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ABSTRACT 
 

Accurate identification of unknown contacts crucial in military intelligence.  Automated systems 
that quickly and accurately determine the identity of a contact could be a benefit in backing up 
electronic-signals identification methods.  This work reports two experimental systems for ship 
classification from infrared FLIR images.  In an edge-histogram approach, we used the histogram 
of the binned distribution of observed straight edge segments of the ship image.  Some simple 
tests had a classification success rate of 80% on silhouettes.  In a more comprehensive neural-
network approach, we calculated scale-invariant moments of a silhouette and used them as input 
to a neural network.  We trained the network on several thousand perspectives of a wire-frame 
model of the outline of each of five ship classes.  We obtained 70% accuracy with detailed tested 
on real infrared images but performance was more robust than with the edge-histogram approach. 
 
 

I. INTRODUCTION 

Autonomous recognition of ships can provide better tracking and automatic monitoring to 
reduce accidents.  Recent advanced in FLIR infrared imaging technology in the U.S. Navy 
improves its ability to see ships at night, but it is still militarily desirable to remain as far as 
possible from potential enemy ships, and ships can be observed from any angle.  Fortunately, 
previous tracking data can often considerably reduce the set of possible nearby ships so just a 
rough classification will suffice to confirm its identity.  So this work addresses model-based 
classification of ships by type from noisy images assuming only a small set of ships are known to 
be in the vicinity.  Figure 1 shows example FLIR input that we used, where darker areas are more 
radiant. 
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Figure 1: Example input FLIR infrared ship image extracted from video
Both local and global methods have been explored for automatic visual object recognition 
stinguished from object detection, which suggests different methods).  Local methods use 
such as critical points (Freeman, 1978) or high-resolution pursuit (Jaggi et al, 1999). 
 using local features can perform well in the presence of noise, distortion, or partial 
n because only one distinctive part need be recognized.  However, the distinctive local 
of ships are often narrow and searching for them could be computationally intensive.  

Global methods include Fourier descriptors (Richard and Hemani, 1974), moments (Teh, 
nd autoregressive models (Kashyap and Chellapa, 1981).  Classic work by Dudani et al 
sed moment invariants for classification of airplanes.  This used six aircraft types and the 
ere based on physical models. The training set was based on over 3000 images taken in 

y 90o sector. The testing set contained 132 images (22 images of each of the six classes) 
 at random viewing aspects. The classification accuracy achieved in this six-class 
 was 95%.  Reeves et al (1988) improved on this by using "standard moments" on similar 
 obtained a best classification result of 93%.  

t is unclear how well the work on aircraft classification extends to ships, as ships are 
istinguishable in small features.  Most work has been done on radar images, and a variety 
aches have been tried with no clear consensus.  Musman et al (1996) classified ships 
al features of radar images, with wire-frame models of ship types, but claims the images 

ry different from visual ones. Gibbins et al (1999) classified radar images of ships in 
obal features but their accuracy is so far unimpressive.  Gouaillier and Gagnon (1997) 
d radar images using principal-component global features and similarity matching to 
ical ships for each ship type to obtain promising results.  Alippi (1995) used neural 
s applied directly to the image pixels.  Lesage and Gagnon used morphological analysis 
bject boundary.  Additional work on ship classification has been done with synthetic 
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aperture radar when it is important to determine the motion of the object, as in Valin et al (1999) 
and Yuan and Casasent (2002). 

Radar images are often undesirable in military applications because they reveal the 
location of the imaging system as well as requiring a relatively near viewing distance.  So we 
explore here infrared images of ships which are generally more consistent than radar images and 
for which it is easier to compensate for environmental effects (McLenaghan and Moore, 1988). 
Casasent et al (1981) and Zvolanek (1981) used moments of infrared images to classify ships, but 
their experiments were minimal.  Withagen et al (1999) used 32 features including moments and 
either a simple linear model, a simple quadratic model, or nearest-neighbor matching to 
prototypes of each of six classes, and they showed promising results on 200 images. 

 

II. AN EDGE-HISTOGRAM APPROACH 

 The first approach we tried for ship identification focused on the edges of the silhouette 
of the ship (Herman, 2000).  Earlier work (Bizer, 1989) developed a method for identifying ships 
based on the decomposition of “bumps” on the silhouettes of their decks, inspired by the way 
Navy personnel are taught to differentiate ship classes.  Each class is defined by the structures it 
contains and their arrangement on the deck.  Silhouettes obtained from (Jane's, 1986) were 
searched for locations where the outline made an upward turn.  Each of the areas defined by such 
turns was further analyzed in the same way in order to develop a model of the whole bump.  
Finally, the model was identified using a rule-based system.  The program found and classified 
the protrusions with an average accuracy of 78%.  The usefulness of this method is restricted, 
however, by its dependence on detailed, clear silhouettes.  A noisy image, or one in which the 
edge of the ship was not continuous, could not be successfully processed.  The time and space 
required to identify even these few features also limits the scalability of the technique. 
 
 A possible solution with noisy images is to apply the Hough transform to detect patterns 
of broken or intermittent straight lines (Chau and Siu, 1999) distinctive of each ship type.  But 
calculations on the raw Hough transform are difficult and computationally expensive to extend to 
complex shapes, especially in noisy images with varying scale, translation and rotation.  
Additionally, since we are trying to classify a ship rather than to find a known shape, a costly 
matching process would have to be done for each possible ship type.  However, the Hough 
transform still ought to have a role to play in local analysis of image features since straight edges 
are such important clues in ship identification. 
 
 Our approach was to combine some of the standard techniques for recognition in new 
ways.  To locate the ship in the image, we used edge detection, thresholding, and our prior 
knowledge of the domain.  We extracted line segments by applying knowledge of Hough 
transform space features to our edge image.  In the classification stage, we calculated moments 
and other statistical features both on line segments and directly on image pixels.  By employing 
different methods on different tasks, we hoped to come up with a better solution than any 
individual process could provide. 
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OBTAINING AND PREPROCESSING THE DATA 

We used a video capture card to obtain frames from footage taken by the crew of a SH-
60B Rapid Deployment Kit equipped helicopter. The AN/AAS-44V FLIR is mounted on a 
springboard at the nose of the aircraft.  Our program operates on images captured from FLIR 
video using a Studio PCTV.  This system returns a 320 x 240 pixel TIFF format color image. The 
program’s second input argument is a database which contains the comparison information for 
each possible ship class. 

 
Because we used real FLIR images as our data, we dealt with a number of challenges in 

the preprocessing phase.  We limited our samples to pictures in which the entire ship was visible 
and centered, and only used near-broadside views.  Even with these requirements, the scale, 
position, and orientation of the ship varied significantly between images.  The quality of the 
images was not ideal; we employed techniques to eliminate as much noise and background 
information from our samples as possible.  But to be cost-effective, an automated identification 
system needs to be able to operate on noisy data. 

 
Our images also contained artifacts of the FLIR system from which they were obtained.   

The system projects video information and targeting aids onto the screen as shown in Figure 1.  
These may partially obscure the image and interfere with the identification process.  We tested 
the efficacy of a number of methods in removing these factors.  

 
The FLIR camera can be operated in a number of modes.  It can display either black-hot 

(higher energy areas are black) or white-hot images, and provides both digital and optical zoom 
capabilities.  We chose to use only black-hot images because we can more effectively remove 
system artifacts from them than from white-hot images.  We also decided not to allow images 
produced with the digital zoom option, as it amplifies background noise significantly. 

 
The program returns a list of the ships in the database that are closest to the unknown 

ship.  Each potential classification has a confidence rating which represents how similar the test 
image is to that class.  We list multiple possibilities because if the test image is very close to more 
than one database class, we want the system user to be aware of all strong possibilities.  When 
available as with the MARKS system, data from the emitter and ship positioning systems will 
further narrow the database of candidate classes. 

 
 Using straight-line segments as our basic features fit well with our design objectives.  
Ship images consist mainly of straight lines, so most of the important information in our images 
is preserved.  A line segment can also be represented succinctly by a few numbers: The 
coordinates of the center, the orientation, and the length fully describe it.  This choice even 
helped us to reduce the noise in the images, as natural noise rarely produces straight lines as long 
and strong as those found in man-made objects. 

IMPLEMENTATION 

We implemented our program in MATLAB using the Image Processing Toolbox.  
During preprocessing we smoothed the images using standard median filtering on 3-by-3 pixel 
neighborhoods.  Filtering reduced the graininess of the images so that fewer false edges were 
detected in the next step of segmentation.  The segmentation process itself eliminated many small 
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regions of the image that resulted from noise, as we only dealt with line segments of significant 
length.   

 
We applied the rest of our methods after segmentation.  Our limitation to black-hot 

images allowed us to remove all lines from the segmented images which mapped to light areas in 
the original images.  Since the heat generated in the engines ensured that the ship would always 
be hot relative to the surrounding water, anything light in color must be noise.  We automatically 
generated a mask for each image to represent those pixels with light values, and removed those 
segments whose centers were within the mask from the edge image.  This step also removed 
some of the processing artifacts, which were generally light.  To deal with any that remained, we 
created another binary image that marked all of the areas where we knew such artifacts would be 
located.  Then, as above, we disregarded all line segments that fell within those regions.  Figures 
2 and 3 show these processing steps being applied to Figure 1.    
  

We tested and discarded a few other techniques for the removal of spurious edges. 
Neighborhood averaging of light-colored pixels in the original intensity image did not accomplish 
anything useful. We tried smoothing areas that were part of a similar mask to the one discussed 
above, also without success.  Finally, we tried to subtract the mask from the edge image before 
the segmentation step, with the result that we were unable to detect many key segments.  Since 
none of our attempts to clean up the images before segmentation were successful, we were forced 
to apply the post-processing techniques discussed above.  Fortunately, the impact on program 
efficiency was minimal.  
 
 

 
 

Figure 2: The Figure 1 image after cleanup and edge finding. 
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Figure 3: The Figure 1 image after further cleanup. 

FEATURE EXTRACTION 

 After converting an image to grayscale and smoothing it, we searched for strong 
candidate line segments to use in classification.  First, we ran the image through an edge detector.   
We chose the Canny method because it successfully found all of the important features in our 
images.  We allowed MATLAB to automatically select the threshold for deciding whether or not 
a value change was significant.  To connect intermittent lines, we used a modified version of the 
robust segment-finding code from (Rowe and Grewe, 2001).  This technique used the Hough 
transform to detect straight lines. 
 
 When we had this information, we could find pixels on the lines corresponding to each 
peak, and connect pixels using the angle defined by the transform results.  For each peak, we 
collected all of the pixels that we reached by simply looking for the next one nearby and at the 
correct angle.  Each of these sets approximated a line segment.  We ran this process twice, first 
with a higher threshold to extract major lines, and then again with a lower threshold to find 
smaller segments from the pixels which were not matched in the first pass.  After this step, we 
had an image made up of numbered straight-line segments and a list of the endpoints, 
orientations, and lengths of each segment. 
 
 When all of the segments had been located, we applied the delayed preprocessing 
methods described above to eliminate spurious edges caused by noise or FLIR projection 
information.  This cleaned up both the image and the segment list.  As part of this phase, we also 
determined the center coordinates of each segment, which we used later for statistical 
calculations.  Next, we checked the orientation of the ship in the image to see if we ought to 
realign it.  We used the Hough transform for this step as well.  Since the highest peak in 
transform space usually is the bottom of the ship because the waterline creates a strong straight 
edge, we looked at the orientation of that line and rotated the image to make it horizontal.   
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 Finally, we removed any line segments on the edges of the image, as they are unlikely to 
be part of the ship and would interfere with our statistics.  We found the y-axis standard deviation 
of edge pixels, and simply removed any line segments that fell more than two and a half standard 
deviations from the image’s y-axis mean.  The resulting binary image showed the important 
features of the ship with very few confounding factors. 

FEATURE ANALYSIS 

To ensure scale independence, translation independence, and some degree of noise independence 
for image analysis, we found the median and standard deviation of pixel locations for both x- and 
y-axes.  Using this, twenty-five rectangular areas in the image were defined.  The width of each 
area was one standard deviation as calculated along the x-axis, and the height was one standard 
deviation along the y-axis.  We centered the first rectangle on the median image pixel, then added 
two more rows and columns in every direction, as shown in Figure 4.  
 
For each of these subranges, we counted the fraction of the total edge pixels.  These measures 
gave a five-by-five array of fractions that showed how the pixels were distributed and thus gave 
the approximate shape of the ship.  Next, we totaled the pixels in each box based on orientation.  
We defined four angle ranges, and for each area, counted the number of pixels which belonged to 
line segments in each angle range.  Again, we divided the results by the total number of image 
edge pixels.  This step resulted in a five-by-five-by-four array.  We also calculated the third 
moment of the image pixel locations about the mean in the x and y directions. This feature 
measures skew or asymmetry, so it was helpful in distinguishing ship classes such as tankers and 
destroyers.  The final form of our feature vector consisted of the two distribution arrays and the 
moment value, and contained a total of 126 elements. 
 
 
 

 
Figure 4: Binning of edge segments for edge histogram. 

 
Then to compare two segmented images, we summed the absolute values of the 

differences between corresponding features of the two images.  We used feature weights of 1, 10 
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and 5 for the pixel distribution, pixel orientation, and moment differences.  These weights were 
chosen subjectively.  The smaller the weighted sum of the absolute differences, the more alike the 
two images were judged.   

RESULTS 

 We had a limited set of FLIR images for use in our tests.  Consequently, we were not able 
to experiment with many different ship classes.  Some of the images we did receive were too poor 
in quality to give good results.  Our better images were of Arleigh Burke class destroyers and 
aircraft carriers.  We had nine images of Arleigh Burkes and six images of carriers.  Within those 
sets, the images varied enough to make identification difficult.  In order to have more variety in 
our comparisons, we included two pictures of Spruance class destroyers in which the ships were 
small, as well as one very noisy picture of an Iranian PTG patrol craft. 
 
  Out of the fifteen images that were of reasonably good quality (the Arleigh Burkes and 
the carriers), eleven (73%) were most similar to another ship in their class.  When the class 
differences were averaged, however, thirteen of the fifteen (87%) were on average more similar 
to ships in the class to which they belonged.  This result suggested that when we constructed a 
database to store data for multiple ship classes, we should average similarities over many views 
of the same ship class to classify a ship. 
 
 For another test, we tried a "case-based reasoning" approach.  We selected one image 
from each ship class to put in the database.  We chose the images that minimized the average 
difference to the rest of the ships in their class, using the calculations of the previous test. All of 
the remaining images were then compared to these exemplars.  Of the thirteen remaining good 
images (not counting the Spruance), two Arleigh Burkes and one carrier were incorrectly 
identified in this test, for a success rate of 77%.  Since this was lower than the success rate when 
we averaged the class values, we tried a new strategy.   
  

We constructed feature vectors that were the average of the features over all images in 
each class with the exception of two test images.  We then tested these two images against the 
vector averages.  Of our fifteen test images (we only counted each carrier image once even 
though we compared some of them twice), twelve (80%) were correctly identified.  One of the 
mismatches, however, was with the Spruance class; since there were only two images in that 
group and neither was very good, that test was somewhat unfair.  Ignoring it, the percentage of 
accurate classifications between Arleigh Burkes and aircraft carriers was twelve of fourteen, or 
89%. 
 
 The most time-consuming portion of our program by far was the extraction of features 
from the original images. Each image required approximately 55 seconds for this step 
Constructing a big image-feature database will therefore be a lengthy process.  Since the database 
can be put together offline, this is not a major concern; what matters more is the program’s speed 
in recognition mode.  When making 50 image-pair comparisons, the total time was less than one 
second, and for 100 comparisons, the time was still under three seconds.  Thus a single 
comparison takes around three hundredths of a second.  Execution time could be reduced 
significantly by running our code on a faster computer.  Translating our MATLAB code into a 
more efficient language would also give us a speed advantage. 
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III. A NEURAL NETWORK APPROACH 

METHODS 

Our second approach used detailed geometric models of ship types, moment invariants, 
and a neural network (Alves, 2001).  A particular open question we investigated was whether 
performance can be enhanced by using a neural network to recognize subtle differences in global 
features.  Neural networks have been successfully applied to many image-classification problems 
(Perantonis and Lisboa, 1992; Rogers et al, 1990).  Neural networks can run fast, can examine 
many competing hypotheses simultaneously, can perform well with noise and distortion, and can 
avoid local minima unlike variants of Newton’s method for optimization.  Model-based object 
recognition using neural networks seems attractive because the complexity and the computational 
burden increase slowly as the number of models increases.  Training time is not a problem for our 
application since ships change slowly and retraining will rarely be needed.  Neural networks also 
represent a more generalizable solution than the 32 carefully-chosen problem-specific features of 
Withagen et al (1999) and represent significantly more classification power than the simple 
classification methods (nearest-neighbor, linear classifier, and quadratic classifier) used in that 
work.  Furthermore, with them we can eliminate the four required assumptions made in Withagen 
et al: The ships identified do not need to be known, their height and distance do not need to be 
known, and more than one aspect angle need not be acquired. 

Moment invariants are a reliable way to construct a feature vector of low dimension for a 
classifier of two-dimensional patterns.  Using nonlinear combinations of normalized central 
moments,  (Hu, 1962) derived seven metrics invariant under image translation, scaling and 
rotation.  These can be computed for both a shape boundary and a region.  Details such as the 
stacks of a ship are better characterized by the boundary; large structural features of the ship are 
better characterized by the region.  We used six moments from the silhouette boundary and six 
from the region; as the distance of the object in the image was not known, the M1’ component 
was not used.  We made those twelve parameters (features) the inputs to a neural network trained 
with backpropagation. 

To obtain training data, five ship types were modeled: an aircraft carrier, a frigate, a 
destroyer, a research ship, and a merchant ship (a tanker). With these, it was possible to address a 
typical scenario at sea with military ships, small civilian ships, and big merchant ships.  Three-
dimensional wire-frame models represented the types, requiring a total of 443 vertices and 247 
polygons (see Figure 5). The models were based on scaled drawings of representative ships of 
each type and required careful manual design since no geometric models were available.  Note 
that these were models of ship types, not individual ships, and were designed to reflect only 
features common to all ships in the type. 

Azimuth was measured counterclockwise of the viewpoint in the horizontal plane, and 
elevation was measured as inclination downward from horizontal.  The origin was located at the 
center of gravity of the ship model, using only the portion above sea level. The five models are 
shown in Figure 5 for azimuth angle of –37.5 degrees and the elevation angle of 30 degrees. We 
create silhouettes of these models through orthographic projection since generally ships are far 
away in military applications. 
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 Figure 5: Views of the three-dimensional ship models and example projections.
For test input, we used the three hours of video taken at sea mentioned above.  The video 
ed a few other small boats, but only images of our ship types were considered for analysis.  
lected 25 representative frames (each 320 by 240 pixels) for testing: two destroyer images, 

ircraft carriers, 15 merchant ships, and four research ships.  Image frames were acquired as 
e using a commercial video-grabber board installed in a PC desktop computer. 

The infrared system projects alphanumeric data and targeting aids onto the screen so 
tering was necessary to remove them.  (Figure 1 showed an example input image.)  The 
tness histogram for these images consistently had three peaks corresponding to water, sky, 
hip (see Figure 6), so we segmented pixels into categories using the minima between the 
.  We then changed pixels inconsistent with all their neighbors to be consistent. This 
ced a cleaner output than with the preprocessing of earlier edge-histogram approach (Figure 

The neural-network classifier required training with representative silhouettes to 
ize performance. (Although human judgement may help training (Ornes and Sklansky, 

, military needs usually require fully automated training.)    Symmetric three-dimensional 
ts like ships can have azimuth restricted to a range of 180o. Elevation angles were limited to 
45o since we addressed broadside views only in this work, as on the surface of the ocean or 
helicopter from some distance away.  Figure 8 shows a few representative example 
ettes created for a single ship model that were used in training. 
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Figure 6: Histogram of image brightnesses, useful for thresholding. 

 

Figure 7: Ship image after cleanup. 
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Figure 8: Example silhouettes of a single ship that were used in training the neural network. 

 

RESULTS 

We implemented our approach in the Matlab programming language and tested it.  
Experiments measured the fraction of correct identifications in all views of that kind of ship 
(recall) and the fraction of correct identifications in all identifications (precision).  We examined 
performance when no elevation or azimuth information is known about the image viewpoint, 
although course-tracking data in the real world may permit many possible viewpoints to be ruled 
out and thus improve on the results given here. 

We first experimented with a network with 12 input nodes, 20 hidden nodes, and 5 output 
nodes. We trained it with 240 images representing 15-degree increments in azimuth and four 
viewing angles of 0o, 15o, 30o and 45o. This network had 90.1% recall on evenly spaced test data 
after training.  But significant errors occurred at high azimuth angles.  So we used a closer 
spacing of training cases where the program had difficulty, with azimuth angles of -90, -85, -80, -
75, -70, -65, -60, -55, -50, -45, -30, -15, 0, 15, 30, 45, 50, 55, 60, 65, 70, 75, 80, and 85, and 
obtained 91.2% recall. When we increased the number of nodes in the hidden layer to 30, recall 
improved to 94.8%. But in increasing the number of elevation angles to six (0o, 7o, 15o, 22o, 30o, 
and 45o), we obtained only 85.4% recall because the neural network was unable to converge 
during training with the extra data. 
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Figure 9 shows typical classification errors with respect to azimuth for the best 
parameters, and Figure 10 shows errors with respect to elevation.  “Error” means that an incorrect 
classification was highest-output class for the neural network over all test examples at that 
azimuth (Figure 9) or elevation (Figure 10).  It can be seen that the errors are abrupt as a function 
of azimuth, but smoothly varying with respect to elevation. 
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Figure 9: Accuracy with respect to azimuth for aircraft carrier and destroyer 
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Figure 10: Accuracy with respect to elevation for aircraft carrier and destroyer 
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After these initial experiments, we tested the best network on a larger set of model 
projections taken at 1o increments in azimuth and elevation, totaling 41400 images (180 x 46 x 5).  
The average recall and precision were 87.3%. Table 1 shows the confusion matrix of counts. Here 
“Overall Recall” refers to accuracy within the row and “Overall Precision” refers to accuracy 
within the column.  As extra confirmation, we also ran the system on the 25 real infrared images 
and got an average recall of 68% and precision of 72%.  We saw no evidence of overtraining at 
this size of a training corpus, but did see it when angle increments were further decreased.  

 

   Inferred    
.      Type     
Input  
Type 

Aircraft 
Carrier 

Destroyer Frigate Point 
Sur 

Merchant Overall 
Recall 

Aircraft 
Carrier 

6711 201 425 393 550 81.1% 

Destroyer 318 7301 397 257 7 88.2% 

Frigate 345 788 6809 217 121 82.2% 

Pointsur 67 146 177 7873 17 95.1% 

Merchant 297 188 291 49 7455 90.0% 

Overall 
Precision 

86.7% 84.7% 84.1% 89.6% 91.5%  

 

Table 1: Confusion matrix for tests of 41,400 silhouettes of ship models. 

 

Computation time averaged one minute per real infrared image, almost all of it during 
image processing, and this could be much improved by using C++ or Java packages rather than 
Matlab.  Thus there appears little advantage to processing time in attempting to reduce the 
number of features considered, as by principal-components analysis; ships move slowly and are 
not usually numerous in any one location, so that classification time is not too critical anyway. 

Since performance was not much worse on the real images despite the presence of noise, 
this suggests training on real images to eliminate the work of constructing detailed geometric 
models.  We need to examine performance for larger numbers of ship types or even individual 
ships. We also need to eliminate common artifacts like ship shadows, reflections on the sea 
surface, and heat from stacks that our preprocessing merged into the ship region.   

Clearly performance of the neural network approach was much better than that of the 
edge-histogram approach, and the techniques used are more robust.  However, clearly some local 
feature analysis would help performance judging by the mistakes made, and some of the edge-
histogram analysis could provide this.  We are currently integrating work into a full ship-
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identification system that uses electronic emissions, tracking data, and ship-information databases 
(Lisowski, 2000) to improve classification performance further. 
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