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Abstract 
 

A key problem in indexing technical information is the interpretation of technical words 
and word senses, expressions not used in everyday language.  This is important for 
captions on technical images, whose often pithy descriptions can be valuable to decipher.  
We describe the natural-language processing for MARIE-2, a natural-language 
information retrieval system for multimedia captions.  Our approach is to provide general 
tools for lexicon enhancement with the specialized words and word senses, and to learn 
word usage information (both on word senses and word-sense pairs) from a training 
corpus with a statistical parser.  Innovations of our approach are in statistical inheritance 
of binary co-occurrence probabilities and in weighting of sentence subsequences.  
MARIE-2 was trained and tested on 616 captions (with 1009 distinct sentences) from the 
photograph library of a Navy laboratory.  The captions had extensive nominal 
compounds, code phrases, abbreviations, and acronyms, but few verbs, abstract nouns, 
conjunctions, and pronouns.  Experimental results fit a processing time in seconds of 

876.20858.0 n  and a number of tries before finding the best interpretation of 668.1809.1 n  
where n is the number of words in the sentence.  Use of statistics from previous parses 
definitely helped in reparsing the same sentences, helped accuracy in parsing of new 
sentences, and did not hurt time to parse new sentences.  Word-sense statistics helped 
dramatically; statistics on word-sense pairs generally helped but not always. 
 
1. Introduction 
  
Our MARIE project has been investigating information retrieval of multimedia data by 
emphasizing caption processing.  Although media content analysis such as image 
processing reduces the need to examine captions, caption processing can be much faster 
since captions summarize important content in an often-small number of words. 
Checking captions before retrieving media data can rule out bad matches quickly, and 
captions can provide information not in the media like the date or names of people in a 
photograph. 
 
Some natural-language processing of captions is necessary for high query recall and 
precision.  Processing must determine the word senses and how the words relate to get 
beyond the well-known limits of keyword matching (Krovetz and Croft, 1992).  This is a 
challenge for specialized technical dialects.  Automatic indexing for them could have a 
high payoff if few people currently can understand the captions.  But linguistically such 



dialects offer (1) unusual words, (2) familiar words in unusual senses, (3) code words, (4) 
acronyms, and (5) new syntactic features.  It is not cost-effective to hand-code all such 
specifics for every technical dialect.  We need to infer most of them from analysis of a 
representative technical corpus.  And then to handle the unusual usage in the dialects, we 
should mix traditional symbolic parsing with probabilistic ranking from statistics. 
 
While the MARIE project is intended for multimedia information retrieval in general, we 
have used as testbed the Photo Lab of the Naval Air Warfare Center (NAWC-WD), 
China Lake, California USA.  This is a library of about 100,000 pictures with about 
37,000 captions. The pictures cover all activities of the center, including pictures of 
equipment, tests of equipment, administrative documentation, site visits, and public 
relations.  With so many pictures, many incomprehensible to ordinary people, captions 
are indispensable to find anything.  But the existing computerized keyword system for 
finding pictures from their captions is unhelpful, and is mostly ignored by personnel. 
 
(Guglielmo and Rowe, 1996) reports on MARIE-1, a prototype system that we developed 
for NAWC-WD, a system that appears more in the direction of what users want.  
MARIE-1 followed traditional methods of natural-language processing for information 
retrieval (Grosz et al, 1987; Rau, 1988; Sembok and van Rijsbergen, 1990) using hand-
coded lexicon information.  But MARIE-1 took a man-year to construct and only handled 
217 pictures (averaging 20 words per caption, and captions were occasionally corrected) 
from the database, and its handling of unrestricted queries about the data is poor.  To do 
better, MARIE-2 uses statistical parsing and a number of training methods.  MARIE-2 
also took a man-year of effort, but handles 616 mostly-unedited captions at a higher rate 
of accuracy.  Development encountered some interesting problems, and provides a good 
test of the application of statistical parsing ideas to an unfiltered real-world dialect.  
MARIE-2's parser is implemented in semi-compiled Quintus Prolog and took 5600 lines 
of source code to specify. 
 
2. Example captions 
 
To illustrate the problems, here are example captions from NAWC-WD. All are single-
case. 
 
an/apq-89 xan-1 radar set in nose of t-2 buckeye modified aircraft bu# 7074, for flight 
evaluation test.  3/4 overall view of aircraft on runway. 
 
This is typical of many captions: two noun phrases terminated with periods, where the 
first describes the photographic subject and the second describes the picture itself.  Also 
typical are the complex nominal compounds, "an/apq-89 xan-1 radar set" and "t-2 
buckeye modified aircraft bu# 7074".  Domain knowledge is necessary to recognize 
"an/apq-89" as a radar type, "xan-1" a version number for that radar, "t-2" an aircraft 
type, "buckeye" a slang additional name for a T-2, "modified" a conventional adjective, 
and "bu# 7074" as an aircraft code ID.  Note that several words here change meaning 
when they modify other words.  Thus the nonsyntactic approach of the indexing system 
of (Silvester et al, 1994) for a similar domain has limitations. 



 
program walleye, an/awg-16 fire control pod on a-4c bu# 147781 aircraft, china lake on 
tail, fit test.  3/4 front overall view and closeup 1/4 front view of pod. 
 
This illustrates some common patterns.  "A-4c bu# 147781" is in a common form of 
<equipment-type> <prefix-code> <code-number>, "an/awg-16 fire control pod" is in a 
form of <equipment-name> <equipment-purpose> <equipment-type>, and "3/4 front 
overall view" is in a form of <view-qualifier> <view-qualifier> <view-type>. 
 
graphics presentation tid progress 76.  sea site update, wasp head director and hawk 
screech/sun visor radars.  top portion only, excellent.  
 
This illustrates the need for domain-dependent statistics on word senses.  Here "wasp", 
"hawk", "screech", and "sun visor" should not be interpreted in their common English 
word senses, but as equipment terms.  Furthermore, "progress 76" means "progress in 
1976", "excellent" refers to the quality of the picture, the "head director" is not a person 
but a guidance system, and the "sea site" is a dry lakebed flooded with water to a few 
inches. 
 
aerial low oblique, looking s from inyodern rd at main gate down china lake bl to 
bowman rd.  on l, b to t, water reservoirs, trf crcl, pw cmpnd, vieweg school, capehart b 
housing, burroughs hs, cimarron gardens, east r/c old duplex stor. lot.  on r, b to t, trngl, 
bar s motel, arrowsmith, comarco, hosp and on to bowman rd. 
 
This illustrates abbreviations and misspellings in the captions.  "Trf crcl" is "traffic 
circle", "trngl" is "triangle", "capehart b" is "capehart base", but "b to t" is "bottom to 
top".  "Vieweg" which looks like a misspelling is actually a person name, but "inyodern" 
should be "inyokern", a nearby town. 
 
In general, most semantic associations and even many syntactic rules in this dialect 
exhibit quite different frequencies of use compared to everyday English.  Table 1 shows 
some example syntax rules and their observed frequencies in our training and test 
captions.  Also, words are generally less ambiguous than in everyday English: Of the 
1858 word senses used in the first three caption sets, 1679 were the only sense used of 
their word.  Nonetheless, the word senses used are often not the most common in 
standard English, and many ambiguities of word relationships must be resolved.  
 
3. The lexicon 
 
Creating the full synonym list, type hierarchy, and part hierarchy for applications of the 
size of the NAWC-WD database (29,082 distinct words in 36,191 captions) is 
considerable work.  Fortunately, common words are covered already by Wordnet (Miller 
et al, 1990), a large thesaurus system that includes synonym, type, and part information, 
plus rough word frequencies and morphological processing.  Wordnet provided basic 
information for 6,729 words in the NAWC-WD captions (with about 24,000 word 
senses). 



Table 1: Example syntactic rules with their frequency in the output of the parser for 
all captions studied. 

Rule Frequency Example 
adj2 + ng = ng 2551 "Navy" + "aircraft" 
b_prtp + np = prtp2 122 "testing" + "the seat" 
art2 + ng = np 288 "the" + "naval aircraft" 
adv + participle = 
a_prtp 

28 "just" + "loaded" 

noun + numeric = ng 81 "test" + "0345" 
timeprepx + np = pp 82 "during" + "the test" 
locprepx + np = pp 710 "on" + "the ground" 
miscprepx + np = pp 654 "with" + "instrument pod" 
np + pp = np 1241 "Navy aircraft" + "during 

testing" 
np + prtp = np 306 "a crewman" + "loading the 

pod" 
vg + np = vp2 53 "loads" + "the instrument pod" 
np + vp = snt 53 "a crewman" + "loads the pod" 
vp2 + pp = vp2 25 "loads" + "on the aircraft" 
adv + pp = pp 24 "just" + "below the aircraft" 
conj + np = cj_np 167 "and" + "aircraft" 
np + cj_np = np 195 "sled" + "and dummy" 
np + c_aps = np 60 "the aircraft" + ", F-18" 
ng + aps = ng 195 "aircraft" + "(F-18)" 
np + aps = np 54 "the aircraft" + "(F-18)" 
np + c_np = np 55 "the aircraft" + ", the F-18" 
np_c + np = np 57 "sled," + "dummy" [comma 

fault] 
prtp2 + pp = prtp2 155 "just loaded" + "on aircraft" 
infinmarker + vp = ip 19 "to" + "load" 
conj + vp = cj_vp 3 "and" + "loads the aircraft" 
snt + cj_snt = snt 3 "crewmen load" + "and officer 

directs" 
 
 
The remaining words which were handled in several different ways (see Table 2).  There 
are many words with defined code prefixes like "f-" in "f-18" for fighter aircraft, or like 
"es" in "es4522" for test numbers.  We have several hundred rules for special formats 
including multiword ones, which interpret "bu# 462945" as an aircraft identification 
number by its front word, "sawtooth mountains" as mountains by its tail word, "02/21/93" 
as a date, "10-20m" as a range of meters, "visit/dedication" as a conjunction, and "ship-
loading" as a noun-gerund equivalent of an adjective.  Misspellings and abbreviations 
were obtained mostly automatically, with human post-checking, using the methods 
described in (Rowe and Laitinen, 1995).  Lexical ellipsis (e.g. "356" after "LBL 355") is 
also covered. Other important classes of words are technical words from MARIE-1, 



morphological variants on known words, numbers, person names, place names, and 
manufacturer names.  1700 words needed explicit definition by us in the form of part of 
speech and superconcept or synonym.  The remaining unclassified words are assumed to 
be equipment names, a usually safe assumption.  The effort for lexicon-building was 
relatively modest (0.3 of a man-year) thanks to Wordnet, which suggests good 
portability.  Wordnet also provided us with 15,000 synonyms for the words in our 
lexicon, and we provided additional synonyms for technical word senses.  For each set of 
synonyms, we picked a "standard synonym". Pointers go from all other synonyms to the 
standard synonym, the only synonym for which detailed lexical information like 
superconcepts is kept. 
 
We put all lexicon information in Prolog format.  For instance: 
 
d(aircraft, noun, 1, [vehicle-1], [plane-6, autogiro, autogyro, gyroplane, 'lighter-than-air 
craft'-1, drone-3, glider-1, chopper-2], ['aircraft engine', bay-6, cockpit-2, cabin-2, 'fuel 
gauge', 'fuel indicator', frame-4], [fleet-1]). 
 
This says that "aircraft" in noun sense 1 is a kind of vehicle in sense 1; the last three lists 
represent the primary subcategories of aircraft, parts of aircraft, and wholes containing an 
aircraft.  Words with sense numbers are cross-references to other words in the lexicon. 
 
Then the meaning assigned to a noun or verb in a caption is that of an instance of its 
associated type, and other parts of speech correspond to properties or relationships of a 
types.  Most words of the input caption map to a single two-argument predicate 
expression in the semantic representation ("meaning list") of the caption.  For instance, 
"Navy aircraft on runway" has the meaning list:  
 
 [a_kind_of(v3,aircraft-1), owner(v3,'USN'-1), over(v3,v5), a_kind_of(v5,runway-1)] 
 
where v3 and v5 are unnamed instances, and the numbers after the hyphen are word sense 
numbers. 
 
4. Parsing 
 
We chose to use a simple grammar and relatively simple semantic rules, to see how far 
we could rely on statistics in lieu of subtler distinctions (an idea similar to that of (Basili 
et al, 1992)).  For instance, the NAWC-WD corpus frequently has a type of aircraft 
followed by a "bureau number" code, but we handle this with only a general rule for 
nominal compounds of physical objects followed by names.  Our grammar has 217 
syntax rules, 185 binary (two-term) and 32 unary (one-term), and 71 of the binary rules 
are context-sensitive. The context-sensitivity is modest and unnecessary for correct 
parsing, but helps efficiency on long sentences.  For instance, an appositive that starts 
with a comma must be followed by comma except at the end of a sentence, and a 
modifying participial phrase followed by a comma and a noun phrase can only occur at 
the front of a sentence. 



Table 2: Statistics on the MARIE-2 lexicon for the NAWC-WD captions after 
handling the first caption set; subsequent sets added only 298 new word senses. 

Description 
 

Count 
 

Number of captions 36,191 
Number of words in the captions 610,18

2 
Number of distinct words in the captions 29.082 
Subset having explicit entries in Wordnet 6,729 
Number of these for which a preferred alias is given 1,847 
Number of word senses given for the Wordnet words 14,676 
Subset with definitions reusable from MARIE-1 770 
Subset with definitions written explicitly for 
MARIE-2 

1,763 

Subset that are morphological variants of other 
known words 

2,335 

Subset that are numbers 3,412 
Subset that are person names 2,791 
Subset that are place names 387 
Subset that are manufacturer names 264 
Subset that have unambiguous defined-code prefixes 3,256 
Unambiguous defined-code prefixes in these 947 
Subset that are other identifiable special formats 10,179 
Subset that are identifiable misspellings 1,174 
Misspellings found automatically of these 713 
Subset that are identifiable abbreviations 1,093 
Abbreviations found automatically of these 898 
Remaining words, assumed to be equipment names 1,876 
Explicitly used Wordnet alias facts of above 
Wordnet words 

20,299 

Extra alias senses added to lexicon beyond caption 
vocabulary 

9,324 

Explicitly created alias facts of above non-Wordnet 
words 

489 

Other Wordnet alias facts used in simplifying the 
lexicon 

35,976 

Extra word senses added to lexicon beyond caption 
vocabulary 

7,899 

Total number of word senses handled (including 
related superconcepts, wholes, and phrases) 
 

69,447 

 
 
 



 
Binary rules have associated semantic rules (139 in all including one default rule) that 
check semantic consistency and assemble the combined meaning list.  14 of the semantic 
rules were specific to the dialect.  Additional rules address three constructs especially 
common in technical description: nominal compounds, appositives, and prepositional 
phrases.  The rules for nominal (noun-noun) compounds cover 62 combinations like type-
subtype ("f-18 aircraft"), type-part ("f-18 wing"), owner-object ("navy f-18"), object-
action ("f-18 takeoff"), action-object ("training f-18"), action-location ("training area"), 
object-concept ("f-18 project"), and type-name ("f-18 harrier").  Rules for appositives 
cover 27 analogous cases and some others like object-action ("wings (folded)").  Rules 
for prepositional phrases check case compatibility of the preposition with both subject 
and object.  For instance, the object of the location-preposition meaning of "in" could 
only be a location, event, range, or view; its subject could be only a location or event. 
 
We use a kind of bottom-up chart parser (Charniak, 1993, Chapter 6). We work 
separately on each sentence of a caption.  The most likely interpretation for each word, 
using word-sense statistics (see next section), is entered in the chart.  No initial part-of-
speech tagging (Brill, 1995) or initial sense disambiguation (Leacock, Chodorow, and 
Miller, 1998) from context is done, as this is done indirectly later in successful phrase 
constructions.  We then do a branch-and-bound search in which the highest-rated 
unexamined word sense or phrase interpretation in the chart is selected at each step.  All 
word and phrase interpretations that adjoin it (without gaps) to the left and right are 
considered for combination, and checked against grammar rules; if successful, they are 
checked against semantic rules; and then if successful are rated and added to the chart.  A 
sentence interpretation is a chart entry that covers all the words of the sentence and has 
the grammatical category "caption".  Sentence interpretations are presented to a human 
trainer for approval.  Upon acceptance, conjunct simplification and anaphoric-reference 
resolution are done (using parses of previous sentences of a multi-sentence caption), 
statistics are incremented based on the interpretation, and the results are cached.  If an 
interpretation is rejected, search continues.  If no satisfactory interpretation can be found, 
the next-best unexplored word sense is added to the chart and search resumes with it.  
This is done as many times as necessary.  If no interpretation can be found with any word 
sense, the best pieces of interpretations are assembled for a partial interpretation.  
 
5. Unary statistics 
 
Wordnet is based on traditional printed dictionaries and distinguishes many word senses.  
A key factor in finding the best sentence interpretation is the relative likelihoods of these 
word senses.  A priori likelihoods can be estimated from the word-sense frequencies 
("unary counts") of previously parsed captions.  If the word sense has been seen before, 
its inferred frequency is its observed frequency. These counts stored should include 
"indirect" counts too, those of all subtypes, so for instance every occurrence of an aircraft 
counts as an occurrence of a vehicle.  Otherwise, if we have not seen a word sense or its 
subtype before, we infer a frequency of M*K/(1+K) from a neighbor concept if we can, 
where K is the count of the neighbor and M is a constant reflecting the closeness of the 
neighbor.  M was set from experience to 0.7 for aliases of the word sense; 0.5 for 



immediate superconcepts; 0.3 for two-step superconcepts; and 0.8 for links between 
verbs and verbals.  Counts on multiple superconcepts must be summed, as when iron is 
both an element and a metal.  Adjustments are made for complex lexical expressions, like 
dates and hyphenated words, and for words with very common superconcepts like names 
of people. 
 
For instance, suppose a sentence contains the word "wing", which has seven Wordnet 
senses.  Sense 1 is an air squadron; sense 4 is a part of an airplane; sense 6 is a part of a 
building; and sense 7 is a limb of a bird.  Sense 4 occurs eleven times in our training and 
test captions, and sense 6 occurs once.  The other senses do not occur. However, sense 1 
has an immediate superconcept of "air unit" sense 1, and this does occur twelve times in 
the captions (albeit never directly, only as subtypes).  Sense 7 has a superconcept of 
"limb" sense 1, which in turn has a superconcept of "extremity" sense 5, which occurs 
three times in the captions.  Hence the likelihood attached to sense 4 is 11, to sense 6 is 1, 
to sense 1 is 0.5*12/13 = 0.46, and to sense 7 is 0.3*3/4 = 0.22.  Senses 2, 3, and 5 get the 
default likelihood of 0.1. 
 
Initial unary counts were estimated from frequencies of words in the full set of 36,191 
NAWC-WD captions, apportioning the count for each word equally among its possible 
senses (but artificially boosting to 80% of the total the likelihood of senses not nouns, 
verbs, adjectives or adverbs).  After the first caption set was parsed, we eliminated the 
initial counts and built new counts from the senses in the meaning lists accepted by the 
trainer.  Computation of indirect counts is time-consuming, so recalculation is done only 
after a caption set is parsed.  
 
6. Binary statistics 
 
Statistical parsing usually exploits the probabilities of strings of successive words in a 
sentence (Jones and Eisner, 1992; Charniak, 1993).  Binary statistics (the counts of the 
co-occurrence of pairs of word senses) fit naturally with binary parse rules as an estimate 
of the likelihood of co-occurrence of the two subparses, although more complex theories 
have been explored (Basili et al, 1996).  For example, a parse of "f-18 landing" with the 
rule "NP -> NP PARTICIPLEPHRASE" should be rated high because F-18s often land, 
unlike "basement landing" which should only be rated high if parsed as "NG -> ADJ 
NG".  Estimates of co-occurrence probabilities can inherit in a type hierarchy (Rowe, 
1985).  So if we have insufficient data on how often an F-18 lands, we may have enough 
on how often an aircraft lands; and if F-18s are typical aircraft, how often F-18s land is 
estimated by the product of the "aircraft lands" count and the ratio of the count on "F-18" 
to the count on "aircraft" and its subtypes. Both word senses can be generalized in 
searching for counts, so we can use statistics on "F-18" and "moving", on "aircraft" and 
"moving", or on "vehicle" and "moving".  We should use the least generalization having 
sufficient statistics.  It makes sense to lump counts for all morphological variants 
together, so the count on "F-18" and "land" would also cover "the usn f-18s just landed" 
when interpreted as a noun phrase. 
 



When a binary parse rule combines subparses that are themselves the results of binary 
parse rules, we use the counts of the syntactically most important words or "headwords".  
Headwords are the central nouns of noun phrases, the central verbs of verb phrases and 
clauses, the participles of participial phrases, the prepositions of prepositional phrases, 
and so on.  (Actually, "headwords" can be multiword but atomic concepts, like "World 
War I".)  For instance, "the big f-18 from china lake landing at armitage field" can also be 
parsed by "NP -> NP PARTICIPLEPHRASE" with the binary count for "f-18" and 
"landing" used to rate it, since "f-18" is the principal noun and headword of "the big f-18 
from china lake", and "landing" is the participle and headword of "landing at armitage 
field".  The restriction of co-occurrence statistical analysis to headwords is consistent 
with how semantic cases work (a fundamentally binary concept).  But this will miss 
occasional important more-distant relationships in sentences, like between "plane" and 
"landing" in "the plane that crashed in the Norfolk landing", and it will miss key words 
that are not syntactic headwords, as "loading" in "reached the loading area".  Other 
researchers are exploring ways to incorporate such knowledge, but our goal was to see 
how far we could go with a relatively simple approach.  Each binary count should be 
indexed by its corresponding parse rule, so the alternative parse of "f-18 landing" by "NP 
-> ADJECTIVE GERUND" would have a different count.  To help with nominal 
compounds and appositives, which can be difficult, we further index counts by the 
relationship postulated between the headwords.  For instance, "evaluation facilities" 
could mean either the facilities are the agent of the evaluation or the evaluation occurs at 
the facilities. 
 
One advantage of inheritable binary counts is in identification of unknown words.  
Though we do not exploit this yet, categories for the unknown words can be inferred by 
their likelihood of accompanying the neighboring word senses.  For instance, in 
"personnel mounting ghw-12 on an f-18", "ghw-12" is likely to be equipment because of 
the high likelihoods of co-occurrence of equipment terms with "mount" and "on".  
 
Initial binary counts were estimated from frequencies of neighbor-word pairs in the full 
set of 36,191 NAWC-WD captions, apportioning the count for each word, like the unary 
counts, equally among its possible senses (but again artificially boosting the likelihood of 
senses not nouns, verbs, adjectives or adverbs).  After the training set of captions was 
parsed, those statistics were eliminated and new statistics were computed from the 
accepted sentences.  This bootstrapping (Richardson, 1994) was repeated after each 
caption set was parsed.  Counts were incremented for each node of the parse tree for each 
sentence, as well as for all pairs of superconcepts of the word senses involved.  Counts 
are also computed on the grammar rules used.  
 
The storage for binary counts required careful design because there are many distinct 
cases and the data is sparse.  For instance for just our 616 training and test captions, there 
were 2,556 distinct word senses (for 3,172 distinct words) and 73,750 binary counts.  For 
the full set of NAWC-WD captions, we estimate we need 23,000 distinct senses (for 
29,082 distinct words) and about 3,900,000 binary counts. So we developed a binary 
counts data structure that uses four search trees indexed on the first word, the part of 
speech plus word sense of the first word, the second word, and the part of speech plus 



word sense of the second word.  Various compression techniques could further reduce 
storage, like omitting counts within a standard deviation of the predicted value (Rowe, 
1985).  The standard deviation when n is the size of a random subpopulation, N is the 
size of the population, and A the count for the population, is 

)1(/))(( 2 −−− NnNnNANA (Cochran, 1977). 
 
7. Control of parsing 
 
We use a parsing method similar in approach to that of (Magerman, 1995) and Model 1 
of (Collins, 1997), but using different independence assumptions, and computing the 
more-useful probability of a full semantic interpretation rather than the probability of a 
parse tree. Our parser uses four factors to rank possible phrase interpretations: (1) the 
unary counts on the word senses used, (2) the counts on the grammar rules used, (3) the 
binary counts on the headword senses conjoined in the parse tree, and (4) miscellaneous 
factors like the inverse of the distance between the two headwords and compatibility of 
any conjuncts in length and type.  It is usual to treat these as if they were independent 
probabilities (ignoring normalization issues) and multiply them to get the likelihood 
(weight) for the whole sentence (Fujisaki et al, 1991).  For an N-word phrase we can use: 
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where )( iwn  is the count of the word sense chosen for the ith word in the phrase, )( jgn  
the count of the grammar rule used at the jth (in preorder traversal of the parse tree) 
binary-rule application in the parse of the phrase, )( jga  is the degree of association of 
the headwords of the subphrases joined by the jth binary rule, and )( jgm  are 
miscellaneous weighting factors.  
 
If we take the negative of the logarithm of this formula, the problem becomes one of 
finding a minimum-cost sentence interpretation where cost is a sum of factors.  Then the 
challenge of parsing is to estimate which phrase interpretations are most likely to lead to 
good sentence interpretations, which means estimating cost factors for subphrases not yet 
known.  Since the A* search algorithm is provably optimal and addresses this sort of 
problem, we use a variant on it. A* would require for each phrase a lower bound on the 
costs of the remaining factors for the remaining words in the sentence.  This is equivalent 
to finding upper bounds on the factors in the above formula for each remaining word.  
For the unary-counts factor, we can take the count of the most common sense of a word.  
For the grammar-rule factor, we can take the count of the most common grammar rule.  
For the miscellaneous factor, we can take 1 since the factor is computed to have that 
maximum.  But the binary-counts factor is unbounded since the degree of association can 
vary enormously depending on the corpus. We thus use assume a constant binary-counts 
cost per remaining word of the sentence, which is equivalent to adding a negative cost 
constant for each of the words included in the phrase.  This gives a revised formula for 
the likelihood of a phrase: 
 



 
where N is the number of words in the phrase; c is a constant controlling our bias towards 
longer phrases; )( iwf is the count of the ith word sense in the sentence divided by the 
count of the most common sense of that word; )( jgf  is the count of the grammar rule 
used at the jth binary-rule application divided by the count of the most common grammar 
rule; )( jga  is the degree of association of the two headwords of the subphrases joined by 
the jth binary rule; and )( jgm  is the sum of miscellaneous factors on the jth binary rule.  
The c is periodically increased when the system has trouble finding a sentence 
interpretation, and is also adjusted after every sentence interpretation is found to try to 
keep overall sentence weights between 0.1 and 10.0; these modifications help prevent the 
parser from getting stuck on sentences with unfamiliar word-sense combinations. 
 
The degree of association between headwords is the ratio of the observed count of the 
two headwords in this syntactic relationship to expected count.  The expected count can 
be estimated from a log-linear model, the count of this syntactic relationship in the corpus 
times the proportional frequency of the two word senses in the corpus: 

)))(())(())(),(b(t(w  )))(())((),(()( 212j12121 jjjjjjjj wtnwtnwtwtnwtnwwbsa =  
where b is the binary frequency, n the unary frequency, j1 the first word sense, j2 the 
second word sense, and t the topmost generalization of the word sense (which for 
Wordnet is "entity" sense 1 for nouns and "act" sense 2 for verbs).  This is greater than 1 
for positively associated words, and less than 1 for negatively associated words.  A 
default of 0.01 is used for word combinations with no statistics. 
 
Take the example sentence "pod on f-4"; Fig. 1 shows the full chart of phrase-
interpretation records created.  The first argument to each is the index number (and 
creation order) of the record; the second and third arguments are the starting and ending 
positions of the phrase in the full sentence; the fourth argument is the syntactic term for 
the phrase; the fifth the meaning list found; the sixth the backpointers to the component 
records; and the seventh the weight.  Records 1-29 in Fig. 1 cover single words and 
represent the initial records for the search.  For "pod on f-4" we found three Wordnet 
senses of "pod" as a noun (fruit, animal group, and container) and one domain-dependent 
verb sense (meaning to put something into a container).  Only the third noun sense 
occurred in the previously seen captions, so it was given a much higher weight; "pod" as 
a verb got a very small weight since the true verbs are rare in these captions.  (The 
weights of initial records are normalized to enable the constant c to start at 1.)  Similarly, 
"on" can be a location preposition, an orientation preposition, a time preposition, or an 
adverb, but only the first sense occurred in the previously seen captions.  "F-4" is 
unambiguous and got a weight of 1.  Each word sense was then generalized by all 
possible unary parse rules; so a noun can be an "ng", an "ng" can be an "adj2", and an 
"adj2" can be an "np".  Syntactic categories with multiple generalizations (like "ng" 
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which can be either an "np" or an "adj2"), split the weight between the generalizations, so 
"pod-3" as an "np" gets a weight of 0.5.  
 
Then tree-building began.  The location interpretation of "on" was chosen first to 
combine with other agenda items since its weight was highest.  Combining it with the 
word to its right, we got entry 30 for the subphrase "on f-4" with meaning list 
[on(v6,v12), a_kind_of(v12,'F-4'-0)].  This means some unknown thing v6 is on a v12 
which is an instance of an F-4.  The computed weight was 0.999 * 0.5 * 1 * 1.018 * 1 = 
0.5089 from respectively the weight for this interpretation of "on", the weight for "F-4", a 
rule-strength weight of 1 (since this is the only rule for these two syntactic categories), a 
degree of association of 1.018 for "on" and "F-4" (inherited from the degree for "on" and 
"fighter" sense 4, the aircraft sense), and 1 for the absence of miscellaneous factors.  
Eventually the search chose entry 30 to work on, and combined it with the three noun 
senses of "pod" to generate entries 31, 33, and 35, which were immediately generalized to 
the syntactic category "caption" by a unary parse rule to get entries 32, 34, and 36.  Entry 
35 got a much higher weight than 31-34 did because 0.5 * 0.509 * 1 * 1.377 * 1 = 0.351 
where 0.5 is the weight for "pod" sense 3, 0.509 the weight for "on F-4", 1 the rule 
weight, 1.377 the degree of association of "pod" sense 3 and "on" (an association in the 
captions seen), and with no miscellaneous factors.  Entry 36 is the final answer, but 
search continued for a while until all potentially better candidates had been explored. 
 
Fig. 2 shows a longer example comparing MARIE-2 parser output with MARIE-1 output.  
MARIE-1's output is less precise (without word senses and with very general predicate 
names), more complex, and shows the effects of overly specialized rules as in the 
handling of the coordinates.  MARIE-1 could not connect sentences, and also erred in 
identifying a DVT-7 as equipment and "run 2" as the direct object of a test.  In general, 
MARIE-2's meaning lists were significantly more accurate than those of MARIE-1 
because it could backtrack to get the best interpretation of a caption, not just an adequate 
one; MARIE-1 found only one interpretation.  The significantly more complex 
grammatical and semantic features of MARIE-2 also helped. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



p(1,1,1,verb,[a_kind_of(v1,pod-100),quantification(v1,plural)],[],0.000544). 
p(2,1,1,vg,[a_kind_of(v1,pod-100),quantification(v1,plural)],[1],0.000544). 
p(3,1,1,vp2,[a_kind_of(v1,pod-100),quantification(v1,plural)],[2],0.000544). 
p(4,1,1,vp,[a_kind_of(v1,pod-100),quantification(v1,plural)],[3],0.000544). 
p(5,1,1,noun,[a_kind_of(v2,pod-1)],[],0.015151). 
p(6,1,1,ng,[a_kind_of(v2,pod-1)],[5],0.015151). 
p(7,1,1,adj2,[a_kind_of(v2,pod-1)],[6],0.007575). 
p(8,1,1,np,[a_kind_of(v2,pod-1)],[6],0.007575). 
p(9,1,1,noun,[a_kind_of(v3,pod-2)],[],0.015151). 
p(10,1,1,ng,[a_kind_of(v3,pod-2)],[9],0.015151). 
p(11,1,1,adj2,[a_kind_of(v3,pod-2)],[10],0.007575). 
p(12,1,1,np,[a_kind_of(v3,pod-2)],[10],0.007575). 
p(13,1,1,noun,[a_kind_of(v4,pod-3)],[],0.999969). 
p(14,1,1,ng,[a_kind_of(v4,pod-3)],[13],0.999969). 
p(15,1,1,adj2,[a_kind_of(v4,pod-3)],[14],0.499984). 
p(16,1,1,np,[a_kind_of(v4,pod-3)],[14],0.499984). 
p(17,2,2,locprep,[property(v6,on)],[],0.999995). 
p(18,2,2,prep,[property(v6,on)],[17],0.999995). 
p(19,2,2,miscprep,[property(v7,orientation)],[],0.002439). 
p(20,2,2,prep,[property(v7,orientation)],[19],0.002439). 
p(21,2,2,adv,[property(v8,on-150)],[],0.002439). 
p(22,2,2,timeprep,[property(v9,during)],[],0.002439). 
p(23,2,2,prep,[property(v9,during)],[22],0.002439). 
p(24,2,2,miscprep,[property(v10,object)],[],0.019512). 
p(25,2,2,prep,[property(v10,object)],[24],0.019512). 
p(26,3,3,noun,[a_kind_of(v12,'F-4'-0)],[],0.999833). 
p(27,3,3,ng,[a_kind_of(v12,'F-4'-0)],[26],0.999833). 
p(28,3,3,adj2,[a_kind_of(v12,'F-4'-0)],[27],0.499916). 
p(29,3,3,np,[a_kind_of(v12,'F-4'-0)],[27],0.499916). 
p(30,2,3,pp,[on(v6,v12),a_kind_of(v12,'F-4'-0)],[[17,29]],0.508953). 
p(31,1,3,np,[a_kind_of(v2,pod-1),on(v2,v12),a_kind_of(v12,'F-4'-0)],[[8,30]],0.002336). 
p(32,1,3,caption,[a_kind_of(v2,pod-1),on(v2,v12),a_kind_of(v12,'F-4'-0)],[31], 0.00234). 
p(33,1,3,np,[a_kind_of(v3,pod-2),on(v3,v12),a_kind_of(v12,'F-4'-0)], [[12,30]],0.00234). 
p(34,1,3,caption,[a_kind_of(v3,pod-2),on(v3,v12),a_kind_of(v12,'F-4'-0)], [33],0.00234). 
p(35,1,3,np,[a_kind_of(v4,pod-3),on(v4,v12),a_kind_of(v12,'F-4'-0)], [[16,30]],0.35050). 
p(36,1,3,caption,[a_kind_of(v4,pod-3),on(v4,v12),a_kind_of(v12,'F-4'-0)], [35],0.35050). 
p(37,1,3,vp2,[a_kind_of(v1,pod-100), quantification(v1,plural),on(v1,v12) 
,a_kind_of(v12,'F-4'-0)], [[3,30]],0.00000). 
p(38,1,3,vp,[a_kind_of(v1,pod-100),quantification(v1,plural),on(v1,v12), 
a_kind_of(v12,'F-4'-0)],[37],0.000000). 
p(40,2,3,pp,[object(v10,v12),a_kind_of(v12,'F-4'-0)],[[24,29]],0.009611). 
 

Figure 1: Chart resulting from parse of "pod on f-4". 
 
 
 



Input 215669:  
 
"tp 1314.  a-7b/e dvt-7 (250 keas) escape system (run 2).  synchro firing at 1090' n x 38' 
w.  dummy just leaving sled." 
 
Meaning list computed by MARIE-2: 
 
[a_kind_of(v1,"TP-1314"-0), during(v3,v1), a_kind_of(v3,"escape system"-0), 
during(v3,v4), 
a_kind_of(v4,"RUN 2"-0), agent(v8,v3), a_kind_of(v8,"DVT-7"-0), 
measurement(v8,v2), 
a_kind_of(v2,"250 keas"-0), quantity(v2,250), units(v2,keas), object(v8,v5), 
a_kind_of(v5,"A-7B/E"-0), 
during(v141,v1), a_kind_of(v141,launch-2), property(v141,synchronous-51), 
at(v141,v95), 
a_kind_of(v95,place-8), part_of(v45,v95), part_of(v46,v95), a_kind_of(v45,"1090'' n"-
0), 
quantity(v45,1090), units(v45,"latitude-minute"-0), a_kind_of(v46,"38'' w"-0), 
quantity(v46,38), 
units(v46,"longitude-minute"-0), during(v999,v1), a_kind_of(v999,dummy-3), 
agent(v1012,v999),  
a_kind_of(v1012,leave-105), tense(v1012,prespart), property(v1012,just-154), 
object(v1012,v1039), 
 a_kind_of(v1039,sled-1)] 
 
Superconcept information for the word senses: 
 
"TP-1314"-0 -> test-3, "escape system"-0 -> system-8, "DVT-7"-0 -> test-3, 
"250 keas"-0 -> number-7, "A-7B/E"-0 -> fighter-4, "RUN 2"-0 -> run-1, shoot-109 -> 
discharge-105, 
place-8 -> "geographic area"-1, "1090' n"-0 -> number-6, "38' w"-0 -> number-6,  
synchronous-51 -> "at the same time"-51, dummy-3 -> figure-9, leave-105 -> go-111, 
sled-1 -> vehicle-1 
 
Meaning list computed by MARIE-1: 
 
[inst('noun(215669-4-2)',sled), inst('noun(215669-2-a68)','A-7B/E'), 
attribute('noun(215669-2-a67)',part_of('noun(215669-2-a68)')), 
inst('noun(215669-2-a67)','DVT-7'), agent('prespart(215669-4-1)',obj('noun(215669-4-
1)')), 
source('prespart(215669-4-1)',obj('noun(215669-4-2)')), 
activity('prespart(215669-4-1)',depart), attribute('coordinate(215669-3-1)','1090 '' N x 38 
'' W'), 
inst('coordinate(215669-3-1)',coordinate), attribute('noun(215669-2-6)','2'), 
theme('noun(215669-2-6)',obj('noun(215669-2-5)')), inst('noun(215669-2-6)',run), 



theme('noun(215669-2-5)',obj('noun(215669-2-a67)')), quantity('noun(215669-2-
5)',keas('250')), 
inst('noun(215669-2-5)',test), attribute('noun(215669-3-1)',synchronous), 
location('noun(215669-3-1)',at('coordinate(215669-3-1)')), 
activity('noun(215669-3-1)',launch), inst('noun(215669-4-1)',dummy), 
attribute('noun(215669-1-1)','1314'), inst('noun(215669-1-1)','test plan')] 
 

Figure 2: Example parser output, plus superconcepts for the word senses used. 
 
 
8. Experiments 
 
We used 616 captions in four caption sets comprising 1009 sentences in our experiments 
(see Table 3).  The first set was the 217 captions handled by MARIE-1 (Guglielmo and 
Rowe, 1996).  These were from the NAWC-WD Photo Lab, and were created by taking a 
random sample of supercaptions (captions for sets of photographs) and transcribing the 
captions written on photograph folders for all their component photographs.  Since 
captions for a supercaption are closely related, there was significant redundancy.  Some 
correction of syntax errors was done as explained in the earlier paper.  Statistics for 
parsing this caption set were estimated as described in sections 5 and 6. After training on 
this set, we calculated statistics and ran caption set 2 using them.  Set 2 captions were a 
different random sample of 108 supercaptions with little redundancy.  No manual 
correction of the captions was done, and they were difficult to parse.  Caption sets 3 and 
4 were 172 and 119 manually-extracted captions constituting nearly all the captioned 
images available on the NAWC-WD World Wide Web site in August 1998.  These were 
less technical and used some new grammatical constructs like conjunctive adjectives and 
relative clauses, but were mostly not difficult to parse.  Sets 3 and 4 were not used for 
initial lexicon construction and so required additional lexicon entries.  After each caption 
set we updated our statistics using the new results, so set 1 provided statistics for testing 
set 2, sets 1 and 2 for testing set 3, and sets 1, 2, and 3 for testing set 4.  We finally had 
counts for 1931 distinct word senses and 4018 word-sense pairs.  Development and 
testing took about a man-year of work including development of the parser. 
 
 
 
 
 
 
 
 
 
 
 



Table 3 : Overall statistics on the four caption sets (numbers in parentheses are the 
occurrence rate per caption word). 

 Caption set 
1 (training) 

Caption set 
2 
(test/trainin
g) 

Caption set 3 
(test/training
) 

Caption 
set 4 (test) 

Number of new captions 217 108 172 119 
Number of new sentences 444 219 218 128 
Total number of words in 
new captions 

4488 1774 1535 1085 

Number of distinct words in 
new captions 

939 (.2092) 900 (.5073) 677 (.4410) 656 
(.6046) 

Number of new lexicon 
entries required 

c. 150 
(.0334) 

106 (.0598) 139 (.0906) 53 (.0488) 

Number of new word senses 
used 

929 (.2070) 728 (.4104) 480 (.3127) 416 
(.3834) 

Number of new sense pairs 
used 

1860 
(.4144) 

1527 (.8608) 1072 (.6983) 795 
(.7327) 

Number of lexical-
processing changes required 

c. 30 
(.0067) 

11 (.0062) 8 (.0052) 7 (.0065) 

Number of syntactic-rule 
changes or additions 

35 (.0078) 41 (.0231) 29 (.0189) 10 (.0092) 

Number of case-definition 
changes or additions 

57 (.0127) 30 (.0169) 16 (.0104) 3 (.0028) 

Number of semantic-rule 
changes or additions 

72 (.0161) 57 (.0321) 26 (.0169) 14 (.0129) 

 
 
On each caption sentence, we forced the system to backtrack and try again until it found 
the best possible interpretation according to the trainer's (the author's) judgment.  To 
guide it, with each sentence interpretation generated, the system permitted the trainer to 
rule out one particular error (only one per try, to get useful statistics on the number of 
tries).  So the trainer could tell the parser to rule out "sidewinder" sense 2, part-whole 
relationships, past participles, conjunctive connections, or even a specific predicate 
expression saying an aircraft sense 1 possessed a sidewinder sense 2.  When bugs in the 
parser were occasionally found, processing was aborted, the bugs were fixed, and the 
sentence was run again. 
 
Fig. 3 shows the distribution of total parse times (including all tries for each sentence) in 
CPU seconds (using semi-compiled Quintus Prolog) for the 1009 caption sentences as a 
function of sentence length in number of words; the axes display the natural logarithms. 
(Bear in mind this implementation was only semi-compiled, and could be speeded up 
significantly.)  Significant sentence variation is apparent.  Fig. 4 shows the logarithm of 
the geometric mean of parse CPU time as a function of the logarithm of sentence length; 
the textured line is the first caption set, the dashed line is the second, and the solid line is 



the third and fourth sets.  (We combine statistics for the third and fourth sets since the 
statistics were very similar.)  It can be seen that parse time increased on the second 
caption set due to the increased parser complexity after debugging, but not subsequently.  
This suggests that initialization effects are now fading and performance will remain 
constant or improve with further training captions.  Also note all the curves have a linear 
trend in these log-log plots; least-squares regression gave us a rough fit of 876.20858.0 n  
for n is the number of words in the sentence, with degree of significance 0.531. 
 
 
 

 
Figure 3: Logarithm of parse CPU time versus logarithm of sentence length for all 

captions. 
 



 
Figure 4: Natural logarithm of average parse CPU time in seconds versus sentence 

length (hatched line is for set 1, dotted line is for set 2, and solid line is for sets 3 and 
4). 

 
Successful parses were found for all but two ungrammatical sentences (and two very long 
sentences had to be split to parse in a reasonable amount of time).  Thus to measure parse 
accuracy we use the number of tries before the best sentence interpretation was found.  
As mentioned above, only one word sense or relationship can be corrected per try, so the 
number of tries is a rough metric of the number of errors in the first-attempt meaning list.  
Fig. 5 plots the logarithm of the number of tries as a function of the logarithm of sentence 
length. Fitting this data, we got the formula 668.1809.1 n , where n is the number of words 
in the sentence, with degree of significance 0.550.  The shape of the curve is similar to 
that for CPU time, but sets 3 and 4 show a little improvement over set 2, suggesting 
further improvements to come. 
 
 
 



 
Figure 5: Natural logarithm of average number of tries versus logarithm of sentence 
length (hatched line is for set 1, dotted line is for set 2, and solid line is for sets 3 and 

4). 

 
To study the influence of key factors on the parser, we did more detailed experiments 
with eight representative captions from caption set 3 shown in Table 4.  Table 5 shows 
parse CPU time and number of required tries before obtaining the best interpretation for 
each caption.  The first pair of numbers are during the test run using statistics from the 
first two caption sets.  The second pair of numbers are from rerunning after including 
statistics from all of set 3.  The new statistics clearly help but not much on shorter 
sentences; the best improvement was for the last sentence with hints that the unusual 
constructs of gerunds and prepositional adverbs were being used.  The third pair of 
numbers in Table 5 are for conditions like the second except without any binary word-
sense statistics. Inheritance of binary statistics slows some sentences a little, but help 
some longer sentences like the seventh with its many nominal compounds.  The fourth 
pair of numbers are for conditions like the second except without unary statistics, so that 
all word senses were rated equally likely.  This hurts performance significantly, 
suggesting that learning the common word senses is a key to learning this dialect. 
 
 
 
 



 

Table 4: Example sentences. 

NO. CAPTION 
1 pacific ranges and facilities department, sled tracks. 
2 airms, pointer and stabilization subsystem characteristics. 
3 vacuum chamber in operation in laser damage facility. 
4 early fleet training aid: sidewinder 1 guidance section cutaway. 
5 awaiting restoration: explorer satellite model at artifact storage facility. 
6 fae i (cbu-72), one of china lake's family of fuel-air explosive weapons. 
7 wide-band radar signature testing of a submarine communications mast in the 

bistatic anechoic chamber. 
8 the illuminating antenna is located low on the vertical tower structure and the 

receiving antenna is located near the top. 
 
 

Table 5: Parse CPU time and number of tries until the best interpretation is found 
for the eight example sentences under difference circumstances. 

Sentenc
e 

number 

Sentenc
e length 

Trainin
g time 

Trainin
g tries 

Final 
time 

Fina
l 

tries 

No-
binar

y 
time 

No-
binar

y 
tries 

No-
unary 
time 

No-
unar

y 
tries 

1 8 27.07 13 17.93 5 8.27 5 60.63 19 
2 7 70.27 10 48.77 9 94.62 14 124.9 23 
3 8 163.0 19 113.1 19 202.9 23 2569.0 22 
4 9 155.2 9 96.07 3 63.95 8 229.3 22 
5 10 86.42 8 41.02 3 49.48 6 130.6 30 
6 15 299.3 11 65.78 7 68.08 5 300.4 15 
7 15 1624.0 24 116.5 5 646.0 12 979.3 25 
8 20 7825.0 28 35.02 2 35.60 3 >5000

0 
- 

 
 

 
9. Queries 
 
We also built a natural-language query capability for captions using this parser.  An 
English query obtained from the user is parsed and interpreted.  Its variables are given 
special names different from caption-variable names, and tense and number markings are 
eliminated. "Coarse-grain matching" is then done to find captions mentioning the concept 
types in the query.  This requires a full index on types mentioned in captions.  Caption 
candidates passing the coarse-grain match are then subject to "fine-grain matching" of the 
full query meaning list to the full caption meaning list.  This is a standard 
nondeterministic match with backtracking, and must be an exact match. We assume that 



the correct interpretation of a query is the highest-ranking interpretation that has a non-
null fine-grain match, and we backtrack to automatically generate interpretations until we 
find one.  Thus our parser need not be perfect at finding the best interpretation first; but 
the less accurate it is, the more time it requires.  Thumbnail-sized pictures corresponding 
to the matched captions are then displayed.  High accuracy was shown for this phase of 
MARIE-1, so we did not test it for MARIE-2. 
 
10. Conclusions 
 
We have attempted a difficult task of parsing substantial sentences in a raw specialized 
real-world dialect with unusual new word senses, creative syntax, and errors.  Our results 
show it can be done, and statistical parsing helps, but that significant setup work is 
required.  We reached the point after 1009 sentences where the number of tries required 
to get the best interpretation of a sentence decreased, which is encouraging, but the total 
parse time remained constant.  We suspect this reflects a tradeoff of smarter processing 
with the added effort in handling increasing numbers of special cases, and could be 
improved by a more efficient encoding.  Nonetheless, parse time may improve with 
further sentences anyway.  And it should likely improve with preliminary sense 
disambiguation like that of (Leacock, Chodorow, and Miller, 1998).  We hope our 
experiments will provide helpful ideas to other researchers addressing the many 
specialized technical dialects for which automated understanding can be valuable. 
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