
 1

Evolution of the Standard Simulation Architecture

Dr. Jeffrey S. Steinman
Chief Scientist, RAM Laboratories

10525 Vista Sorrento Parkway, Suite 220
San Diego, CA 92121

steinman@ramlabs.com

Douglas R. Hardy
Scientist, SPAWAR Systems Center-San Diego

53140 Systems Street, Code 244201
San Diego, CA 92152

douglas.hardy@navy.mil

 2

Abstract
This paper proposes the standardization of a layered simulation architecture that addresses the critical

modeling needs of the DoD simulation community. The Standard Simulation Architecture works with
HLA to provide the additional infrastructure necessary for developing highly inter-acting, decoupled
software models, while simultaneously supporting technology infusion from R&D organizations.

A layered architecture is proposed to modularize critical capabilities including high-speed
communications between nodes in a multiprocessing federate, general-purpose software utilities,
modeling semantics, time management, interest management, and automated interoperability with HLA.
The interface layers must be standardized to promote (1) model development, (2) portability and
interoperability with other models, (3) scalable high performance, and (4) technology infusion from the
research community. Through the standardization process, COTS, GOTS, and Open Source business
models are supported.

The Standard Simulation Architecture extends interoperability and reuse principles to (1) the entities
residing within a multiprocessing federate and to (2) the components hierarchically residing within an
entity or within components. This standardized hierarchical modeling paradigm promotes development
of reusable entity and component repositories that can be reused to support different modeling
applications. Instead of providing only course-grained interoperability through HLA, the Standard
Simulation Architecture also supports medium and fine-grained interoperability between entities and
their components.

1 Introduction
Software development efforts funded by the

Department of Defense must be regarded as
important long-term investments. Complex
software systems should be leveraged and reused
in other programs whenever technically feasible.
In order for this to occur, software must be
developed from the start with the goal of reuse.
Basic interoperability principles should be
carefully followed for software to be successfully
reused in other programs. The Standard
Simulation Architecture (SSA) promotes these
principles with the goal of maximizing the return
on software investments that were funded by
taxpayer dollars.

The High Level Architecture (HLA) was
successfully launched in 1996 to promote
interoperability and reuse between simulations
executing in distributed environments. These
simulations, called federates, typically
interoperate in an HLA federation to support joint
analysis or joint training exercises that require the
coordination of disjoint models. Despite the

success of HLA, similar techniques have not yet
been fully standardized for promoting
interoperability between (1) entities, potentially
executing on multiprocessor computers, and (2)
their internal components. There are no general-
purpose entity or component repositories in
existence today. Furthermore, a common
architecture has not yet been formally
standardized to minimize the development cost
required to build software models that integrate
with HLA.

Without such standards, it is nearly impossible
to develop reusable entity and component
software models because they typically embed
various critical framework or simulation engine
services within the code to coordinate their
activity. Because each simulation typically
provides its own event-processing engine with its
own specialized interfaces, interoperability
between entities and components is not possible.
Examples of this may include (1) event-
scheduling interfaces, (2) interest management
with automated data distribution, and (3) time

 3

management services. The Standard Simulation
Architecture defines high-performance modeling
constructs along with a suite of programming
utilities to simplify model development for
software engineers while simultaneously
minimizing the dependencies between models.

One of the goals of the Standard Simulation
Architecture is to maximize flexibility and
composability. Federations are composed of
simulations, which are composed of entities,
which are further hierarchically composed of
components. The Standard Simulation
Architecture promotes flexibility in efficiently
mapping the software models to machines
operating in a parallel and distributed
environment.

Three levels of granularity naturally arise
within the Standard Simulation Architecture.
First, the High Level Architecture normally
provides network-based communications between
simulations with overheads that are typically in
the millisecond range. Second, the Standard
Simulation Architecture provides high-speed
communication between entities potentially
executing on multiprocessor machines through
shared memory or high-speed network
communications. Overheads between interacting
entities are typically in the microsecond range.
Third, components hierarchically modeled within
an entity interact with other components through
abstract polymorphic function calls with
overheads in the nanosecond range.

Roughly six orders of magnitude separate these
three levels of granularity. Special consideration
must be given to all three levels of granularity to
maximize overall performance when designing
large parallel and distributed reusable simulation
systems. Portability and composition flexibility
are most critical when the target hardware
platforms vary in different operational settings.

The Standard Simulation Architecture is
defined by a dependency-layered approach. Each
software layer provides a standard set of
interfaces and depends only on the preceding (or
lower) layers of the architecture. By standardizing

each layer, it becomes possible for technologists
to integrate successful R&D efforts into
mainstream simulation programs. The proposed
Standard Simulation Architecture supports COTS,
GOTS, and Open Source business models,
thereby providing a way for commercial,
government, and academic institutions to
participate in developing simulation technology
with the necessary infrastructure for promoting
interoperability and reuse.

This paper proposes a layered architecture for
supporting software interoperability and reuse in
DoD simulations where scalability and efficient
run-time performance is crucial. The proposed
architecture is derived from lessons learned in
support of the Joint Simulation System (JSIMS)
program, and other large-scale modeling and
simulation efforts. Most of the capabilities
described in this paper have been developed and
successfully used on various government
programs. This paper attempts to bring these
technologies together into a coherent standardized
architecture. Related technologies feeding into the
Standard Simulation Architecture include:

1. The High Level Architecture (HLA)
2. The Aggregate Level Simulation Protocol

(ALSP)
3. Distributed Interactive Simulation (DIS)
4. Semi-Automated Forces (MODSAF, JSAF,

ONESAF, etc.)
5. Common Object Request Broker

Architecture (CORBA)
6. Publish/Subscribe architectures
7. Active Routing
8. Time Warp Operating System (TWOS)
9. Synchronous Environment for Emulation

and Discrete Event Simulation (SPEEDES)
10. The Joint Simulation System (JSIMS)

Common Component Simulation Engine
(CCSE)

11. WarpIV high-performance parallel and
distributed simulation kernel

 4

12. High Performance Computing Run Time
Infrastructure (HPC-RTI)

13. Mixed Resolution Modeling Aide
(MRMAide)

First, the historical evolution of the SSA is
provided. Then, a general discussion on the
subject of interoperability and software reuse
shows how familiar concepts taken from HLA can
be reused within a simulation framework to
promote interoperability, not just between
federates, but also between entities and their
components. A layered straw-man architecture is
then presented that supports the full set of
interoperability and performance requirements for
DoD simulations. These proposed layers are
primarily based on operational software that has
been developed and reused across a number of
programs. Finally, a high-level strategy for
developing the Standard Simulation Architecture
is detailed in the conclusion of this paper.

2 Historical Evolution of the SSA
The evolution of the SSA began in the late

1980’s and is still evolving today through the
development of core infrastructures for several
large DoD projects including the Joint Simulation
System (JSIMS).

In the late 1980’s, SIMNET was developed to
support real-time battlefield simulations of tanks
in a virtual training environment. The Joint
Training Confederation (JTC) was developed to
integrate models from the different armed forces
to support joint training exercises. Meanwhile, the
Time Warp Operating System (TWOS) was
developed at the Jet Propulsion Laboratory (JPL)
showing that optimistic time management could
achieve parallel speedup when applied to military
simulation applications.

In the early 1990’s, SIMNET evolved into the
Distributed Interactive Simulation (DIS) standard
to support virtual battles involving Semi-
Automated Forces. IEEE standardized more than
one hundred Protocol Data Units (PDUs) that
specify message formats exchanged between DIS
models. The Aggregate Level Simulation Protocol

(ALSP) was developed by MITRE to simplify the
integration of various simulations participating in
the JTC. Meanwhile, the Synchronous Parallel
Environment for Emulation and Discrete-Event
Simulation (SPEEDES) operating system was
developed at JPL as a next-generation high-
performance simulation engine to replace TWOS.
SPEEDES introduced new flow control
techniques that were required to stabilize run-time
performance for optimistic simulations.

In the late 1990’s, HLA became the
interoperability standard for building Federations
out of real-time and/or logical-time simulations.
As HLA was maturing, the Standard Modeling
Framework (SMF) and an initial implementation
of the DSMS layer were being designed and
developed in SPEEDES. These capabilities have
been further enhanced in the WarpIV simulation
kernel developed by RAM Laboratories, Inc.

In early 2000, JSIMS combined SPEEDES and
HLA as its simulation architecture. This enabled
each JSIMS Development Agent (DA) to develop
independent models that would interoperate using
a powerful SPEEDES-based Common
Component Simulation Engine (CCSE),
developed at SPAWAR Systems Center (SSC). A
new implementation of the DSMS layer was
required to support the modeling needs of large
complex federations involving multiple
SPEEDES and direct HLA Federates. The
SPEEDES-HLA combination, with extensions in
WarpIV, is currently evolving into the Standard
Simulation Architecture (see

Figure 1).

 5

Late 1980Late 1980’’ss Early 1990Early 1990’’ss Late 1990Late 1990’’ss 20002000……

SimulationSimulation
TechnologyTechnology

Entity &Entity &
ComponentComponent
RepositoryRepository

DISDIS

ALSPALSP

SPEEDESSPEEDES

SIMNETSIMNET

JTCJTC

TWOSTWOS

HLAHLA

SMFSMF
DSMSDSMS

SSASSA

Figure 1: Evolution of the Standard Simulation
Architecture from the late 1980’s through 2000 and beyond.

3 General Principles of Software Reuse
Software reuse is an important goal to strive for

in the area of software engineering. Object-
oriented approaches to software development
have shown promise in providing interoperability
and reuse. However in practice, this goal has been
elusive and at best difficult to achieve. Either the
not-invented-here syndrome overrides the
potential for software reuse, or the available
software choices presented to engineers simply do
not meet the requirements of a new software
project.

Often, the effort to reuse existing software is
larger than what it would take to simply write new
code. Software reuse can require a steep learning
curve. Many times, there are good technical
reasons to not reuse software. For example, it
might make more sense to redundantly develop
new software to avoid code dependencies. Under
the right circumstances, it may be better to
optimize an internal algorithm rather than to reuse
a more generic algorithm that would result in
worse performance. Sometimes, a tight delivery
schedule dictates the software reuse policy.

Experienced software engineers intuitively use
common sense when making decisions concerning
software reuse. However, there are several
overarching principles that promote the
development of reusable software.

1. Reusable software must be passive and not
active in its usage. It must not be directly
tied to the particular application or

infrastructure that is using the software.
This means that the services provided by
reusable software must be capable of being
invoked by any application, not just one in
particular. Global variables tied to specific
applications should not be accessed by
reusable software.1

2. A framework is often required to
coordinate the operation of reusable
software. Typically the coordination is
accomplished through run-time dynamic
binding mechanisms (e.g., virtual functions,
callbacks, polymorphic methods, event
scheduling, etc.). These software modules
depend on the existence of the framework
to coordinate their operation. While
frameworks are often necessary to support
complex systems, this often limits
potentially reusable software to only
operate within the framework.2

3. Software frameworks can be standardized
with a well-defined API to reduce
dependencies on any particular vendor’s
implementation of the framework.3 This
extends interoperability and reuse for both
application software and the technology or
infrastructure necessary to support the
applications.

4. Generic types, generic algorithms, macros,
compile flags, abstract base classes, and
operator-overloading techniques are tools
that can be used to successfully decouple

1 A good example of reusable software is the Standard Template Library

(STL) in C++ that provides a set of general-purpose container classes
and generic algorithms.

2 A good example of a standard framework is how event scheduling and
processing depends on the existence of a simulation engine that provides
an API to schedule and process events. Even though these events may be
reused in several different simulation applications, they still depend on
the event scheduling and event processing API of that particular
simulation engine. A standardized simulation engine API would allow
the events to be reused in other simulation engines that adhere to the
same standard.

3 The High-Level Architecture (HLA) provides a standard API that allows
vendors to implement their own Run-Time Infrastructure (RTI). HLA-
compliant simulations can interoperate with other HLA-compliant
simulations using any HLA-compliant RTI because the interfaces for the
RTI have been standardized.

 6

software from a particular application or
framework.4

5. Software reuse strategies must take
communications, computations, memory
usage, and overall software engineering
complexity into consideration. All too
often, complex systems are designed by
naively connecting black-box software
modules together without regard for
performance and scalability. The
performance of a poorly thought-out
system may be disastrous when only
connectivity is considered in the design.5
Even worse is when the software becomes
overly brittle through tight coupling
between its internal components to the
point where it cannot be maintained.

6. Software that was not designed for reuse
will almost certainly not be reusable. It
takes a disciplined effort to make software
reusable.6

7. Software cannot claim to be reusable unless
it is used in more than one application. One
way to help enforce this rule is to test the
software in an environment that is isolated
from the primary application. Library
dependencies should be verified when
testing reusable software. It is not
uncommon for inappropriate software
dependencies to creep into the code-base by
quick fixes that occur over the life cycle of
a software project, especially when
employee turnover on the project is high.

4 To illustrate the generic type technique, a “smart” pointer class can be

defined within a memory management system to provide automated
checks for memory problems. If implemented carefully, the smart
pointer class can be redefined at compile time to be a normal pointer.
This permits reusable applications to operate normally without requiring
inclusion of the memory management framework

5 For example, the overhead in passing data through a network is orders of
magnitude larger than the overhead involved when passing data through
shared memory or through function calls.

6 A related corollary to this is, “If it hasn’t been tested, then it doesn’t
work!”

4 HLA Reuse Principles Applied to SSA
Within the DoD simulation arena, the

discussion of interoperability and reuse has
centered on HLA. Four important interoperability
principles have emerged from the development of
HLA that are directly applied to the SSA.

1. A standardized software framework with
well-defined interfaces is required to
interconnect reusable models (e.g., the
RTI).

2. The data exchanged by the models must
follow an agreed upon standard (e.g., the
FOM).7

3. Distributed object technology allows
models to (1) know about each other’s state
and (2) invoke actions within other models
in a coordinated manner (e.g., TM, OM,
DM, DDM, and OWN).

4. The double-abstraction barrier principle
allows a model to invoke actions on other
models while hiding the details concerning
which specific models are participating in
the action and which methods those
participating models provide to handle the
action (e.g., Interactions).

The Standard Simulation Architecture (SSA)
applies these four principles through its
conceptual hierarchical decomposition of
interoperable software models. This is shown in
Figure 2. HLA Federations are composed of two
kinds of Federates, SSA Federations and Legacy
Federates.8 SSA Federations are composed of
SSA Federates and High Performance Computing
(HPC) RTI Federates.9 SSA Federates are

7 One of the most difficult problems facing the HLA user community is

(1) how to specify what goes into the FOM, and (2) how that maps to a
particular Federate’s SOM. A Federate that participates in more than one
Federation must be able to translate its SOM to multiple FOMs. Tools
have been developed to accomplish this, but a standardized FOM, such
as the RPR-FOM, would significantly help support interoperability.

8 A Legacy Federate provides its own simulation engine and internal
infrastructure to communicate directly with the RTI.

9 HPC-RTI Federates are also legacy federates, but their interface to the
RTI is directly provided by the Standard Simulation Architecture. This
provides a more direct interface with lower overheads on high-
performance multiprocessor computers.

 7

composed of entities that are hierarchically
composed of components. Both entities and
components can create/publish local Federation
Objects (FOs) and subscribe to remote Federation
Objects. Filters may be dynamically created
and/or changed to determine which FOs are
discovered by which entities and components.

HLA FederationHLA Federation

HLA FederateHLA Federate

HLA FederateHLA FederateSSA FederationSSA Federation

HPC-RTI FederateHPC-RTI FederateSSA FederateSSA Federate

EntityEntity

ComponentComponent

*

*

*

*

*

Federation ObjectFederation Object
*

*

ComponentComponent
*

* Publish local FOsPublish local FOs
Subscribe to remote FOsSubscribe to remote FOs

ModelsModels

Sub-modelsSub-models

Sub-sub-modelsSub-sub-models

UML: Composed OfUML: Composed Of

UML: Type OfUML: Type Of

Figure 2: Decomposition of an HLA Federation into
Federates, Entities, Components, and Federation Objects.

4.1 Standardized Software Framework
First, while HLA provides a Run Time

Infrastructure (RTI) that allows Federates to
interoperate, a larger, more comprehensive,
framework is needed to support the full modeling
needs required by a Federate. A Federate’s
connection to the RTI is only one layer in the
overall Standard Simulation Architecture.
Opportunity for interoperability and reuse is only
realized if the architecture layers are standardized
and if the modeling services provided by the
framework promotes basic software
interoperability and reuse principles.

4.2 Standard Description of Exchanged Data
Second, HLA provides a standard Object

Model Template (OMT) format to describe the
data that flows through the RTI between
Federates. A more comprehensive description of
the exchanged data between reusable software
models representing entities and their components
within an SSA Federate is needed to facilitate
interoperability and reuse in an efficient manner.
A standardized interface between interoperable
software modules within a Federate must be
defined in a manner that promotes interoperability

and reuse for a broad number of simulation
applications. Data translations and polymorphic
abstractions can help integrate models of mixed-
resolution without requiring strong coupling
between models. This approach provides a
roadmap for transitioning legacy model
components into SSA federates.

4.3 Distributed Object Technology
Third, HLA provides distributed object

technology between Federates. Similar
mechanisms must also be provided between
entities within an SSA Federate executing on
multiple processors. An automated Distributed
Simulation Management Services (DSMS) layer
within a Federate should mirror HLA
functionality between entities while preserving the
abstraction that an entity could reside within the
Federate or within another Federate. This means
that entities within a Federate should learn about
each other’s state through DSMS Federation
Objects (FOs) and interact with one another
through DSMS Interactions.10 An HLA gateway
coordinates DSMS activity with the RTI to
automate connectivity with other Federates in an
HLA Federation.

An entity should never directly call a method
on another entity since interacting entities could
reside within different Federates. In a similar vein,
high-performance Federates executing in parallel
must follow the same FO and Interaction
guidelines for entities because entities may reside
on different processing nodes. This important rule
even applies to entities residing on the same
processing node in a parallel Federate because the
entities themselves may be at different logical
times.11 Like HLA, high performance and
scalability is achieved through the DSMS layer by

10 In many ways, entities within a Federate look like miniature Federates.

Entities interoperate exclusively through the exchange of FOs and
Interactions supported by the DSMS layer.

11 Both optimistic and conservative time management schemes use a
scheduler to determine which entity gets to process its next event. In
optimistic simulations, straggler messages can roll entities backwards in
time, while other entities continue to process forward. Schedulers in
conservative simulations often use topology knowledge between entities
to determine which entity gets to process its next event. In general,
entities may be at different logical times.

 8

supporting scalable interest management services
that throttle FO and Interaction data exchanges
between entities and their internal components.

4.4 Double-abstraction Barrier Principle
Fourth, HLA supports the double-abstraction

barrier principle between Federates through the
Interaction mechanism. Federates first subscribe
to the kinds of interactions they need and then
establish their own methods for handling
interactions as they are received. A Federate
sending an interaction through the RTI does not
know which other Federates (if any) have
subscribed to the interaction. This is the first
abstraction barrier. Furthermore, even if the
sending Federate were to know which other
Federates received the interaction, the sending
Federate still does not know which methods are
applied by receiving Federates to process the
interaction. This is the second abstraction barrier.

In a similar manner, the double-abstraction
barrier principle can be applied to entities within a
Federate and to their internal components. This
technique decouples entities and components,
thereby promoting reusability in a manner that is
familiar to HLA. The difference, however, is that
the SSA simplifies the process through its tailored
modeling constructs and programming interfaces.

Network-based Federations apply the double-
abstraction barrier principle through interactions
with typical network overheads in the millisecond
range. Entities residing within a sequential or
parallel Federate interact with one another
through DSMS Interactions with much smaller
overheads that are typically in the microsecond
range. Shared memory, rather than network-based
communication protocols, provides several orders
of magnitude faster communication between
entities executing in parallel on high-performance
multiprocessor machines. Of course, entities in
sequential Federates interact through event-
scheduling function calls with slightly lower
overheads.

Hierarchical components managed within an
entity can interact with one another through the

use of polymorphic functions and methods that
again preserve the double-abstraction barrier
principle. Like callback systems, a component can
invoke a polymorphic function that in turn
activates polymorphic methods that were
registered by objects in other components. This is
very similar to general-purpose GUI callback
systems that allow applications to register
handlers when buttons are pushed, etc., except
that the polymorphic method system is fully
object-oriented. The hierarchical polymorphic
method mechanism also provides scope resolution
to restrict which methods in the component
hierarchy are activated. Polymorphic methods are
invoked through function calls with typical
overheads in the nanosecond range.

The hierarchical component infrastructure
within an entity manages which methods have
been registered by which components. The
invoker of a polymorphic function does not know
which components have registered polymorphic
methods, nor does the invoker know which
polymorphic methods are applied by registering
components when activated. Thus, the double-
abstraction barrier principle is maintained.

The polymorphic method system is much more
powerful than the standard object-oriented
inheritance and virtual function approach to
polymorphism. It does not require inheritance or
virtual functions to achieve polymorphism.
Instead, a special macro is used to define the
polymorphic interface (see Code Segment 1).12
Code Segment 1: Macro interface for defining a
polymorphic interface with N arguments. In the current
implementation, N can range from 0 to 20 to support up to
20 arguments in the generated interface.

DEFINE_POLYMORPHIC_INTERFACE_<N
>_ARGS(
 FunctionName, ArgType1, ArgType2, …,
ArgTypeN
)

This macro generates a new polymorphic
function that can be invoked to activate

12 Code examples of interfaces for polymorphic methods are taken from

the SPEEDES-based JSIMS Common Component Simulation Engine.

 9

corresponding polymorphic methods that have
been registered (see Code Segment 2). Note that
the invoker of the polymorphic function only
references the interface and has no knowledge of
how the interface triggers software models in
other components.
Code Segment 2: Macro-generated functions for invoking
registered polymorphic methods. When invoked, the first
version of the function activates all registered polymorphic
methods within the entity. The second version of the
function provides scope resolution within a component and
its children components to only invoke those registered
methods in the specified component substructure.

void FunctionName(
 ArgType1, ArgType2, …, ArgTypeN
)

void FunctionName(
 Component *, ArgType1, ArgType2, …,
ArgTypeN
)

Through another macro, any number of objects
may define one or more of their methods to
correspond to the polymorphic interface.
Registered objects requires no special inheritance,
their object class name can be arbitrary, and their
registered method name can also be arbitrary. An
example of this is shown in Code Segment 3.
Code Segment 3: Defining a polymorphic method on a
class. Notice that the name of the class and its polymorphic
method can be anything. The last argument in the macro, N,
is the number of arguments in the interface. No inheritance
is required when defining polymorphic methods.

class ClassName {
 private:
 protected:
 public:
 void MethodName(
 ArgType1, ArgType2, …, ArgTypeN

);
};

DEFINE_POLYMORPHIC_METHOD(
 FunctionName, ClassName, MethodName, N
)

The DEFINE_POLYMORPHIC_METHOD
macro generates new and uniquely named
functions that can be used to register or unregister

the polymorphic method within an entity or within
any component in an entity’s component
hierarchy. The interface for registering and
unregistering polymorphic methods is shown in
Code Segment 4.
Code Segment 4: Macro-generated functions for registering
and unregistering polymorphic methods associated with a
class. Note that the first two interfaces register and
unregister the method with the entity. The second two
interfaces register and unregister the method with a
component.

void
REGISTER_FunctionName_MethodName(
 Entity *, ClassName *
)

void
UNREGISTER_FunctionName_MethodName(
 Entity *, ClassName *
)

void
REGISTER_FunctionName_MethodName(
 Component *, ClassName *
)

void
UNREGISTER_FunctionName_MethodName(
 Component *, ClassName *
}

An example of how components work with
polymorphic methods is shown pictorially in
Figure 3 with an extended UML class diagram.13
In this example, a radar component on a ship
entity sends detections to the track fusion
component through the polymorphic method
mechanism.

13 The extended UML diagrams use different shapes and colors for boxes
to represent different kinds of classes within a simulation. This helps to
quickly convey information without cluttering the diagram. For example,
framework objects are drawn as blue boxes, a user-derived simulation
object is drawn as a red box, an event is drawn as a red circle, a process is
drawn as a red ellipse, polymorphic methods are drawn as purple
hexagonal polygons, Arrows indicate scheduling information, etc.

 10

The radar component generates detections that
are processed by the track fusion component when
invoking the ProcessDetections polymorphic
function. This in turn activates the FuseDetections
method in the track fusion component that has
been registered as a polymorphic
ProcessDetections method. The double-
abstraction barrier principle is demonstrated in
this example to show that the radar component
does not know about the track fusion component,
nor does it know the name of the track fusion
component’s method that is applied when
processing the detections.

EntityEntity

ShipShip

ComponentComponent

RadarRadar Track FusionTrack Fusion

ProcessProcess
DetectionsDetections

Radar ScanRadar Scan

Call polymorphic
Process DetectionsProcess Detections function

Invokes polymorphic
Fuse DetectionsFuse Detections method

Double-Abstraction
Barrier

The Process Detections polymorphic
function allows the Radar Scan process
to invoke the Fuse Detections
polymorphic method of the Track
Fusion component without requiring
access to its pointer.

Register the FuseFuse
DetectionsDetections method
as a polymorphic

method

Figure 3: An example of two components interacting
through a polymorphic method. A Ship entity contains a
Radar component and a Track Fusion component. The
Track Fusion component registers its FuseDetections
method as a ProcessDetections polymorphic method. The
Radar Scan process periodically feeds its detections to the
Track Fusion component by calling the ProcessDetections
polymorphic function. The Radar does not know that the
Track Fusion component exists, nor does it know that the
FuseDetections method was registered as a polymorphic
method for ProcessDetections. This preserves the double-
abstraction barrier principle.

In summary, HLA interoperability and reuse
principles can be applied within the proposed
Standard Simulation Architecture to address three
distinct levels of granularity:

1. Federates within an HLA Federation
2. Entities within a parallel or sequential

Federate
3. Components hierarchically composed

within an entity

HLA provides a standard framework (RTI) to
facilitate distributed object technology in a
Federation. The data exchanged between
Federates (i.e., Federation Objects and

Interactions) is defined in the FOM. The double-
abstraction barrier principle is achieved through
HLA Interactions.

A high-performance simulation framework can
facilitate distributed object technology between
entities on parallel high-performance computers.
The data exchanged between entities is done in
the same manner as HLA using a Distributed
Simulation Management Services layer to
coordinate the distribution of Federation Objects
and Interactions between entities. The double-
abstraction barrier principle between entities is
again achieved through Interactions.

Working with the Distributed Simulation
Management Services layer, an HLA gateway
maintains the important abstraction that entities
could reside within any Federate or on any node
within a Federate executing in parallel.

A standardized hierarchical component
framework allows entities to be hierarchically
decomposed into sub-models. A macro is used to
define polymorphic interfaces that specify the
data exchanged between components within an
entity. The double-abstraction barrier principle is
achieved through the polymorphic method
infrastructure.

The Standard Simulation Architecture specifies
a framework that can support all of these
interoperability principles through a layered
approach. Through API standardization, these
layers can be developed in an open environment
by commercial organizations, government
laboratories, and academic institutions.

5 High-Level Modeling Concept

The Standard Simulation Architecture
promotes high-speed interoperability and reuse at
three different levels. First, Federates can
interoperate through HLA interfaces using the
HPC-RTI, or they can interoperate directly within
the Standard Simulation Architecture. All HLA
federates (including the SSA Federation)
interoperate through a well-defined FOM and

 11

through standard usage of the RTI.14 An example
of eleven interoperating Federates is shown in
Figure 4.

HLA
RTI

F1

F5

F5

F7

F2

F5

F5

F7

F3

F5

F5

F7

F4

GW

F6

F7

F7

F7

F7

F7

F8

F8

F8

F8

F9

F11

NetworkNetwork
CommunicationsCommunications

F10

Parallel
Standard

Simulation
Architecture

Federate

Sequential
Standard

Simulation
Architecture

Federate

Any HLA
Federate

HPC-RTI
Federates

Standard
Simulation

Architecture
Federation

Figure 4: Interoperability between Federates in the
Standard Simulation Architecture. In this example, F1, F2,
F3, and F4 are HPC-RTI Federates executing on four nodes
of a sixteen node parallel machine. F5 is a six node
Federate, F6 is a sequential Federate, and F7 uses four
nodes on each of the two machines within the group of
Standard Simulation Architecture Federates.
Communication within a Standard Simulation Architecture
Federation is provided through shared memory and/or
network message passing. A gateway connects these seven
Federates to a network-based RTI to provide interoperability
with other HLA Standard Simulation Architecture Federates
executing either in parallel (F8) or sequentially (F9), and
with legacy Federates (F10 and F11).

Second, entities within the Standard Simulation
Architecture interoperate in parallel through the
DSMS layer. This means that entities obtain
information about other entities by subscribing to
each other’s published Federation Objects.
Entities process events scheduled by other entities
using the formal DSMS Interaction mechanism.15
This not only supports the parallel processing
paradigm, but also maintains the important
abstraction that interacting entities could reside
within different HLA Federates.

14 Because HLA does not define standards for initialization procedures,

synchronization points, representation of time, object models, and
representation of data, it may be difficult to identify standard usage of
the RTI. Eventually, further standards need to be created to truly
establish a greater degree of interoperability between HLA federates.

15 Interactions can be directed to a list of specified entities using a special
parameter in the parameter set to store their unique identifiers. The
interaction will only be sent through the gateway to other federates if
any of the recipient entities are not located within the federate.
Significant overhead reductions are possible with this approach.

The HLA gateway preserves this important
abstraction by seamlessly providing connectivity
between HLA Federates.16 If required, time
management is coordinated using conservative
and/or optimistic techniques between and within
each Federate.

Object clustering techniques allocate entities to
specific nodes within each Federate. This
alleviates the need for all of the software within a
federate being linked into one monolithic
executable.

An example showing how interactions are sent
by one entity and then received by subscribing
entities is depicted in Figure 5. The important
abstraction that the entities could reside in any
Federate is preserved.

RTIRTI

FedGatewayFedGateway

DSMS

Entity1Entity1 Entity2Entity2

FedGatewayFedGateway

DSMS

Entity3Entity3 Entity4Entity4

Entity1 sends a Detonation Interaction

Detonation Interaction sent through RTI

Figure 5: An example of an entity sending an interaction.
At time 100, Entity1 uses the DSMS layer to send an
interaction scheduled for time 200. Assuming that the
lookahead through the RTI is 10, the FedGateway receives
the interaction at time 190. It then schedules the interaction
through the RTI for time 200. At time 200, all subscribing
entities in both Federates receive and process the
interaction. The receiving entities have no special
dependencies concerning which Federate sent the
interaction. This preserves the abstraction that any entity
could reside in any Federate.

Third, components within entities interoperate
through fully specified type-checked interfaces
using polymorphic functions and methods.17
Components decompose models hierarchically

16 The HLA Gateway is actually implemented as an entity that subscribes

to Federation Objects and Interactions through the DSMS layer and with
the RTI.

17 Components can also abstractly interact with each other by directly
invoking the ProcessInteraction method. While this approach has
additional parameter packing and unpacking overheads, and provides
less type-checking in its parameter set interface, it can sometimes be
helpful in reusing abstract interaction handlers. However, event-
scheduling overheads are eliminated by directly invoking the
ProcessInteraction method.

 12

within an entity to support arbitrary levels of
fidelity and detail. Like entities, components also
coordinate the publication and subscription of
Federation Objects and interactions with interest
management. This is shown with a UML class
diagram in Figure 6.

*

*

*

*

Root FoMgrEntities contain
Components

Components contain
other Components

Hierarchical
FoMgrs

SimObjSimObj

ModelModel

ComponentComponent

FoMgrFoMgrEntityEntity

SubModelASubModelA

ComponentComponent

SubModelBSubModelB

FoMgrFoMgr

FoMgrFoMgr

Figure 6: Entities, components, and FoMgrs. Hierarchical
components are used to decompose an entity model into
sub-models. The components connect their Federation
Object Managers (FoMgrs) in the same hierarchical manner
to provide efficient interest management between
components within an entity. A Federation Object that is
discovered by an entity will be directed to the components
within the entity as specified by their interest management
filters.

From a different perspective, another way to
visualize the different levels of granularity within
the architecture is to consider Inter Process
Communication (IPC) mechanisms. The UML
Diagram in Figure 7 shows the hierarchical
decomposition of an HLA Federation (see also
Figure 4) as it relates to the different levels of IPC
granularity.

HLA FederationHLA Federation

HLA FederateHLA Federate

HLA FederateHLA FederateSSA FederationSSA Federation

HPC-RTI FederateHPC-RTI FederateSSA FederateSSA Federate

MachineMachine

NodeNode

ThreadThread

*

*

*

*

*

*

UML: Composed OfUML: Composed Of

UML: Type OfUML: Type Of

10-8POSIX ThreadsThread

10-6Shared MemoryNode

10-5Beowulf ClusterMachine

10-4TCP/IP
LAN/WAN

SSA Federate

10-3RTI. CORBAHLA Federate

Granularity
(sec.)

IPC MechanismCommunication
Unit

Figure 7: A UML diagram showing the hierarchical
decomposition of an HLA Federation in the Standard
Simulation Architecture. An HLA Federation is composed
of one or more HLA Federates that take on two flavors,
Legacy Federates and SSA Federations. The SSA
Federation is composed of one or more SSA Federates
and/or HPC-RTI Federates. SSA Federates can be spread
over one or more Machine. Each Machine contains one or
more Nodes. Each Node contains one or more Threads.

At the finest level of granularity, threads allow
multiple lightweight processes to communicate
within a single heavyweight process (or node).
These lightweight processes coordinate through
mutual exclusion locking mechanisms that
safeguard memory accesses.

Multiple nodes may communicate on a
multiprocessor machine. Multiple nodes on a
machine normally communicate through high-
speed shared memory. However, multiple
machines may connect through a local area
network to form a Standard Simulation
Architecture Federate. These machines typically
communicate through standard network protocols
such as TCP/IP.

Standard Simulation Architecture Federates
may connect together through shared memory,
local area networks, and/or wide area networks to
form an SSA Federation, which behaves as a
single HLA Federate because it has one
connection to the RTI through its gateway.

At the lowest level, HLA Federates typically
communicate through standard Internet protocols
such as TCP/IP, UDP/IP, and IP-multicast. These
Internet protocols may be further abstracted using
distributed object communication mechanisms

 13

such as CORBA. 18 The RTI provides another
layer of abstraction to support federates
communicating in a distributed environment.
Multiple HLA Federates can connect together to
form an HLA Federation.

The coordination of HLA time management
and interest management services may add
additional overheads to the basic message-passing
overheads. Typical levels of granularity for each
kind of communicating units are summarized in
Figure 7.

Using the HPC-RTI interface, legacy
simulations in the Standard Simulation
Architecture benefit from high performance
parallel processing in three ways. First, legacy
simulations can self-Federate through the HPC-
RTI to execute in parallel on multiprocessor
machines. For example, entities could be
distributed to four nodes on a multiprocessor
machine, thereby reducing the computational load
required by a single CPU (see Figure 8).

18 The first RTI developed by DMSO used the ORBIX implementation of

CORBA. The more recent RTI-NG implementation is based on the
ACE/TAU object request broker.

Conservative

Optimistic

HPCHPC
RTIRTI FederateFederateHPCHPC

RTIRTI
HPCHPC

EngineEngine

HPCHPC
EngineEngine

HPCHPC
RTIRTI

FederateFederate

HPCHPC
EngineEngine

HPCHPC
RTIRTI

FederateFederate

High-SpeedHigh-Speed
CommunicationCommunication

Events processed by
both engines

Legacy
Models

New
Models

FF

ModelsModels
InteroperateInteroperate

FederateFederate HPC
Engine
HPC

Engine

Figure 8: An example of interoperability and high-
performance computing through the HPC-RTI on four
nodes of a multiprocessor machine. Entities are distributed
to multiple instances of the legacy Federate to achieve
parallel processing by the Federate. The internal HPC
Simulation Engine can also provide models that interoperate
with each other and with the Federate. Optimistic computing
may occur within the HPC Engine, but through advanced
time management techniques, the Federate only receives
valid data from the HPC Engine.

Second, the HPC-RTI actually connects two
simulation engines together within a single
process. It does this in a way that supports
interoperability between models implemented in
the two engines without sacrificing performance.
Integrating a legacy federate with reusable entities
or components that are modeled in the Standard
Simulation Architecture can extend the
functionality and software lifetime of legacy
simulations.

Third, Federates using the HPC-RTI can
participate in Standard Simulation Architecture
Federations executing on high-performance
computers (see Figure 4). One very important
capability provided by the HPC-RTI over
traditional RTIs is that everything, including DM,
DDM, and OWM services are potentially
managed in logical time. Furthermore, the HPC-
RTI provides a seamless integration between
mixed real-time and logical-time modes of
operation.19

 14

6 The Standard Simulation Architecture
This section first provides an overview of the

layered architecture. It then provides a detailed
description of each layer in the architecture.

6.1 Architecture Overview
The proposed Standard Simulation

Architecture is shown in Table 1. It is comprised
of multiple software layers that simulation
systems build upon.20 The standardization process
defines the set of interfaces for each of these
layers.21 Once this is accomplished, different
implementations of these layers can be combined
to form complete simulation infrastructures that
may be optimized for different types of
simulations, communication networks, computing
platforms, operating systems, languages, and
compilers. Commercial organizations
(Commercial Off The Shelf - COTS), government
laboratories (Government Off The Shelf - GOTS),
and academic institutions (Open Source) can
independently contribute their own optimized
implementations of any of these layers. A quick
overview of the SSA layers is provided below.

19 Because the HPC-RTI layered on top of a parallel and distributed time-

managed simulation engine, all operations are fundamentally
coordinated in logical time. To support real-time federates, events are
simply time-tagged by the wall clock. This unified approach to
managing events does not require separating real-time messages from
logical time messages in message queues.

20 The layered architecture selectively allows upper layers to invoke
services provided by lower layers, not just the layer immediately below.
In this way, the layered architecture is like public inheritance in object-
oriented software.

21 One of the first issues to address when standardizing interfaces is
programming and naming conventions. This includes standards for
naming classes, data members, methods, functions, arguments, local
variables, macros, and macro-generated functions. It also involves
standards for global variables, error handling, header file rules, operator
overloading, and templates. The programming standards do not include
rules for bracket indentation, or other personal style issues that can be
resolved through pretty print formatting tools.

Table 1: The Standard Simulation Architecture. Notice that
the color-coding of the layers indicates groupings of related
functionality. Green layers indicate low-level interprocess
communications or system services. Dark blue layers
indicate frameworks that coordinate processing. Yellow
layers indicate programming interfaces for model
developers. Red layers provide HLA services. Light blue
layers indicate models or federate applications. Finally, the
purple layer indicates graphical tools that can be used to
simplify model construction, scenario generation, and data
analysis.

System Services
Threads
UtilitiesUtilities

Network Communications
Internal High Speed Communications External Distributed Communications

Rollback FrameworkRollback Framework
Rollback UtilitiesRollback Utilities

PersistencePersistence
Standard Template LibraryStandard Template Library
Event Management ServicesEvent Management Services

Time ManagementTime Management
Standard Modeling FrameworkStandard Modeling Framework

Distributed Simulation Management ServicesDistributed Simulation Management Services
SOM/FOM Translation ServicesSOM/FOM Translation Services

ExternalExternal
ModelingModeling

FrameworkFramework

HLAHLA
GatewayGatewayHPC-RTIHPC-RTI

Component Repository
Entity Repository

CASE ToolsCASE Tools

Direct
Federate

Abstract
Federate

HLA
Federate

HLA
Federation

External
System

The System Services, Threads, Network

Communications, Internal High-Speed
Communications and External Distributed
Communications layers provide a full-spectrum of
system utilities and inter-process communication
services in a standard portable manner.

The Rollback Framework, Event Management
Services, and Time Management layers provide
the basic infrastructure that is necessary to support
discrete-event and real-time simulations executing
on single or multiple CPU machines.

The Utilities, Rollback Utilities, Persistence,
Standard Template Library, Standard Modeling
Framework, Distributed Simulation Management
Services, and External Modeling Framework
layers provide the basic set of constructs and tools
required for software developers to efficiently
build simulation models and to directly connect
them to external systems such as graphical user
interfaces and hardware devices. Persistence is
critical for supporting checkpoint/restart and
dynamic load balancing functionality.

The SOM/FOM Translation Services, HPC-
RTI Interface, and HLA Gateway layers support
interoperability between Standard Simulation
Architecture Federates, legacy HLA Federates,

 15

and HLA Federations. The FO and Interaction
data translation services allow a Federate to define
its own specialized SOM while promoting
interoperability with other Federates. The HLA
Gateway may provide multi-level security
services between networked Federates.

The Component Repository and the Entity
Repository provide a library of models that were
designed for reuse across multiple simulation
domains. Note that entities interoperate through
federation objects and interactions, while
components interoperate through polymorphic
methods.

The CASE tool layer allows commercial
vendors to generate code through specialized
compilers and/or graphical programming
environments to simplify the development of new
models. The CASE tool layer may also provide
graphical tools to simplify scenario generation
and object compositions with mixed levels of
resolution. The CASE Tool layer may also
provide backward compatibility services to map
legacy simulations to the standard simulation
Architecture.

The complete architecture provides high-speed
software reuse and interoperability between SSA
federates, entities, and components. It further
provides interoperability with legacy Federates
and HLA Federations through the HPC-RTI
Interface and HLA Gateway layers. Non-HLA
external systems such as high-speed hardware or
specialized graphical displays may integrate and
directly interoperate with the overall system
through the External Modeling Framework.

6.2 Architecture Layers
This section provides further descriptions of

each layer in the architecture. Note that each layer
at most only depends on the layers below in the
architecture.

6.2.1 System Services

In order to preserve portability between
operating systems, the System Services layer
abstracts all of the system-specific services that

might be invoked by the Standard Simulation
Architecture. Examples of these services include
operations such as forking a process, spawning
the execution of a new program, obtaining the
time of day, determining CPU usage, waking up
the process when a message arrives, establishing
network connections, creating/deleting shared
memory segments, etc.

6.2.2 Threads

The Threads layer defines portable standard
interfaces for supporting lightweight processes
across different operating systems and
languages.22 The thread interfaces must be
implementable for both UNIX (e.g., Pthreads,
Solaris threads, DCE threads, etc.) and Windows
operating systems (e.g., WIN32 Threads). This
layer must minimally support C++ and Java
programming languages. The interface must also
include default functions for systems that do not
support multithreading.23 Basic services include
the following.

1. Ability to spawn and terminate a thread.
2. Ability to assign a priority to a thread.
3. Mutual exclusion mechanisms.
4. Storage of local data associated with a

thread.
5. Method to provide the maximum number of

threads.
6. Method to provide the number of active

threads.

6.2.3 Utilities

The Utilities layer defines a standard set of
interfaces for general-purpose classes including

22 Threads, or lightweight processes, allow an application to have more

than one process active within a single heavyweight process. They share
the full memory state of the application; so all memory is “shared
memory” in a multithreaded process. This is not the same as running
multiple heavyweight processes that communicate through specially
created shared memory segments. Threads can run concurrently on
machines with multiple CPUs, which can often provide parallel speedup.

23 A system that does not support multithreading sets the maximum
number of threads equal to one.

 16

random number generation,24 data parsers, XML
parsers, various container classes, dynamic arrays,
strings,25 generic algorithms, timers, math
utilities, motion libraries,26 data logging, portable
big/little endian data types, I/O stream extensions,
memory management tools, object factories,
checksum, data compression algorithms, error
handling, and internal memory tracking. When
applicable, these utilities should be thread-safe,
which is why they depend on the threads layer.

6.2.4 Network Communications

The Network Communications layer defines
the interfaces for the standard communication
infrastructure that is used to connect networked
simulations together. A general-purpose
client/server infrastructure coordinates message
passing between machines in a local area network
and between multiple local area networks in a
wide area network.27 Standards such as CORBA
may be used to support this layer. However, it is
important to define interfaces that are powerful,
yet open to the research community. An over-
reliance on commercial products may not support
innovative R&D efforts that explore new
protocols and performance optimizations.
Possibly, a simplified version of the CORBA
interface is needed.

A Publish/Subscribe wide-area network
approach efficiently distributes data between
platforms by evaluating subscription filters on the
published data, or meta-data associated with each
outgoing message. Multiple servers may be used
to connect local networks to other local networks.

24 The random number generator must support a wide variety of statistical

distributions.
25 Various types of string classes are provided including variable-length

strings, fixed-length strings, and XDR strings.
26 A good example of a reusable motion library is the Common Algorithm

Software Services (CASS) library in JSIMS. It supports a wide range of
motion types in four different coordinate systems (ECR, ECI, Round
Earth, and WGS84).

27 High performance scalable communications across wide area networks
is an extremely active area of research and development within the
network community. It is anticipated that the Network Communications
layer will benefit from this ongoing work. By standardizing the
distributed network interfaces, and by describing how they are used in
the Standard Simulation Architecture, the networking community will
be more focused in their research efforts.

In this manner, spider-web networks of servers try
to minimize message congestion while optimally
routing messages. This approach supports the
usage of reliable message passing services while
still conserving bandwidth consumption. An
example of this is shown in Figure 9.

SS

CC
CC

CC SS

CC
CC

CC

SS

CC

CC
CC

SS
CC

CC
CC

SS

CC
CC

CC

SS

CC

CC
CC

SS

CC

CC
CC SS

CC
CC

CC

SS

SS

SS

Figure 9: An example of a distributed spider-web network
where one publisher sends a message to multiple
subscribers. The message is provided to the subscribers as it
is routed once through the network. Notice that this active
routing approach minimizes bandwidth consumption. 31
hops are required if the message is individually sent to each
destination. The smarter active routing approach in this
example only requires 13 bandwidth-consuming hops.

The network layer must support dynamic
connectivity to allow new applications or routers
to join the system and fault tolerance when
applications exit the system. The client/server
infrastructure must be distributable, provide
redundant routing paths, facilitate multiple
network protocols, and coordinate multiple
application groups when more than one
application shares the network. It must also
support heterogeneous networks that mix big and
little endian data formats. Additional network
services to fulfill security requirements may be
implemented in this layer.28

A generic client/server model is used to
support multiple services types within a server
process. Each server type is represented as a class
in the server process. Message headers for
services requested by the client to the server
process include information describing the type of
service requested, the specific service requested,
and the group Id of the requester. The Object

28 Radiant Mercury can be integrated with routing servers to provide

multilevel security between networks at different security levels.

 17

Request Broker (ORB) in the server process
automates method invocations for server objects.
Applications never actually deal with low-level
messages.

Table 2 shows performance measurements for
the RAM ORB distributed client/server
framework involving different configurations. In
these measurements, up to 75,000 short messages
can be exchanged between two machines on a
gigabit Ethernet. Sustained bandwidth for larger
messages was measured to be about 15 megabytes
per second.29
Table 2: Network communication performance between
two processors on the same machine, and between two
machines.

Configuration Test Name Description Performance

Synchronous Ping Pong
Client sends ping message and waits for server to
respond with pong. Process repeats for 5 seconds. 38,000 messages per second

Synchronous Variable-length Data
Client sends ping message with variable-length
data and waits for server to respond with pong.
Process repeats for 5 seconds.

35,000 messages per second

Asynchronous Ping Pong

Client repeatidly sends ping messages for 5
seconds. Server responds to Pings by sending Pong
messages back to the client. The client consumes
Pong messages as they arrive until all Pongs are
received.

71,000 messages per second

Bandwidth
Client synronously sends 1 megabye Ping message
to the server and waits for the 1 megabyte Pong
reply from the Server.

111 megabytes per second

Configuration Test Name Description Performance

Synchronous Ping Pong
Client sends ping message and waits for server to
respond with pong. Process repeats for 5 seconds. 14,000 messages per second

Synchronous Variable-length Data
Client sends ping message with variable-length
data and waits for server to respond with pong.
Process repeats for 5 seconds.

13,000 messages per second

Asynchronous Ping Pong

Client repeatidly sends ping messages for 5
seconds. Server responds to Pings by sending Pong
messages back to the client. The client consumes
Pong messages as they arrive until all Pongs are
received.

75,000 messages per second

Bandwidth
Client synronously sends 1 megabye Ping message
to the server and waits for the 1 megabyte Pong
reply from the Server.

15 megabytes per second

Network Performance

Local Client-Server
Dual 1.8 Ghz Linux PC

Client
1.8 Ghz Linux PC

Server
2 Ghz Linux PC

Network
1 gigabit Ethernet

6.2.5 Internal High-Speed Communications

The Internal High-Speed Communications
layer defines the standard set of interfaces that are
required to provide high-speed message passing
through shared memory and/or through high-
speed networks. Multi-node Federates
communicate internally through this layer. The
Internal High-Speed Communications layer may
use services provided by the Network
Communications layer to join multiple parallel
machines in a network environment. The basic
categories of service are described below.

1. Startup and terminate functions to fork
processes, create internal shared memory
segments, etc., and then to clean up shared
memory segments when the Federate exits.

29 Network performance is highly sensitive to the speed of the network

card used by each computer.

2. Node information to provide the number of
nodes (e.g., a UNIX process) and the node
Id (ranging from zero to the number of
nodes minus one).

3. Synchronization operations to support
blocking synchronizations and split-phase
fuzzy barrier synchronizations that allow
processing to continue while waiting for
synchronizations to complete.

4. Global reductions to support basic
operations for determining the minimum,
maximum, and sum of integer or floating
point values provided by each node. A
general reduction service must also be
provided to support applications that
perform general reductions on arbitrary
data types.

5. Synchronous data distribution services for
broadcast, scatter, gather, and vector/matrix
formation.

6. Asynchronous message passing services
between nodes. Unicast, destination-based
multicast, and broadcast capabilities must
be provided.

7. Coordinated message passing services
between nodes that guarantee the receipt of
all messages before completing the
coordinated message-passing operation.
Unicast, destination-based multicast, and
broadcast capabilities must be provided.

8. Remote method invocation services
between objects residing on different
processors. Unicast, multicast, or broadcast
messaging services must be provided.

Performance benchmarks have been collected
using the WarpIV High Speed
Communications library (see Figure 10 and
Figure 11).30 All of the shared memory
benchmarks to date show nearly perfect

30 These measurements were obtained from an older 48-processor HP

Superdome computer running about 1/4 the speed of a 500 MHz
Pentium 3. Today’s machines are expected to perform about 20 times
faster.

 18

scalability as a function of the number of
nodes. This kind of scalable performance is
impossible to achieve on networked systems
(e.g., Ethernet) using standard Internet
protocols. Furthermore, all messages are
transported reliably though the shared memory,
which is critical in supporting high-
performance computing for parallel federates
executing in logical time.

AsyncUnicast Messages/Sec AsyncMulticast Messages/Sec AsyncBroadcast Messages/Sec

CoordUnicast Messages/Sec CoordMulticast Messages/Sec CoordBroadcast Messages/Sec
Figure 10: Message throughput performance of the WarpIV
High Speed Communications library for message bandwidth
on up to 44 processors using shared memory. The
throughput scalability is nearly linear as the number of
nodes increases.

AsyncUnicast Bandwidth AsyncMulticast Bandwidth AsyncBroadcast Bandwidth

CoordUnicast Bandwidth CoordMulticast Bandwidth CoordBroadcast Bandwidth
Figure 11: Message bandwidth performance of the WarpIV
High Speed Communications library for message bandwidth
on up to 44 processors using shared memory. The
bandwidth efficiency scalability is nearly linear as the
number of nodes increases.

6.2.6 External Distributed Communications

The External Distributed Communications
layer defines the standard set of two-way
interfaces for communicating between distributed
Standard Simulation Architecture Federates or
with an external system. The client/server
interfaces provided by the Network

Communications layer are used to support the
various kinds of external distributed
communication services required. Note that while
these interfaces are defined in this layer, much of
their implementation is actually in the Event
Management and External Modeling Framework
layers.

Services provided by the External Distributed
Communications layer include the various
command-line utilities that can cause a Standard
Simulation Architecture Federation to pause,
resume, checkpoint, or exit.

6.2.7 Rollback Framework

The Rollback Framework layer defines the
basic interfaces for supporting rollbackable
operations. This includes a rollback manager that
automatically stores rollback items generated
when rollbackable operations are performed. Each
event provides its own rollback manager. This
allows events to be individually rolled back when
necessary.

The framework must efficiently support all
rollbackable operations while consuming minimal
additional memory. Like standard undo and redo
features provided by most commercial business
products, all rollbackable operations must be able
to rollback and rollforward without constraints.
To minimize processing overheads, rollback items
are managed in highly optimized free lists to
reduce memory allocation and deallocation times.
Each rollback item stores only the information
necessary to undo or redo its specific operation.

The rollback framework must also be
extensible to allow users to define their own
rollbackable operations when necessary. A
standard interface has been developed to simplify
this task. Users must define a rollback item to
undo or redo the operation when necessary. The
rollback item inherits from a base class rollback
item. Virtual functions are defined on this base
class to rollback, rollforward, commit, or
uncommit the operation. A simple macro is used
to define the memory allocation and deallocation
functions. These functions encapsulate the free list

 19

memory management that is critical to maintain
high performance execution.

To assist in troubleshooting, the rollback
framework also provides diagnostics such as the
ability to display all rollbackable operations
performed during an event. This information can
be printed to the screen, or it can be included in
generated trace files that provide information
about each processed event.

6.2.8 Rollback Utilities

The Rollback Utilities layer provides a
comprehensive set of primitive rollbackable data
types, container classes, static and dynamic
arrays, standard C functions, I/O services
including sorted data logging when executing in
parallel, external message passing interfaces, and
dynamic memory allocation/deallocation
operations.31 Rollback support can be disabled at
run-time through a configuration file setting, or
rollbacks can be more optimally disabled through
a compile-time flag that eliminates overheads
when executing conservatively or when using
software designed for reuse in other applications.

6.2.9 Persistence

Persistence fundamentally keeps track of
memory allocations and pointer references within
a high-speed internal database linked with
applications. Through persistence, an object, and
the collection of objects it recursively references,
can be automatically packed into a buffer that is
written to disk or sent as a message to other
computers. Later, that buffer can be used to
reconstruct the object and all of its recursively
referenced objects. These reconstructed objects
are normally instantiated in different memory
locations. The persistence framework
automatically updates all affected pointer
references to account for the new memory
locations.

Because of the large number of pointers
involved, special optimizations are required for

31 Rollbackable dynamic memory allocation and deallocation functions

with rollbackable pointers must be integrated with persistence to
automate checkpoint restart and object migration functionality.

persistent container classes. The individual
pointers required for managing persistent data
structures such as lists and trees are not actually
registered with the database. Instead, the container
itself is registered. It has been observed that more
than a factor of two in memory reduction and
performance improvement is achieved by this
optimization.

Persistence must be fully integrated with the
rollback framework to automate support for
optimistic event processing.32 Persistence also
enables dynamic load balancing algorithms to
migrate complex objects to different processors.

Persistence provided by CCSE has been used
to successfully support the checkpoint/restart
requirements for the JSIMS program.

6.2.10 Standard Template Library

The Standard Template Library (STL) provides
a suite of generic container classes and algorithms
that have evolved into standard C++ utilities. The
Standard Simulation Architecture must provide a
fully functional STL that also supports persistence
and rollbacks.

The STL data structures that are currently
supported by the JSIMS Common Component
Simulation Engine (CCSE) include: list, map,
multimap, set, multiset, vector, string, queue,
stack, and priority queue.33 All iterator types are
supported. Four versions of each container are
provided: standard, rollbackable, persistent, and
rollbackable-persistent.

6.2.11 Event Management Services

The Event Management Services layer
provides the core set of services used by the SSA
simulation engine. It provides the internal
mechanisms for coordinating startup procedures,
event processing, and termination procedures.
This layer includes interfaces for defining logical
processes, creating and deleting event objects,

32 For example, memory allocation/deallocation operations, pointers, and

container classes may be both persistent and rollbackable.
33 The double-ended queue (deque) data structure was not implemented

because it was not used by any of the JSIMS applications. This data
structure will be incorporated at a later date.

 20

managing pending and uncommitted event
queues, supporting event-message passing,
handling event retraction, providing event
rollback, and invoking event-processing methods.
It also provides support for basic trace file
generation and the gathering of internal run-time
statistics.

Fault-tolerance is supported through
checkpoint/restart capabilities. Checkpoint/restart
can also be used to support the multi-replication
framework that is currently being developed using
WarpIV technology for the Air Force.

The multi-replication framework coordinates
with the Event Management Services layer to
allow large numbers of replicated simulations to
execute within a grid-computing system.
Replications may be required to explore
parameter spaces, generate Monte Carlo statistical
results, or to explore multiple courses of action.
To further support real-time decision aid
capabilities, the multi-replication framework
evolves each replication coherently in time.34 As
live data is received, replications are potentially
pruned for those replications whose predictions
are now out of sync with the real world. New
replications may be launched to ensure that the
starting state of each replicated simulation
matches the current state of the real world.
Otherwise, predicted results will not be useful. To
explore what-if excursions, the multi-replication
framework can execute different plans at critical
future decision points in time, and then later prune
those plans that do not meet the objectives.

6.2.12 Time Management

The Time Management layer defines the
standard interfaces that are required to support
various time management algorithms including
those that run sequentially on a single processor,

34 For example, suppose each replication starts at time 0 and ends at time

1000. Each replication may be executed up to 10 times with time
windows [0,100], [100,200], … [900,1000]. A replication checkpoints
its state at the end of each execution, which allows it to be restarted later
for resumed execution. This “breadth-first” approach for evolving time,
rather than “depth-first”, saves wasted processing time when replications
are pruned. It also provides near-term projections more quickly to the
user.

conservatively,35 optimistically,36 or in real time.37
The time management layer must also provide
generic mechanisms to coordinate the
advancement of logical or real time with external
systems.38

SPEEDES, CCSE, and WarpIV all provide
sequential, conservative, and optimistic time
management capabilities with built-in flow
control. The WarpIV simulation kernel uses
several new time management algorithms and
internal data structures to further lower the
overheads associated with sequential, parallel
conservative, and parallel optimistic event
processing. WarpIV uses adaptive flow control
techniques to further limit rollbacks and message
retraction to stabilize the performance of poorly
balanced simulations.

6.2.13 Standard Modeling Framework

The Standard Modeling Framework (SMF)
layer defines the interfaces for scheduling events
locally for objects within an entity or for entities
potentially residing on different processors. It also
defines process model constructs that are used to
support interruptible re-entrant events and method
invocations on distributed objects. This layer
further defines hierarchical “plug-and-play”
components with polymorphic methods to
facilitate interoperability between sub-models
while minimizing software dependencies.

The SMF provides a sensitivity list mechanism
that automatically invokes registered methods
when specified attributes are modified. This
capability is extended to processes to allow them
to wake up from WAIT statements when arbitrary
complex expressions involving attributes are

35 Conservative time managements may impose topology and/or lookahead

restrictions.
36 Optimistic time management may provide message-sending flow control

mechanisms to promote rollback stability.
37 Real time event scheduling uses the wall clock to assign time tags to

events. Real-time events may be scheduled for the current wall time or
for real-time values in the future.

38 The HLA gateway is an example of where generic time synchronization
services are used. The generic time synchronization services keep the
Federate from advancing (i.e., committing events) beyond the granted
time provided by the RTI.

 21

satisfied. Because the invoked functions
themselves are allowed to modify other variables
in sensitivity lists, a powerful capability is
provided to support cognitive algorithms, neural
networks, and rule-based logic in expert systems.
These services are critical for developing reusable
Human Behavior Representation (HBR)
components.

The SMF provides automatic entity distribution
to one or more processing nodes that are defined
within a cluster. Scatter, Block, and direct entity
placement decomposition algorithms are
supported. Object clustering algorithms allow
entities to be constructed on specific machines or
nodes within a machine to reduce communication
overheads. The SMF must support dynamic entity
creation and deletion services. Through object-
oriented persistence, the SMF must eventually
provide the capability to migrate entities from one
node to another node. The entity’s complex state
and its pending events must be packaged into a
message that is used to initialize the entity when it
is reconstructed. Object migration is coordinated
by dynamic load balancing algorithms that plug
into the SMF.

The SMF layer supports object composition
capabilities to allow users to hierarchically define
entities and their components in a flat file or
database. The modeling framework automatically
distributes, constructs, and initializes the entities.
This capability allows entities to be hierarchically
constructed from component repositories. Already
composed entities can also be saved in entity
repositories for later reuse. Construction of these
repositories is critical for reducing the cost of
developing highly performing simulations.

6.2.14 Distributed Simulation Management
Services

The Distributed Simulation Management
Services (DSMS) layer mirrors HLA functionality
with automated easy-to-use interfaces. It provides
a standard set of interfaces for supporting
Federation Objects (FOs), Interactions, interest
management, and ownership management.

It is critical for the DSMS layer to provide
efficient and scalable interest management for
FOs and Interactions. Without efficient interest
management, performance breaks down quickly
when the numbers of entities gets large. It is also
critical for interest management algorithms to
support multiple resolutions. The interest
management computations should be distributed
to avoid bottlenecks when executing in a
multiprocessing environment. Efficient multicast
techniques to distribute the filtered data through
shared memory and networks are also critical to
reduce message-passing overheads in large
systems.

6.2.15 SOM/FOM Translation

The SOM/FOM Translation layer allows
Standard Simulation Architecture Federates to
work internally with their own SOM while still
being able to interoperate with other Standard
Simulation Architecture Federates or HLA
Federations. If all Federates use the same object
model, then this layer can be bypassed.
Translations might include the following.

1. Class name translations for FOs and
Interactions.

2. Name translations for FO attributes and
Interaction parameters.

3. Unit conversions for attributes and
parameters.

4. General translations (e.g., {X, Y, Z} →
{Lat, Lon, Alt})

5. Split/merge attributes between multiple
FOs.39

6. Dynamic values (e.g., motion) with
predictive contracts40 that are computed as
a function of time.

39 For example the FOM might provide two attributes within a single FO.

The Federate’s SOM, however, might choose to provide each of the
attributes in separate FOs. The split/merge functionality provides re-
mapping of FO attributes to different FOs.

 22

The SOM/FOM translation services provide an
API that can be used to define the translations. A
translation description file can be used to specify
basic translations. However, to support highly
complex translations for applications having a
SOM that is very different from the FOM, it is
critical to preserve the more general programming
interface.

Multiple translations may be applied in series
to provide step-wise operations. For example,
reflected attributes for an object may first be
renamed, then translated to the correct units, and
then split into two FOs. These ordered operations
should be specified separately.

6.2.16 External Modeling Framework

The External Modeling Framework (EMF)
provides interfaces to directly connect Federates
with external systems such as graphical user
interfaces,41 analysis tools, remote models, and
hardware systems (see Figure 12). It does this in a
manner that preserves the same basic set of
interfaces provided by the Standard Modeling
Framework and the Distributed Simulation
Management Services layer.

40 Predictive contracts publish time-based equations as attributes to reduce

update rates. The computed value received by subscribers must be
within a specified tolerance as defined by the agreed upon predictive
contract. The equations may change several times between updates, but
the computed values performed by subscribers must remain within the
specified tolerance.

41 A good example of a graphical interface using the External Modeling
Framework on JSIMS is the Model Drive Diagnostic Interface (MDDI)
tool that allows users to view the attributes of Federation Objects and
the parameters of Interactions.

Remote
Process

SPEEDES
Simulation

Host
Router

Remote
Process

SpHostUserSpHostUser on each on each
SPEEDES node providesSPEEDES node provides

the interface to talk tothe interface to talk to
Remote Processes in theRemote Processes in the

outside worldoutside world

EmHostUserEmHostUser provides provides
interfaces to allowinterfaces to allow

External Modules toExternal Modules to
talk to SPEEDEStalk to SPEEDES

Figure 12: The SPEEDES approach for supporting external
systems connecting to a parallel SPEEDES simulation
coordinates activities through the Host Router network
server. The EmHostUser interface provides the basic
interfaces for the remote process, while the SpHostUser
provides the interfaces for applications executing within
SPEEDES.

External systems using the EMF can schedule
events for themselves, and they can schedule or
receive events from the simulation. Both logical-
time and/or real-time synchronization is provided
to ensure that the external module maintains
consistency with the simulation. Multiple external
systems can connect to an SSA federation. Fault
tolerance in the time management synchronization
allows the external system to dynamically connect
or disconnect without disrupting the overall flow
of time in the integrated simulation.

The EMF provides rollbackable state
management that can be directed to go forward or
backward in time. This is critical for scientific
data visualization, real-time analysis, and after-
action-review capabilities. With received message
capturing, the EMF provides a useful capability to
facilitate offline analysis or After Action Review
(AAR). Data mining algorithms can be used with
the EMF to search for unexpected patterns in a
simulation exercise.

6.2.17 Component Repository

The Component Repository layer, populated by
model developers, provides a set of reusable
components with standardized polymorphic
interfaces that can be used to compose entities
with models of different or mixed resolutions.
Examples of such components might include
models of motion, human behavior, sensors,

 23

trackers, weapon systems, network
communications, guidance systems, logistics,
environment, command and control, etc.

The development of component repositories is
one of the critical goals of the SSA. This allows
entities to be composed by non-programmers
when constructing new simulations for supporting
studies. Analysts simply decide which
components to use when specifying an entity.
Different resolution models can be mixed or
matched depending on the goals of the simulation
exercise.

Keep in mind that the overhead associated with
supporting interoperating components is up to six
orders of magnitude lower than the overhead
between interoperating federates. Components,
and their use of polymorphic methods, allow a
user to quickly construct a high-performance
simulation in a way that was never before
achievable through HLA alone.

6.2.18 Entity Repository

The Entity Repository layer provides a library
of reusable entities that can be easily instantiated
in different simulation applications.42 Entities may
include ships, aircraft, tanks, ground units,
bridges, command and control centers, etc.

Entities are defined in the repository by their
hierarchical component structure and by their
initial parameter settings. The entity repository
reuses the effort in defining entities. For example,
an F-15 model might be constructed once and
then reused in many different simulation
applications. There may eventually be several F-
15 entity models, each uniquely composed of
components to obtain different performance or
behavior characteristics. The various F-15 models
will likely share many of the same components,
but each might have different weapon systems,
sensor systems, flight dynamics, or human
behavior representations.

42 A good example of entity models that naturally fit in the Entity

Repository is the representation of the environment. Objects such as
bridges, roads, weather, and even the terrain are best represented as
special types of entities that can publish their attributes to subscribing
entities through FOs.

6.2.19 CASE Tools

The CASE Tools layer provides a graphical
interface to the Standard Simulation Architecture
in order to facilitate higher-level representations
of models through code generation and object
composition. Code generation has the benefit of
reducing human software development errors by
automating routine tasks that are error-prone.43

The CASE Tools layer may provide API
compatibility layers that map interfaces from
legacy simulations to the Standard Simulation
Architecture.44 Specialized simulation languages
such as Verilog and VHDL may also be provided
in this layer.

The CASE Tools layer may include graphical
tools to support scenario generation and
entity/component model compositions with mixed
levels of resolution. It may provide a graphical
interface to the component and entity repositories.
CASE Tools can also assist in coordinating usage
of the SOM/FOM Translation services.

One of the important benefits of standardizing
the simulation architecture is that CASE tools can
be built by industry with the understanding that
their tools will have a market beyond any specific
program. This again lowers the cost of
developing, composing, executing, and analyzing
the generated results of simulations.

6.2.20 HPC-RTI Interface

This layer provides a direct HLA interface to
the Standard Simulation Architecture in order to
facilitate interoperability with legacy simulations
that have their own simulation engine. The benefit
provided by this layer is to reduce communication
overheads by using shared memory, while
additionally providing time managed HLA
services for Declaration Management, Data
Distribution Management, and Ownership

43 For example, code generation can ensure that all internal entity state

variables are rollbackable when executing optimistically.
44 The JSIMS Compatibility Layer (JCL) was developed for WARSIM to

migrate legacy models to the Common Component Simulation Engine.
A prototype JMASS Compatibility Layer was developed for SPEEDES
in 2001. A CCSE-SPEEDES Compatibility Layer should be provided to
provide backward compatibility for DoD models developed in JSIMS.

 24

Management. Real-time Federates automatically
use the wall clock to assign logical time tags to
events.

The HPC-RTI can be used to speed up
simulations on high performance computing
platforms. Its support of time management across
all services makes it an ideal choice for analytical
simulations that require more processing
horsepower to speed up executions.

6.2.21 HLA Gateway

The HLA Gateway provides connectivity to
existing HLA Federations using any standard
HLA-compliant RTI. It coordinates the flow of
data (i.e., Federation Objects and Interactions)
through the RTI while also coordinating the
advancement of logical and/or real time.

The gateway is implemented as a simulated
entity that publishes and subscribes Federation
Objects and Interactions with both the RTI and
the DSMS layer. For example, an Interaction
received by the gateway from the RTI is passed to
entities within the Federate by scheduling the
Interaction in the DSMS. Similarly, the gateway
forwards Interactions through the RTI as it
receives them from the DSMS. The gateway may
also provide multilevel-security services such as
data encryption and security markings for
Interactions.

7 Standardization Strategy
The standardization strategy requires the

formation of several working groups. First, a Joint
Government Sponsor should be established to
fund and oversee the development of the standard.
The Joint Government Sponsor has final decision-
making authority over any disputes that may arise
during the design and review process. The
Government Sponsor may also provide support
for basic software processes, configuration
management, and formal documentation.45

45 Software engineering processes should support the Capability Maturity

Model (CMM) key process areas through level three.

Second, a small Engineering Team comprised
of proven simulation technologists should be
formed to define the initial standard for each of
the layers in the architecture. This engineering
team should consist of recognized experts from
the commercial sector, government laboratories,
and academic institutions.46 Prototype software
implementing the layers should be developed to
ensure that the initial standard is consistent. The
standard interfaces for each layer should be jointly
designed by the three groups and then
independently developed by each group to
validate the standard.

Both unit and system test suites should be
jointly developed by all three groups to ensure
that the standard interfaces are implemented
correctly. The layers should be standardized
starting from the bottom, working upwards until
all of the layers are designed, developed, and
validated with multiple implementations
constructed from within the engineering team. A
spiral engineering process is used to permit the
refinement of lower layers as the upper layers are
developed.

An independent Technology Panel of experts47
will review the standard prototype to ensure that
the prototype architecture is robust. Iterations on
the standard may occur as recommendations are
suggested.

A User Group48 generates feedback on the
services provided by the standard. The goal is to
attain buy-in from the User Group. Again,
iterations on the standard may occur as
recommendations are suggested.

46 The commercial sector provides COTS proprietary software products

that are licensed to users through purchases, maintenance contracts, etc.
The government laboratories provide GOTS software that is free for use
on government projects only. For GOTS software to succeed, a
government sponsor must provide life-cycle support. Academic
institutions may develop open-source software that is generally
maintained by grass-roots user communities. All three software business
models are represented by this strategy.

47 Members of the Technology Panel are specialists in specific layers of the
Standard Simulation Architecture. Unlike the engineering team, these
experts may not have a full background in all of the layers.

48 Members of the User Group should represent projects that have a vested
interest in using the Standard Simulation Architecture.

 25

Once the prototype architecture becomes stable
(i.e., no further changes are recommended by the
Technology Panel or the User Group), the
architecture should go through the formal IEEE
Standardization Process. At this point, all
parties49 interested in the standard are invited to
participate in the further standardization of the
layered Standard Simulation Architecture.

8 Benefits
A number of important benefits will be

provided to the DoD simulation community once
the standardization process is completed.

1. A common infrastructure will exist to
facilitate the development of reusable
Federates, Entities, and Components.

2. The layered simulation architecture will
allow simulation projects to individually
combine the most efficient implementations
of each layer on targeted machines to
achieve the best performance.

3. Optimized sequential and parallel
processing capabilities will provide
efficient usage of CPU resources ranging
from single processor desktop machines to
massively parallel supercomputers.

4. A cost effective strategy is provided to
focus applied research and development
efforts.

5. High-speed interoperability between new
models and legacy systems will be fully
supported.

6. Software models will be portable to
different machines, operating systems,
networks, languages, and compilers.

7. The popular business models (i.e., COTS,
GOTS, and Open Source) for software
development are not only supported, but
also encouraged.

49 New parties interested in participating in the IEEE standardization

process may include the entertainment industry, hardware vendors, and
Operating System vendors.

Through the formation of standards, the
Standard Simulation Architecture will
significantly lower the cost of developing,
composing, and executing simulations. It will also
focus both technology and model development
software for reuse, providing synergy in the DoD
simulation community.

9 Summary
This paper first provided an overview of the

critical issues relating to interoperability and
reuse, showing how interoperability concepts
from HLA can also be applied to entities and
components. High performance is achieved by
recognizing the different levels of granularity
between interacting federates (milliseconds),
entities (microseconds), and components
(nanoseconds).

A high-level composable modeling
methodology was introduced, showing the
relationship between HLA federations, HLA
federates, SSA Federations (which are a special
kind of HLA federate), HPC-RTI federates (which
operate inside the SSA), SSA Federates, entities,
components, and federation objects. Another view
describing system composability focused on inter-
processor communications considerations
involving threads, nodes, machines, shared
memory, local area networks, and wide area
networks.

This paper then provided an outline of the
Standard Simulation Architecture that is based on
experience from several large DoD simulation
programs. The Common Component Simulation
Engine (CCSE) developed on the Joint Simulation
System (JSIMS) provides the starting point for the
requirements and initial implementation of the
standard.

A dependency-layered approach is used to
describe the software libraries that comprise the
architecture. This allows technology providers
(i.e., universities, government laboratories, and
commercial organizations) to develop optimized
libraries for the overall system. These libraries
can plug and play together because the interfaces

 26

are standardized. The layered approach will help
focus and apply R&D efforts for transition onto
real DoD simulation programs.

The proposed Standard Simulation
Architecture promotes COTS, GOTS, and Open
Source business models, thereby providing a cost-
effective way for commercial, government, and
academic institutions to participate in developing
common models, tools, and simulation technology
for reuse on multiple DoD simulation programs.

An outline for the standardization strategy was
provided. A joint government sponsor is needed
to oversee and manage the overall process. Three
teams are required to develop the standard. The
Engineering Team should be comprised of
members from industry, academia, and
government laboratories to develop and test
prototypes of the standard layers. The Technology
Panel should be comprised of experts and
specialists in critical areas of the architecture.
Their job is to ensure that the right technologies
are applied to the architecture. The User Group is
comprised of actual model developers and
simulation users. Their job is to generate
requirements and approve of the capabilities being
developed.

10 Acknowledgements
This work was sponsored by the SPAWAR

System Center in San Diego (SSC-SD) through its
development of the SPEEDES-based Common
Component Simulation Engine (CCSE) in support
of the Joint Simulation System (JSIMS). This
work was also funded in part by the High-
Performance Computing Modernization Program
(HPCMP) through its Common HPC Software
Support Initiative (CHSSI).

11 Authors

Jeffrey S. Steinman
Dr. Jeffrey S. Steinman, Vice President and

Chief Scientist at RAM Laboratories received his
Ph.D. in 1988 from the University of California
Los Angeles in High-Energy Particle Physics.
Between 1988 and 1995, Dr. Steinman led several

high-performance computing R&D activities at
JPL/Caltech in support of Strategic Defense, Air
Defense, Ballistic Missile Defense, and NASA
space exploration missions.

While at JPL/Caltech, Dr. Steinman pioneered
the technology and software development of the
Synchronous Parallel Environment for Emulation
and Discrete-Event Simulation (SPEEDES)
framework. This work resulted in five patents and
more than forty technical papers in the area of
high-performance computing, optimistic discrete-
event simulation, data structures, message-passing
algorithms, object-oriented design, parallel and
distributed multi-resolution interest management
algorithms, and HLA.

Dr. Steinman directed software engineering
teams that developed core infrastructures for
several mainstream simulation projects including
the Parallel and Distributed Computing
Simulation (PDCS), the Parallel Naval Simulation
System (NSS), Wargame 2000 (WG2K), the Joint
Simulation System (JSIMS), the Joint Modeling
and Simulation System (JMASS), High-
Performance Computing Run Time Infrastructure
(HPC-RTI), and the Human Behavior
Representation Testbed (HBR-Testbed). Dr.
Steinman was a member of the HLA Time
Management and Data Distribution Management
working groups and wrote the original design
document for DDM. Dr. Steinman is currently the
lead architect for the JSIMS Common Component
Simulation Engine.

Douglas R. Hardy

Mr. Hardy, Project Manager at Space and
Naval Warfare Systems Center, San Diego
received his Master’s in 1985 from Arizona State
University in Applied Mathematics and Physics.
From 1986 to the present, Mr. Hardy, has led
several Modeling and Simulation R&D projects in
support of the Defense Advanced Research
Projects Agency (DARPA), the Office of Naval
Research (ONR), Naval Health Research Center
(NHRC), Joint Simulation Alliance Executive
Office (AEO), and a variety of multi-sponsored

 27

Advanced Concepts Technology Demonstrations
(ACTDs).

In the early ‘90’s, Mr. Hardy led an effort to
link the Army’s Constructive Battalion/Brigade
Simulation (BBS) with the Army’s Virtual Tank
Simulators using Distributed Interactive
Simulation (DIS) protocols. The primary technical
challenge was to allow realistic interoperation
between the two disparate systems to support BBS
battle staff training with simultaneous tank crew
training. The project became the cornerstone of
the Synthetic Theater of War – Europe (STOW-E)
in November of 1994, which integrated several
simulation and instrumented sites in Germany and
around the globe.

Since that time, Mr. Hardy has been primarily
involved in leading software development projects
related to Modeling and Simulation R&D efforts.
This has included leading the development of the
Navy Semi-Automated Forces (SAF) for the
STOW ACTD, leading the development of a mine
component in Navy SAF for the Joint
Countermine ACTD, supporting the transition of
Navy SAF software to Joint SAF (JSAF), leading
the development of a medical component of JSAF
(called JMedSAF) for the Joint Medical ACTD,
leading a Capability Maturity Model (CMM)
Level 3 development effort for the Common
Component Simulation Engine (CCSE) for the
Joint Simulation System (JSIMS) program, and
currently leading a modernization development
effort for the Enhanced Naval Warfare Gaming
System (ENWGS) program.

12 BIBLIOGRAPHY

1. Bailey Chris, McGraw Robert, Steinman Jeff,
and Wong Jennifer, 2001. "SPEEDES: A Brief
Overview" In proceedings of SPIE, Enabling
Technologies for Simulation Science V, Pages
190-201.

2. Cassandras Christos, 1993. “Discrete Event
Systems, Modeling and Performance
Analysis.” Aksen Associates Incorporated
Publishers, IRWIN, Homewood, Illinois
60430.

3. Chandy, K., and Misra, J., 1979. “Distributed
Simulation: A Case Study in Design and
Verification of Distributed Programs.” IEEE
Transactions on Software Engineering. Vol.
SE-5, No. 5, pages 440–452.

4. Clark Joe, Capella Sebastian, Bailey Chris,
Steinman Jeff and Peterson Larry, 2002. "The
Development of an HLA Compliant High
Performance Computing Run-time
Infrastructure" In proceedings of the 2002
Spring Simulation Interoperability Workshop,
Paper 02S-SIW-016.

5. Deitel & Deitel, 2001. “C++ How to Program,
Third Edition.” Prentice Hall, Inc., Upper
Saddle River, New Jersey 07458.

6. Federal Information Processing Standards,
1994. “Guideline for the Analysis Local Area
Network Security.” Publication 191,
http://csrc.nist.gov/publications/fips.

7. Fogel Karl, 1999. “Open Source Development
with CVS.” The Coriolis Group, LLC, 1445
North Hayden Road, Suite 220, Scottsdale,
Arizona 85260.

8. Fowler Martin and Kendall Scott, 1999. “UML
Distilled, Second Edition, A Brief Guide to the
Standard Object Model Language.” Addison-
Wesley Longman, Inc.

9. Fujimoto Richard, 2000. “Parallel and
Distributed Simulation Systems.” John Wiley
& Sons, Inc., 605 Third Avenue, New York,
NY 10158-0012.

10. Gamma Erich, Helm Richard, Johnson
Ralph, Vlissides John, 1995. “Design Patterns,
Elements of Reusable Object Oriented
Software.” Reading, MA, Addison-Wesley
Publishing Company.

11. Gilb Tom and Graham Dorothy, 1998.
“Software Inspection.” Addison-Wesley
Longman Limited, Edinburgh Gate, Harlow,
Essex CM20 2JE, England.

12. Gregory Peter, 1999. “Solaris Security.”
Prentice-Hall PTR.

 28

13. Goldfarb Charles and Prescod Paul, 1998.
“The XML Handbook.” Prentice-Hall PTR,
Upper Saddle River, NJ.

14. Harold Elliotte, 1999. “XML Bible.” IDG
Books Worldwide, 919 E. Hillsdale Blvd.,
Suite 400, Foster City, CA 94404.

15. http://standards.ieee.org/resources/glance_
at_nescom.html, “The Project Authorization
Request.”

16. ISO/IEC, 1998. “Programming Languages
– C++.” American National Standards Institute,
11 West 42nd Street, New York, NY 10036.

17. Jefferson David, 1985. “Virtual Time.”
ACM Transactions on Programming
Languages and Systems, Vol. 7, No. 3, pages
404-425.

18. Joint Simulation System (JSIMS) System
Subsystem Design Document.

19. Joint Simulation System (JSIMS)
Common Component Simulation Engine
(CCSE) Software Design Document (SDD).

20. Joint Simulation System (JSIMS)
Common Component Simulation Engine
(CCSE) Software User Manual (SUM).

21. Joint Simulation System (JSIMS)
Common Component Simulation Engine
(CCSE) Interface Requirement Specification
(SDD).

22. Kanarick C. 1991. “A Technical Overview
and History of the SIMNET Project.” In
Proceedings of the 1991 Advances in Parallel
And Distributed Simulation Conference, Pages
104-111.

23. Kuhl Frederick, Weatherly Richard, and
Dahmann Judith, 2000. “Creating Computer
Simulation Systems, An Introduction to the
High Level Architecture.” Prentice Hall PTR,
Upper Saddle River, NJ 07458.

24. Lee James, 1999. “Verilog Quickstart! A
Practical Guide to Simulation and Synthesis in
Verilog.” Kluwer Academic Publishers, 1001
Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061.

25. Lewis Bil and Berg Daniel, 1996.
“Threads Primer, a Guide to Multithreaded
Programming.” Prentice-Hall PTR, One Lake
Street, Upper Saddle River, NJ 07458.

26. McGuinness Terry, Bailey Chris, Landa
Chris, Steinman Jeff, Peterson Larry, 2002.
"Executing Independent Parallel Applications
Using the SPEEDES Communications
Library." In proceedings of the High
Performance Computing Modernization
Program Users Group Conference.

27. Meyer Bertrand, 1997. “Object Oriented
Software Construction, Second Edition.”
Prentice Hall Professional Technical
Reference.

28. Mikkelsen Tim and Pherigo Suzzanne,
1997. “Practical Software Configuration
Management.” Hewlett-Packard Professional
Books, Prentice-Hall PTR, Upper Saddle
River, NJ 07458.

29. Misener Steven and Krawetz Stephen,
2000. “Bioinformatics Methods and Protocols.”
Humana Press Inc., 999 Riverview Drive, Suite
208, Totowa, New Jersey 07512.

30. Molloy Michael, 1989. “Fundamentals of
Performance Modeling.” Macmillan Publishing
Company, 866 Third Avenue, New York, New
York 10022.

31. Morse Katherine, Steinman Jeff, 1997.
“Data Distribution Management in the HLA:
Multidimensional Regions and Physically
Correct Filtering.” Spring Simulation
Interoperability Workshop, No. 97S-SIW-052.

32. Nilsson Nils, 1993. “Principles of
Artificial Intelligence.” Morgan Kaufmann
Publishers, Inc.

33. Paulk Mark, 2001. “Extreme
Programming from a CMM Perspective.
”Paper for XP Universe, Raleigh NC, 23-25
July 2001.

34. Paulk Mark, Curtis Bill, Chrissis Mary
Beth, and Weber Charles, "Capability Maturity
Model for Software, Version 1.1", Software

 29

Engineering Institute, CMU/SEI-93-TR-24,
DTIC Number ADA263403, February 1993.

35. Paulk Mark, Weber Charles, Garcia
Suzanne, Chrissis Mary Beth, and Bush
Marilyn, "Key Practices of the Capability
Maturity Model, Version 1.1", Software
Engineering Institute, CMU/SEI-93-TR-25,
DTIC Number ADA263432, February 1993.

36. Perry Douglas, 1994. “VHDL.” McGraw-
Hill, Inc., 1221 Avenue of the Americas, New
York, NY 10020.

37. Phillips Dwayne, 1998. “The Software
Project Manager’s Handbook, Principles that
Work at Work.” IEEE Computer Society Press
Customer Service Center, 10662 Los Vaqueros
Circle, P.O. Box 3014, Los Alamitos, CA
90720-1314.

38. Plauger P.J., Stepanov Alexander, Lee
Meng, Musser David, 2001. “The C++
Standard Template Library.” Prentice Hall
PTR, Prentice-Hall Inc., Upper Saddle River,
NJ 07458.

39. Pullen Mark, Myjak Michael, and
Bouwens Christina, 1999. “Limitations of
Internet Protocol Suite for Distributed
Simulation in the Large Multicast
Environment.” RFC –2502,
http://www.ietf.org/rfc/rfc2502.txt?number=25
02.

40. Pyarali Irfan, Schmidt Douglas, and
Cytron Ron, 2002. “Achieving End-to-End
Predictability of the TAO Real-time CORBA
ORB.” Submitted to the 8th IEEE Real-Time
Technology and Applications Symposium, San
Jose, CA, September 2002.

41. Raymond Eric, 2000. “The cathedral and
the bazaar.”
http://tuxedo.org/~esr/writings/cathedral-
bazaar/hacker-history/.

42. Reilly Sean and Briggs Keith (Editors),
1999. “Guidance, Rationale, and
Interoperability Modalities for the Real-Time
Platform Reference Federation Object Model

(RPR-FOM) Version 1.0.” Simulation
Interoperability Standards Organization.

43. Reynolds Paul, 1991. "An Efficient
Framework for Parallel Simulations." In
Proceedings of the Advances in Parallel and
Distributed Simulation Conference (PADS91).
Vol. 23, No. 1, January 1991, Pages 167-174.

44. Rolston David, 1988. “Principles of
Artificial Intelligence and Expert Systems
Development.” McGraw-Hill, Inc.

45. Schildt Herbert, 1998. “C++: The
Complete Reference, Third Edition.” Osborne
McGraw-Hill, 2600 Tenth Street, Berkeley,
California 94710.

46. Schmidt Douglas and Kuhns Fred, 2000.
“An Overview of the Real-time CORBA
Specification.” IEEE Computer special issue
on Object-Oriented Real-time Distributed
Computing, edited by Eltefaat Shokri and
Philip Sheu, June 2000.

47. Schneier Bruce, 1995. “Applied
Cryptography: Protocols, Algorithms, and
Source Code in C, Second Edition.” Wiley,
John & Sons Incorporated.

48. Schuylmeyer Gordon, Mackenzie Garth,
2000. “Verification & Validation of Modern
Software-Intensive Systems.” Prentice Hall,
Inc., Upper Saddle River, NJ 07458.

49. SPAWAR Systems Center, San Diego,
2000.“Software Management for Executives
Guidebook.” PR-SPTO-03-V1.7, September 1,
2000. Software Engineering Process Office
(SEPO) D12.

50. Sperber Joan, 2001. “Up to SPEEDES.”
Military Training Technology, MT2, Volume
6, Issue 1, 2001.

51. Steinman Jeff, 1993. "Breathing Time
Warp." In proceedings of the 7th Workshop on
Parallel and Distributed Simulation (PADS93).
Vol. 23, No. 1, Pages 109-118.

52. Steinman Jeff, Nicol David, Wilson Linda,
and Lee Craig, 1995. "Global Virtual Time and
Distributed Synchronization." In proceedings

 30

of the 1995 Parallel And Distributed
Simulation Conference. Pages 139-148.

53. Steinman Jeff, 1998. “Scalable Distributed
Military Simulations Using the SPEEDES
Object-Oriented Simulation Framework.” In
the proceedings of the Object-Oriented
Simulation Conference (OOS’98), pages 3-23.

54. Steinman Jeff, Tran Tuan, Burckhardt
Jacob, Brutocao Jim, 1999. “Logically Correct
Data Distribution Management in SPEEDES”,
In proceedings of the1999 Fall Simulation
Interoperability Workshop, Paper 99F-SIW-
067.

55. Treshansky Allyn and McGraw Robert,
2002. "MRMAidetm: A Mixed Resolution
Modeling Aide." In proceedings of SPIE,
Enabling Technology for Simulation Science
VI.

56. Tung Yu-Wen and Steinman Jeff, 1993.
“Interactive Graphics for the Parallel and
Distributed Computing Simulation.” In
proceedings of the 1993 Summer Computer
Simulation Conference. Pages 695-700.

57. U.S. Department of Defense, “High Level
Architecture Interface Specification, Version
1.3.”

58. U.S. Department of Defense, “High Level
Architecture Object Model Template, Version
1.3.”

59. U.S. Department of Defense, “High Level
Architecture Rules, Version 1.3.”

60. Valinski Maria, Driscoll Jonathan.,
McGraw Robert, and Buchy Doug, 2001.
"Providing JMASS with a Distribution
Simulation Capability Using SPEEDES." In
proceedings of the Summer Computer
Simulation Conference.

61. Wallace Jeff, et al., 1999. “IMPORT V2.0
Beta 1: A Tool for Large Scale, Complex
System Simulation.” In proceedings of the
High Performance Computing 1999, Grand
Challenges in Computer Simulation
Conference, Pages 267-272.

62. Weatherly R., Wilson A., Griffin S., 1993.
“ALSP – Theory, Experience, and Future
Directions.” In Proceedings of the 1993 Winter
Simulation Conf4erence, Pages 1068-1072.

63. Wieland Fred et al. 1989. "The
Performance of a Distributed Combat
Simulation With the Time Warp Operating
System." Concurrency: Practice and
Experience. Vol. 1, No. 1, Pages 35-50.

64. Wilson Linda and Nicol David, 1995.
"Automated Load Balancing in SPEEDES." In
proceedings of the 1995 Winter Simulation
Conference, Pages 590-596.

65. Zeigler Bernard, Praehofer Herbert, Kiim
Tag Gon, 2000. “Theory of Modeling and
Simulation.” Academic Press, 525 B Street,
Suite 1900, San Diego, CA 92101-449

