integrated
architecture. The candidate model can then be completed in the sense that final behavior
is modeled of exactly how inputs and outputs of each process will be consumed/
produced and any trigger inputs and outputs added.

Dynamic analysis starts by defining a measurable objective – some optimum Measure of
Effectiveness (MOE). The next step is to define how to assess and analyze the MOE by
identifying dynamic model attributes and properties that go into measuring the desired
effect. The appropriate data necessary to measure the desired MOE is determined and the
model is then simulated. The MOE can then be measured and based on how well the
overall objective was met (or not met), the model can be edited, re-simulated and the
MOE measured again. This repeats until an optimum MOE is reached. The executable
model can also be used to assess Measures of Performance (MOP) and Measures of Force
Effectiveness to determine the overall success of the organization’s operations and use of
resources in accomplishing it’s mission.

Workflow Steps to an Integrated Architecture - the Art of Architecture
OA and SA development work flow each consists of 9 steps – 3 manual data entry, 1
manual association, and 5 automation as follows. (Note: the description below will be for
the OA side but the same workflow holds for the SA side).

1) Create OV-5 Activity Model 1) Create SV-4 System Function Model

 Page 17 of 20

2) Create OV-2 Nodes 2) Create SV-1 System Nodes
3) Create OV-4 Roles & Org Units 3) Create SV-1 Systems

4) Manually triple associate Activities with
Nodes and with Roles

 4) Manual triple associate System
Functions with System Nodes and with
Systems

5) Auto form three-way associations:
Activities, Nodes, and Roles

 5) Auto form three-way associations:
Functions, Sys Nodes, & Systems

6) Render Information Exchanges 6) Render System Data Exchanges
7) Render OV-2 Need Lines with linked
OV-3 Information Exchanges

 7) Render SV-1 Interfaces with linked
SV-6 System Data Exchanges

8) Generate OV-3 Information Exchange
Matrix

 8) Generate SV-6 System Data
Exchange Matrix

9) Transition to executable architecture
models.

 9) Transition to executable architecture
models.

Figure 8 Workflow Steps to an Integrated Architecture

 Page 18 of 20

The first step in the ABM workflow is to create an OV-5 activity model and the first two
of the core architecture objects – Activities and Information Inputs/ Outputs. An OV-5
should consist of a well formed, balanced, and consistent set of activities, their sub-
activities and the various inputs and outputs. In ABM, an OV-5 follows some of the FIPS
183 IDEF0 conventions (parent/ child activity decomposition hierarchy, etc.) but ABM
does not adhere to all of the IDEF0 conventions. This is because some conventions are
incompatible with building an integrated architectures and that takes precedence.

For example, in an OV-5, while mechanism arrows and control arrows are normal parts
of IDEF0, they are not used in the methodology. This does not mean that they are not
identified. A different approach was taken based on the three-way association between
Activities, Nodes, and Roles. Likewise, there is an association between Activities
(System Functions) and Standards and Guidance that takes the place of Control Arrows.
Again, the consistency of building integrated architectures takes precedence and is more
important.

The next step is to create the third core object, Operational Nodes, and then, Roles, the
fourth core object by developing an OV-4 Organizational Chart. At this point, the four
core objects have been defined and they can be all associated together via the three-way
matrix association. The will result in OV-5 activities displaying their corresponding
Node-Role association, OV-2 Nodes displaying their corresponding Activity-Role
association, and OV-4 Roles displaying their corresponding Node-Activity association.

Figure 9 Three-way associations

These first four steps is what can be referred to as the Art of Architecture. That is,
understanding and identifying what the core architecture objects are and how they are all
related together. If one considers the OV-2, OV-4, OV-5 products as your canvas and the
core architecture elements – nodes, activities, roles, information – as your set of paints
and paint brushes, then developing an architecture is much like creating a painting – i.e.,
you paint your architecture. From this point on, there is sufficient architecture data for
automation to take over - generating Need Lines and their related Information Exchanges.
OV-2 can now be completed by auto-connecting each Operation Node pair with their
corresponding Need Line. The various properties of Information Exchanges are now
defined. The set of Information Exchanges together with all their property values

 Page 19 of 20

becomes the OV-3 product. Finally, candidate activity thread (scenario) models of
sequenced actions can be auto generated from the set of the leaf activities together with
their Information Exchanges.

Summary
This paper presented the Activity-Based Methodology, a tool-independent approach to
developing fully integrated, unambiguous, and consistent DODAF views, and the six
principles upon which it is based. An integrated architecture is the basis for all
architecture assessments such as impact of change analysis and for identifying redundant,
conflicting, missing, and/or obsolete architecture items. The paper explained the Art of
Architecture and showed how several DoDAF architecture objects can be rendered and
products automatically generated based on a symmetrically aligned set of four core OA
and SA architecture elements. An architecture description specification model, ADSM,
was presented and the mapping of ADSM to DOTMLPF domains presented. The
transition from integrated architectures to executable architectures was discussed.
Numerous architecture analysis strategies were presented.

In conclusion, architecture development guidance combined with compliant architecture
tools and Activity-Based Methodology render integrated architectures. Integrated
Architectures combined with simulation tools and scenarios render executable
architectures. Together, integrated architectures, executable architectures, analytical tools
and methods render quantitative actionable information, which, in turns supports funding
decisions, acquisitions, system engineering, and investment strategies.

References
1. DOD Architecture Framework, V1.0, Vol. I and II, 15 August 2003.

2. Information Technology Portfolio Management memo, 22 March 2004, OSD-03246-
04

3. “Applying Executable Architectures to Support Dynamic Analysis of C2 Systems”,
C2 Assessment & Tools, #113, T. Pawlowski, P. Barr, S. J. Ring, 2004 Command
and Control Research and Technology Symposium, June 2004

Author Biographies
STEVEN J RING is a Principal Information Systems Engineer at the MITRE
Corporation in Bedford, MA. He has over 3 decades experience including technical and
managerial roles in commercial/military product development and integration. Mr. Ring
received his BEE from Cleveland State University and MS in Systems Engineering from
Case Institute of Technology. He has focused on applying information and knowledge-
based repository technology to DOD architecture development and integration in support
of interoperability and simulation based acquisition. He has contributed in the areas of
techniques, methodologies, and tools for integrating, analyzing and validating both static

 Page 20 of 20

and dynamic DOD architecture models. Mr. Ring is currently examing how architecture
analysis can support portfolio management investment decision-making.

DAVE NICHOLSON is a Senior Principle Information Systems Engineer at the MITRE
Corporation in McLean, Virginia. He spent over 20 years in Army Research,
Development and Acquisition Program Management and for the last 8 years he has been
leading architecture efforts with MITRE. Mr. Nicholson is a graduate of the United States
Military Academy and received MS degrees from the Naval Post Graduate School in
Electrical Engineering and from Stevens Institute of Technology in Technology
Management. He is currently the Project Director of MITRE support to the USAF Deputy
Chief of Staff, Warfighting Integration.

JIM THILENIUS is a Principal Information Systems Engineer at the MITRE
Corporation in Washington D.C. He is currently the Deputy Chief Architect for the Air
Force Chief Architect Office supporting the AF Chief Information Officer. For the last 7
years, he has been a lead architect with MITRE working in the domains of command and
control, space operations, intelligence, surveillance and reconnaissance. Mr. Thilenius
received a MS in aerospace engineering from University of Colorado and a BS in nuclear
and bioengineering from the University of Illinois

STANLEY HARRIS is a Senior Systems Analyst working at Lockheed Martin in
Alexandria, Virginia. Mr. Harris has twenty years experience supporting C4ISR
programs providing data base development and support. The last five years he has been
supporting the Command Information Superiority Architecture (CISA) Program by
working on a methodology for architectures that will provide data centric continuity
throughout the DoDAF Architecture products and the application of that methodology
toward the applications that support creation of architectures.

