
 1

 
 

 
Evolution of the Standard Simulation Architecture 

 
 
 
 

Dr. Jeffrey S. Steinman 
Chief Scientist, RAM Laboratories 

10525 Vista Sorrento Parkway, Suite 220 
San Diego, CA  92121 

steinman@ramlabs.com 
 

Douglas R. Hardy 
Scientist, SPAWAR Systems Center-San Diego 

53140 Systems Street, Code 244201 
San Diego, CA  92152 

douglas.hardy@navy.mil 

 

 



 2

Abstract 
This paper proposes the standardization of a layered simulation architecture that addresses the critical 

modeling needs of the DoD simulation community. The Standard Simulation Architecture works with 
HLA to provide the additional infrastructure necessary for developing highly inter-acting, decoupled 
software models, while simultaneously supporting technology infusion from R&D organizations.  

A layered architecture is proposed to modularize critical capabilities including high-speed 
communications between nodes in a multiprocessing federate, general-purpose software utilities, 
modeling semantics, time management, interest management, and automated interoperability with HLA. 
The interface layers must be standardized to promote (1) model development, (2) portability and 
interoperability with other models, (3) scalable high performance, and (4) technology infusion from the 
research community. Through the standardization process, COTS, GOTS, and Open Source business 
models are supported. 

The Standard Simulation Architecture extends interoperability and reuse principles to (1) the entities 
residing within a multiprocessing federate and to (2) the components hierarchically residing within an 
entity or within components. This standardized hierarchical modeling paradigm promotes development 
of reusable entity and component repositories that can be reused to support different modeling 
applications. Instead of providing only course-grained interoperability through HLA, the Standard 
Simulation Architecture also supports medium and fine-grained interoperability between entities and 
their components. 

 

1 Introduction 
Software development efforts funded by the 

Department of Defense must be regarded as 
important long-term investments. Complex 
software systems should be leveraged and reused 
in other programs whenever technically feasible. 
In order for this to occur, software must be 
developed from the start with the goal of reuse. 
Basic interoperability principles should be 
carefully followed for software to be successfully 
reused in other programs. The Standard 
Simulation Architecture (SSA) promotes these 
principles with the goal of maximizing the return 
on software investments that were funded by 
taxpayer dollars. 

The High Level Architecture (HLA) was 
successfully launched in 1996 to promote 
interoperability and reuse between simulations 
executing in distributed environments. These 
simulations, called federates, typically 
interoperate in an HLA federation to support joint 
analysis or joint training exercises that require the 
coordination of disjoint models. Despite the 

success of HLA, similar techniques have not yet 
been fully standardized for promoting 
interoperability between (1) entities, potentially 
executing on multiprocessor computers, and (2) 
their internal components. There are no general-
purpose entity or component repositories in 
existence today. Furthermore, a common 
architecture has not yet been formally 
standardized to minimize the development cost 
required to build software models that integrate 
with HLA. 

Without such standards, it is nearly impossible 
to develop reusable entity and component 
software models because they typically embed 
various critical framework or simulation engine 
services within the code to coordinate their 
activity. Because each simulation typically 
provides its own event-processing engine with its 
own specialized interfaces, interoperability 
between entities and components is not possible. 
Examples of this may include (1) event-
scheduling interfaces, (2) interest management 
with automated data distribution, and (3) time 
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management services. The Standard Simulation 
Architecture defines high-performance modeling 
constructs along with a suite of programming 
utilities to simplify model development for 
software engineers while simultaneously 
minimizing the dependencies between models. 

One of the goals of the Standard Simulation 
Architecture is to maximize flexibility and 
composability. Federations are composed of 
simulations, which are composed of entities, 
which are further hierarchically composed of 
components. The Standard Simulation 
Architecture promotes flexibility in efficiently 
mapping the software models to machines 
operating in a parallel and distributed 
environment. 

Three levels of granularity naturally arise 
within the Standard Simulation Architecture. 
First, the High Level Architecture normally 
provides network-based communications between 
simulations with overheads that are typically in 
the millisecond range. Second, the Standard 
Simulation Architecture provides high-speed 
communication between entities potentially 
executing on multiprocessor machines through 
shared memory or high-speed network 
communications. Overheads between interacting 
entities are typically in the microsecond range. 
Third, components hierarchically modeled within 
an entity interact with other components through 
abstract polymorphic function calls with 
overheads in the nanosecond range. 

Roughly six orders of magnitude separate these 
three levels of granularity. Special consideration 
must be given to all three levels of granularity to 
maximize overall performance when designing 
large parallel and distributed reusable simulation 
systems. Portability and composition flexibility 
are most critical when the target hardware 
platforms vary in different operational settings. 

The Standard Simulation Architecture is 
defined by a dependency-layered approach. Each 
software layer provides a standard set of 
interfaces and depends only on the preceding (or 
lower) layers of the architecture. By standardizing 

each layer, it becomes possible for technologists 
to integrate successful R&D efforts into 
mainstream simulation programs. The proposed 
Standard Simulation Architecture supports COTS, 
GOTS, and Open Source business models, 
thereby providing a way for commercial, 
government, and academic institutions to 
participate in developing simulation technology 
with the necessary infrastructure for promoting 
interoperability and reuse. 

This paper proposes a layered architecture for 
supporting software interoperability and reuse in 
DoD simulations where scalability and efficient 
run-time performance is crucial. The proposed 
architecture is derived from lessons learned in 
support of the Joint Simulation System (JSIMS) 
program, and other large-scale modeling and 
simulation efforts. Most of the capabilities 
described in this paper have been developed and 
successfully used on various government 
programs. This paper attempts to bring these 
technologies together into a coherent standardized 
architecture. Related technologies feeding into the 
Standard Simulation Architecture include: 

1. The High Level Architecture (HLA) 
2. The Aggregate Level Simulation Protocol 

(ALSP) 
3. Distributed Interactive Simulation (DIS)  
4. Semi-Automated Forces (MODSAF, JSAF, 

ONESAF, etc.) 
5. Common Object Request Broker 

Architecture (CORBA) 
6. Publish/Subscribe architectures 
7. Active Routing 
8. Time Warp Operating System (TWOS) 
9. Synchronous Environment for Emulation 

and Discrete Event Simulation (SPEEDES) 
10. The Joint Simulation System (JSIMS) 

Common Component Simulation Engine 
(CCSE) 

11. WarpIV high-performance parallel and 
distributed simulation kernel 



 4

12. High Performance Computing Run Time 
Infrastructure (HPC-RTI) 

13. Mixed Resolution Modeling Aide 
(MRMAide) 

First, the historical evolution of the SSA is 
provided. Then, a general discussion on the 
subject of interoperability and software reuse 
shows how familiar concepts taken from HLA can 
be reused within a simulation framework to 
promote interoperability, not just between 
federates, but also between entities and their 
components. A layered straw-man architecture is 
then presented that supports the full set of 
interoperability and performance requirements for 
DoD simulations. These proposed layers are 
primarily based on operational software that has 
been developed and reused across a number of 
programs. Finally, a high-level strategy for 
developing the Standard Simulation Architecture 
is detailed in the conclusion of this paper. 

2 Historical Evolution of the SSA 
The evolution of the SSA began in the late 

1980’s and is still evolving today through the 
development of core infrastructures for several 
large DoD projects including the Joint Simulation 
System (JSIMS). 

In the late 1980’s, SIMNET was developed to 
support real-time battlefield simulations of tanks 
in a virtual training environment. The Joint 
Training Confederation (JTC) was developed to 
integrate models from the different armed forces 
to support joint training exercises. Meanwhile, the 
Time Warp Operating System (TWOS) was 
developed at the Jet Propulsion Laboratory (JPL) 
showing that optimistic time management could 
achieve parallel speedup when applied to military 
simulation applications. 

In the early 1990’s, SIMNET evolved into the 
Distributed Interactive Simulation (DIS) standard 
to support virtual battles involving Semi-
Automated Forces. IEEE standardized more than 
one hundred Protocol Data Units (PDUs) that 
specify message formats exchanged between DIS 
models. The Aggregate Level Simulation Protocol 

(ALSP) was developed by MITRE to simplify the 
integration of various simulations participating in 
the JTC. Meanwhile, the Synchronous Parallel 
Environment for Emulation and Discrete-Event 
Simulation (SPEEDES) operating system was 
developed at JPL as a next-generation high-
performance simulation engine to replace TWOS. 
SPEEDES introduced new flow control 
techniques that were required to stabilize run-time 
performance for optimistic simulations. 

In the late 1990’s, HLA became the 
interoperability standard for building Federations 
out of real-time and/or logical-time simulations. 
As HLA was maturing, the Standard Modeling 
Framework (SMF) and an initial implementation 
of the DSMS layer were being designed and 
developed in SPEEDES. These capabilities have 
been further enhanced in the WarpIV simulation 
kernel developed by RAM Laboratories, Inc. 

In early 2000, JSIMS combined SPEEDES and 
HLA as its simulation architecture. This enabled 
each JSIMS Development Agent (DA) to develop 
independent models that would interoperate using 
a powerful SPEEDES-based Common 
Component Simulation Engine (CCSE), 
developed at SPAWAR Systems Center (SSC). A 
new implementation of the DSMS layer was 
required to support the modeling needs of large 
complex federations involving multiple 
SPEEDES and direct HLA Federates. The 
SPEEDES-HLA combination, with extensions in 
WarpIV, is currently evolving into the Standard 
Simulation Architecture (see  

Figure 1). 
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Figure 1: Evolution of the Standard Simulation 
Architecture from the late 1980’s through 2000 and beyond. 

3 General Principles of Software Reuse 
Software reuse is an important goal to strive for 

in the area of software engineering. Object-
oriented approaches to software development 
have shown promise in providing interoperability 
and reuse. However in practice, this goal has been 
elusive and at best difficult to achieve. Either the 
not-invented-here syndrome overrides the 
potential for software reuse, or the available 
software choices presented to engineers simply do 
not meet the requirements of a new software 
project. 

Often, the effort to reuse existing software is 
larger than what it would take to simply write new 
code. Software reuse can require a steep learning 
curve. Many times, there are good technical 
reasons to not reuse software. For example, it 
might make more sense to redundantly develop 
new software to avoid code dependencies. Under 
the right circumstances, it may be better to 
optimize an internal algorithm rather than to reuse 
a more generic algorithm that would result in 
worse performance. Sometimes, a tight delivery 
schedule dictates the software reuse policy. 

Experienced software engineers intuitively use 
common sense when making decisions concerning 
software reuse. However, there are several 
overarching principles that promote the 
development of reusable software. 

1. Reusable software must be passive and not 
active in its usage. It must not be directly 
tied to the particular application or 

infrastructure that is using the software. 
This means that the services provided by 
reusable software must be capable of being 
invoked by any application, not just one in 
particular. Global variables tied to specific 
applications should not be accessed by 
reusable software.1 

2. A framework is often required to 
coordinate the operation of reusable 
software. Typically the coordination is 
accomplished through run-time dynamic 
binding mechanisms (e.g., virtual functions, 
callbacks, polymorphic methods, event 
scheduling, etc.). These software modules 
depend on the existence of the framework 
to coordinate their operation. While 
frameworks are often necessary to support 
complex systems, this often limits 
potentially reusable software to only 
operate within the framework.2 

3. Software frameworks can be standardized 
with a well-defined API to reduce 
dependencies on any particular vendor’s 
implementation of the framework.3 This 
extends interoperability and reuse for both 
application software and the technology or 
infrastructure necessary to support the 
applications. 

4. Generic types, generic algorithms, macros, 
compile flags, abstract base classes, and 
operator-overloading techniques are tools 
that can be used to successfully decouple 

                                                 
1 A good example of reusable software is the Standard Template Library 

(STL) in C++ that provides a set of general-purpose container classes 
and generic algorithms. 

2  A good example of a standard framework is how event scheduling and 
processing depends on the existence of a simulation engine that provides 
an API to schedule and process events. Even though these events may be 
reused in several different simulation applications, they still depend on 
the event scheduling and event processing API of that particular 
simulation engine. A standardized simulation engine API would allow 
the events to be reused in other simulation engines that adhere to the 
same standard. 

3  The High-Level Architecture (HLA) provides a standard API that allows 
vendors to implement their own Run-Time Infrastructure (RTI). HLA-
compliant simulations can interoperate with other HLA-compliant 
simulations using any HLA-compliant RTI because the interfaces for the 
RTI have been standardized. 
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software from a particular application or 
framework.4 

5. Software reuse strategies must take 
communications, computations, memory 
usage, and overall software engineering 
complexity into consideration. All too 
often, complex systems are designed by 
naively connecting black-box software 
modules together without regard for 
performance and scalability. The 
performance of a poorly thought-out 
system may be disastrous when only 
connectivity is considered in the design.5 
Even worse is when the software becomes 
overly brittle through tight coupling 
between its internal components to the 
point where it cannot be maintained. 

6. Software that was not designed for reuse 
will almost certainly not be reusable. It 
takes a disciplined effort to make software 
reusable.6 

7. Software cannot claim to be reusable unless 
it is used in more than one application. One 
way to help enforce this rule is to test the 
software in an environment that is isolated 
from the primary application. Library 
dependencies should be verified when 
testing reusable software. It is not 
uncommon for inappropriate software 
dependencies to creep into the code-base by 
quick fixes that occur over the life cycle of 
a software project, especially when 
employee turnover on the project is high. 

                                                 
4  To illustrate the generic type technique, a “smart” pointer class can be 

defined within a memory management system to provide automated 
checks for memory problems. If implemented carefully, the smart 
pointer class can be redefined at compile time to be a normal pointer. 
This permits reusable applications to operate normally without requiring 
inclusion of the memory management framework 

5  For example, the overhead in passing data through a network is orders of 
magnitude larger than the overhead involved when passing data through 
shared memory or through function calls. 

6 A related corollary to this is, “If it hasn’t been tested, then it doesn’t 
work!” 

4 HLA Reuse Principles Applied to SSA 
Within the DoD simulation arena, the 

discussion of interoperability and reuse has 
centered on HLA. Four important interoperability 
principles have emerged from the development of 
HLA that are directly applied to the SSA. 

1. A standardized software framework with 
well-defined interfaces is required to 
interconnect reusable models (e.g., the 
RTI). 

2. The data exchanged by the models must 
follow an agreed upon standard (e.g., the 
FOM).7 

3. Distributed object technology allows 
models to (1) know about each other’s state 
and (2) invoke actions within other models 
in a coordinated manner (e.g., TM, OM, 
DM, DDM, and OWN). 

4. The double-abstraction barrier principle 
allows a model to invoke actions on other 
models while hiding the details concerning 
which specific models are participating in 
the action and which methods those 
participating models provide to handle the 
action (e.g., Interactions). 

The Standard Simulation Architecture (SSA) 
applies these four principles through its 
conceptual hierarchical decomposition of 
interoperable software models. This is shown in 
Figure 2. HLA Federations are composed of two 
kinds of Federates, SSA Federations and Legacy 
Federates.8 SSA Federations are composed of 
SSA Federates and High Performance Computing 
(HPC) RTI Federates.9 SSA Federates are 

                                                 
7 One of the most difficult problems facing the HLA user community is 

(1) how to specify what goes into the FOM, and (2) how that maps to a 
particular Federate’s SOM. A Federate that participates in more than one 
Federation must be able to translate its SOM to multiple FOMs. Tools 
have been developed to accomplish this, but a standardized FOM, such 
as the RPR-FOM, would significantly help support interoperability. 

8 A Legacy Federate provides its own simulation engine and internal 
infrastructure to communicate directly with the RTI. 

9 HPC-RTI Federates are also legacy federates, but their interface to the 
RTI is directly provided by the Standard Simulation Architecture. This 
provides a more direct interface with lower overheads on high-
performance multiprocessor computers. 
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composed of entities that are hierarchically 
composed of components. Both entities and 
components can create/publish local Federation 
Objects (FOs) and subscribe to remote Federation 
Objects. Filters may be dynamically created 
and/or changed to determine which FOs are 
discovered by which entities and components. 

HLA FederationHLA Federation

HLA FederateHLA Federate

HLA FederateHLA FederateSSA FederationSSA Federation

HPC-RTI FederateHPC-RTI FederateSSA FederateSSA Federate

EntityEntity

ComponentComponent

*

*

*

*

*

Federation ObjectFederation Object
*

*

ComponentComponent
*

* Publish local FOsPublish local FOs
Subscribe to remote FOsSubscribe to remote FOs

ModelsModels

Sub-modelsSub-models

Sub-sub-modelsSub-sub-models

UML: Composed OfUML: Composed Of

UML: Type OfUML: Type Of

 
Figure 2: Decomposition of an HLA Federation into 
Federates, Entities, Components, and Federation Objects. 

4.1 Standardized Software Framework 
First, while HLA provides a Run Time 

Infrastructure (RTI) that allows Federates to 
interoperate, a larger, more comprehensive, 
framework is needed to support the full modeling 
needs required by a Federate. A Federate’s 
connection to the RTI is only one layer in the 
overall Standard Simulation Architecture. 
Opportunity for interoperability and reuse is only 
realized if the architecture layers are standardized 
and if the modeling services provided by the 
framework promotes basic software 
interoperability and reuse principles. 

4.2 Standard Description of Exchanged Data 
Second, HLA provides a standard Object 

Model Template (OMT) format to describe the 
data that flows through the RTI between 
Federates. A more comprehensive description of 
the exchanged data between reusable software 
models representing entities and their components 
within an SSA Federate is needed to facilitate 
interoperability and reuse in an efficient manner. 
A standardized interface between interoperable 
software modules within a Federate must be 
defined in a manner that promotes interoperability 

and reuse for a broad number of simulation 
applications. Data translations and polymorphic 
abstractions can help integrate models of mixed-
resolution without requiring strong coupling 
between models. This approach provides a 
roadmap for transitioning legacy model 
components into SSA federates. 

4.3 Distributed Object Technology 
Third, HLA provides distributed object 

technology between Federates. Similar 
mechanisms must also be provided between 
entities within an SSA Federate executing on 
multiple processors. An automated Distributed 
Simulation Management Services (DSMS) layer 
within a Federate should mirror HLA 
functionality between entities while preserving the 
abstraction that an entity could reside within the 
Federate or within another Federate. This means 
that entities within a Federate should learn about 
each other’s state through DSMS Federation 
Objects (FOs) and interact with one another 
through DSMS Interactions.10 An HLA gateway 
coordinates DSMS activity with the RTI to 
automate connectivity with other Federates in an 
HLA Federation. 

An entity should never directly call a method 
on another entity since interacting entities could 
reside within different Federates. In a similar vein, 
high-performance Federates executing in parallel 
must follow the same FO and Interaction 
guidelines for entities because entities may reside 
on different processing nodes. This important rule 
even applies to entities residing on the same 
processing node in a parallel Federate because the 
entities themselves may be at different logical 
times.11 Like HLA, high performance and 
scalability is achieved through the DSMS layer by 
                                                 
10 In many ways, entities within a Federate look like miniature Federates. 

Entities interoperate exclusively through the exchange of FOs and 
Interactions supported by the DSMS layer. 

11 Both optimistic and conservative time management schemes use a 
scheduler to determine which entity gets to process its next event. In 
optimistic simulations, straggler messages can roll entities backwards in 
time, while other entities continue to process forward. Schedulers in 
conservative simulations often use topology knowledge between entities 
to determine which entity gets to process its next event. In general, 
entities may be at different logical times. 
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supporting scalable interest management services 
that throttle FO and Interaction data exchanges 
between entities and their internal components. 

4.4 Double-abstraction Barrier Principle 
Fourth, HLA supports the double-abstraction 

barrier principle between Federates through the 
Interaction mechanism. Federates first subscribe 
to the kinds of interactions they need and then 
establish their own methods for handling 
interactions as they are received. A Federate 
sending an interaction through the RTI does not 
know which other Federates (if any) have 
subscribed to the interaction. This is the first 
abstraction barrier. Furthermore, even if the 
sending Federate were to know which other 
Federates received the interaction, the sending 
Federate still does not know which methods are 
applied by receiving Federates to process the 
interaction. This is the second abstraction barrier. 

In a similar manner, the double-abstraction 
barrier principle can be applied to entities within a 
Federate and to their internal components. This 
technique decouples entities and components, 
thereby promoting reusability in a manner that is 
familiar to HLA. The difference, however, is that 
the SSA simplifies the process through its tailored 
modeling constructs and programming interfaces. 

Network-based Federations apply the double-
abstraction barrier principle through interactions 
with typical network overheads in the millisecond 
range. Entities residing within a sequential or 
parallel Federate interact with one another 
through DSMS Interactions with much smaller 
overheads that are typically in the microsecond 
range. Shared memory, rather than network-based 
communication protocols, provides several orders 
of magnitude faster communication between 
entities executing in parallel on high-performance 
multiprocessor machines. Of course, entities in 
sequential Federates interact through event-
scheduling function calls with slightly lower 
overheads. 

Hierarchical components managed within an 
entity can interact with one another through the 

use of polymorphic functions and methods that 
again preserve the double-abstraction barrier 
principle. Like callback systems, a component can 
invoke a polymorphic function that in turn 
activates polymorphic methods that were 
registered by objects in other components. This is 
very similar to general-purpose GUI callback 
systems that allow applications to register 
handlers when buttons are pushed, etc., except 
that the polymorphic method system is fully 
object-oriented. The hierarchical polymorphic 
method mechanism also provides scope resolution 
to restrict which methods in the component 
hierarchy are activated. Polymorphic methods are 
invoked through function calls with typical 
overheads in the nanosecond range. 

The hierarchical component infrastructure 
within an entity manages which methods have 
been registered by which components. The 
invoker of a polymorphic function does not know 
which components have registered polymorphic 
methods, nor does the invoker know which 
polymorphic methods are applied by registering 
components when activated. Thus, the double-
abstraction barrier principle is maintained. 

The polymorphic method system is much more 
powerful than the standard object-oriented 
inheritance and virtual function approach to 
polymorphism. It does not require inheritance or 
virtual functions to achieve polymorphism. 
Instead, a special macro is used to define the 
polymorphic interface (see Code Segment 1).12 
Code Segment 1: Macro interface for defining a 
polymorphic interface with N arguments. In the current 
implementation, N can range from 0 to 20 to support up to 
20 arguments in the generated interface. 

DEFINE_POLYMORPHIC_INTERFACE_<N
>_ARGS( 
 FunctionName, ArgType1, ArgType2, …, 
ArgTypeN 
) 

This macro generates a new polymorphic 
function that can be invoked to activate 

                                                 
12 Code examples of interfaces for polymorphic methods are taken from 

the SPEEDES-based JSIMS Common Component Simulation Engine. 
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corresponding polymorphic methods that have 
been registered (see Code Segment 2). Note that 
the invoker of the polymorphic function only 
references the interface and has no knowledge of 
how the interface triggers software models in 
other components. 
Code Segment 2: Macro-generated functions for invoking 
registered polymorphic methods. When invoked, the first 
version of the function activates all registered polymorphic 
methods within the entity. The second version of the 
function provides scope resolution within a component and 
its children components to only invoke those registered 
methods in the specified component substructure. 

void FunctionName( 
 ArgType1, ArgType2, …, ArgTypeN 
) 
 
void FunctionName( 
 Component *, ArgType1, ArgType2, …, 
ArgTypeN 
) 

Through another macro, any number of objects 
may define one or more of their methods to 
correspond to the polymorphic interface. 
Registered objects requires no special inheritance, 
their object class name can be arbitrary, and their 
registered method name can also be arbitrary. An 
example of this is shown in Code Segment 3. 
Code Segment 3: Defining a polymorphic method on a 
class. Notice that the name of the class and its polymorphic 
method can be anything. The last argument in the macro, N, 
is the number of arguments in the interface. No inheritance 
is required when defining polymorphic methods. 

class ClassName { 
 private: 
 protected: 
 public: 
  void MethodName( 
   ArgType1, ArgType2, …, ArgTypeN 

  ); 
}; 
 
DEFINE_POLYMORPHIC_METHOD( 
 FunctionName, ClassName, MethodName, N 
) 

The DEFINE_POLYMORPHIC_METHOD 
macro generates new and uniquely named 
functions that can be used to register or unregister 

the polymorphic method within an entity or within 
any component in an entity’s component 
hierarchy. The interface for registering and 
unregistering polymorphic methods is shown in 
Code Segment 4. 
Code Segment 4: Macro-generated functions for registering 
and unregistering polymorphic methods associated with a 
class. Note that the first two interfaces register and 
unregister the method with the entity. The second two 
interfaces register and unregister the method with a 
component. 

void 
REGISTER_FunctionName_MethodName( 
 Entity *, ClassName * 
) 
 
void 
UNREGISTER_FunctionName_MethodName( 
 Entity *, ClassName * 
) 
 
void 
REGISTER_FunctionName_MethodName( 
 Component *, ClassName * 
) 
 
void 
UNREGISTER_FunctionName_MethodName( 
 Component *, ClassName * 
} 

An example of how components work with 
polymorphic methods is shown pictorially in 
Figure 3 with an extended UML class diagram.13 
In this example, a radar component on a ship 
entity sends detections to the track fusion 
component through the polymorphic method 
mechanism. 

                                                 
 

 

 
13 The extended UML diagrams use different shapes and colors for boxes 
to represent different kinds of classes within a simulation. This helps to 
quickly convey information without cluttering the diagram. For example, 
framework objects are drawn as blue boxes, a user-derived simulation 
object is drawn as a red box, an event is drawn as a red circle, a process is 
drawn as a red ellipse, polymorphic methods are drawn as purple 
hexagonal polygons, Arrows indicate scheduling information, etc. 



 10

The radar component generates detections that 
are processed by the track fusion component when 
invoking the ProcessDetections polymorphic 
function. This in turn activates the FuseDetections 
method in the track fusion component that has 
been registered as a polymorphic 
ProcessDetections method. The double-
abstraction barrier principle is demonstrated in 
this example to show that the radar component 
does not know about the track fusion component, 
nor does it know the name of the track fusion 
component’s method that is applied when 
processing the detections. 

EntityEntity

ShipShip

ComponentComponent

RadarRadar Track FusionTrack Fusion

ProcessProcess
DetectionsDetections

Radar ScanRadar Scan

Call polymorphic
Process DetectionsProcess Detections function

Invokes polymorphic
Fuse DetectionsFuse Detections method

Double-Abstraction
Barrier

The Process Detections polymorphic
function allows the Radar Scan process
to invoke the Fuse Detections
polymorphic method of the Track
Fusion component without requiring
access to its pointer.

Register the FuseFuse
DetectionsDetections method
as a polymorphic

method

 
Figure 3: An example of two components interacting 
through a polymorphic method. A Ship entity contains a 
Radar component and a Track Fusion component. The 
Track Fusion component registers its FuseDetections 
method as a ProcessDetections polymorphic method. The 
Radar Scan process periodically feeds its detections to the 
Track Fusion component by calling the ProcessDetections 
polymorphic function. The Radar does not know that the 
Track Fusion component exists, nor does it know that the 
FuseDetections method was registered as a polymorphic 
method for ProcessDetections. This preserves the double-
abstraction barrier principle. 

In summary, HLA interoperability and reuse 
principles can be applied within the proposed 
Standard Simulation Architecture to address three 
distinct levels of granularity: 

1. Federates within an HLA Federation 
2. Entities within a parallel or sequential 

Federate 
3. Components hierarchically composed 

within an entity 

HLA provides a standard framework (RTI) to 
facilitate distributed object technology in a 
Federation. The data exchanged between 
Federates (i.e., Federation Objects and 

Interactions) is defined in the FOM. The double-
abstraction barrier principle is achieved through 
HLA Interactions. 

A high-performance simulation framework can 
facilitate distributed object technology between 
entities on parallel high-performance computers. 
The data exchanged between entities is done in 
the same manner as HLA using a Distributed 
Simulation Management Services layer to 
coordinate the distribution of Federation Objects 
and Interactions between entities. The double-
abstraction barrier principle between entities is 
again achieved through Interactions. 

Working with the Distributed Simulation 
Management Services layer, an HLA gateway 
maintains the important abstraction that entities 
could reside within any Federate or on any node 
within a Federate executing in parallel. 

A standardized hierarchical component 
framework allows entities to be hierarchically 
decomposed into sub-models. A macro is used to 
define polymorphic interfaces that specify the 
data exchanged between components within an 
entity. The double-abstraction barrier principle is 
achieved through the polymorphic method 
infrastructure. 

The Standard Simulation Architecture specifies 
a framework that can support all of these 
interoperability principles through a layered 
approach. Through API standardization, these 
layers can be developed in an open environment 
by commercial organizations, government 
laboratories, and academic institutions. 

5 High-Level Modeling Concept 

The Standard Simulation Architecture 
promotes high-speed interoperability and reuse at 
three different levels. First, Federates can 
interoperate through HLA interfaces using the 
HPC-RTI, or they can interoperate directly within 
the Standard Simulation Architecture. All HLA 
federates (including the SSA Federation) 
interoperate through a well-defined FOM and 
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through standard usage of the RTI.14 An example 
of eleven interoperating Federates is shown in 
Figure 4. 
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Standard
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Architecture
Federation  

Figure 4: Interoperability between Federates in the 
Standard Simulation Architecture. In this example, F1, F2, 
F3, and F4 are HPC-RTI Federates executing on four nodes 
of a sixteen node parallel machine. F5 is a six node 
Federate, F6 is a sequential Federate, and F7 uses four 
nodes on each of the two machines within the group of 
Standard Simulation Architecture Federates. 
Communication within a Standard Simulation Architecture 
Federation is provided through shared memory and/or 
network message passing. A gateway connects these seven 
Federates to a network-based RTI to provide interoperability 
with other HLA Standard Simulation Architecture Federates 
executing either in parallel (F8) or sequentially (F9), and 
with legacy Federates (F10 and F11). 

Second, entities within the Standard Simulation 
Architecture interoperate in parallel through the 
DSMS layer. This means that entities obtain 
information about other entities by subscribing to 
each other’s published Federation Objects. 
Entities process events scheduled by other entities 
using the formal DSMS Interaction mechanism.15 
This not only supports the parallel processing 
paradigm, but also maintains the important 
abstraction that interacting entities could reside 
within different HLA Federates. 

                                                 
14 Because HLA does not define standards for initialization procedures, 

synchronization points, representation of time, object models, and 
representation of data, it may be difficult to identify standard usage of 
the RTI. Eventually, further standards need to be created to truly 
establish a greater degree of interoperability between HLA federates. 

15 Interactions can be directed to a list of specified entities using a special 
parameter in the parameter set to store their unique identifiers. The 
interaction will only be sent through the gateway to other federates if 
any of the recipient entities are not located within the federate. 
Significant overhead reductions are possible with this approach. 

The HLA gateway preserves this important 
abstraction by seamlessly providing connectivity 
between HLA Federates.16 If required, time 
management is coordinated using conservative 
and/or optimistic techniques between and within 
each Federate. 

Object clustering techniques allocate entities to 
specific nodes within each Federate. This 
alleviates the need for all of the software within a 
federate being linked into one monolithic 
executable. 

An example showing how interactions are sent 
by one entity and then received by subscribing 
entities is depicted in Figure 5. The important 
abstraction that the entities could reside in any 
Federate is preserved.  

RTIRTI

FedGatewayFedGateway

DSMS

Entity1Entity1 Entity2Entity2

FedGatewayFedGateway

DSMS

Entity3Entity3 Entity4Entity4

Entity1 sends a Detonation Interaction

Detonation Interaction sent through RTI

 
Figure 5: An example of an entity sending an interaction. 
At time 100, Entity1 uses the DSMS layer to send an 
interaction scheduled for time 200. Assuming that the 
lookahead through the RTI is 10, the FedGateway receives 
the interaction at time 190. It then schedules the interaction 
through the RTI for time 200. At time 200, all subscribing 
entities in both Federates receive and process the 
interaction. The receiving entities have no special 
dependencies concerning which Federate sent the 
interaction. This preserves the abstraction that any entity 
could reside in any Federate. 

Third, components within entities interoperate 
through fully specified type-checked interfaces 
using polymorphic functions and methods.17 
Components decompose models hierarchically 
                                                 
16 The HLA Gateway is actually implemented as an entity that subscribes 

to Federation Objects and Interactions through the DSMS layer and with 
the RTI. 

17 Components can also abstractly interact with each other by directly 
invoking the ProcessInteraction method. While this approach has 
additional parameter packing and unpacking overheads, and provides 
less type-checking in its parameter set interface, it can sometimes be 
helpful in reusing abstract interaction handlers. However, event-
scheduling overheads are eliminated by directly invoking the 
ProcessInteraction method. 
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within an entity to support arbitrary levels of 
fidelity and detail. Like entities, components also 
coordinate the publication and subscription of 
Federation Objects and interactions with interest 
management. This is shown with a UML class 
diagram in Figure 6. 
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Figure 6: Entities, components, and FoMgrs. Hierarchical 
components are used to decompose an entity model into 
sub-models. The components connect their Federation 
Object Managers (FoMgrs) in the same hierarchical manner 
to provide efficient interest management between 
components within an entity. A Federation Object that is 
discovered by an entity will be directed to the components 
within the entity as specified by their interest management 
filters. 

From a different perspective, another way to 
visualize the different levels of granularity within 
the architecture is to consider Inter Process 
Communication (IPC) mechanisms. The UML 
Diagram in Figure 7 shows the hierarchical 
decomposition of an HLA Federation (see also 
Figure 4) as it relates to the different levels of IPC 
granularity. 
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HLA FederateHLA FederateSSA FederationSSA Federation
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Figure 7: A UML diagram showing the hierarchical 
decomposition of an HLA Federation in the Standard 
Simulation Architecture. An HLA Federation is composed 
of one or more HLA Federates that take on two flavors, 
Legacy Federates and SSA Federations. The SSA 
Federation is composed of one or more SSA Federates 
and/or HPC-RTI Federates. SSA Federates can be spread 
over one or more Machine. Each Machine contains one or 
more Nodes. Each Node contains one or more Threads. 

At the finest level of granularity, threads allow 
multiple lightweight processes to communicate 
within a single heavyweight process (or node). 
These lightweight processes coordinate through 
mutual exclusion locking mechanisms that 
safeguard memory accesses. 

Multiple nodes may communicate on a 
multiprocessor machine. Multiple nodes on a 
machine normally communicate through high-
speed shared memory. However, multiple 
machines may connect through a local area 
network to form a Standard Simulation 
Architecture Federate. These machines typically 
communicate through standard network protocols 
such as TCP/IP. 

Standard Simulation Architecture Federates 
may connect together through shared memory, 
local area networks, and/or wide area networks to 
form an SSA Federation, which behaves as a 
single HLA Federate because it has one 
connection to the RTI through its gateway. 

At the lowest level, HLA Federates typically 
communicate through standard Internet protocols 
such as TCP/IP, UDP/IP, and IP-multicast. These 
Internet protocols may be further abstracted using 
distributed object communication mechanisms 
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such as CORBA. 18 The RTI provides another 
layer of abstraction to support federates 
communicating in a distributed environment. 
Multiple HLA Federates can connect together to 
form an HLA Federation. 

The coordination of HLA time management 
and interest management services may add 
additional overheads to the basic message-passing 
overheads. Typical levels of granularity for each 
kind of communicating units are summarized in 
Figure 7. 

Using the HPC-RTI interface, legacy 
simulations in the Standard Simulation 
Architecture benefit from high performance 
parallel processing in three ways. First, legacy 
simulations can self-Federate through the HPC-
RTI to execute in parallel on multiprocessor 
machines. For example, entities could be 
distributed to four nodes on a multiprocessor 
machine, thereby reducing the computational load 
required by a single CPU (see Figure 8). 

                                                 
18 The first RTI developed by DMSO used the ORBIX implementation of 

CORBA. The more recent RTI-NG implementation is based on the 
ACE/TAU object request broker. 
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Figure 8: An example of interoperability and high-
performance computing through the HPC-RTI on four 
nodes of a multiprocessor machine. Entities are distributed 
to multiple instances of the legacy Federate to achieve 
parallel processing by the Federate. The internal HPC 
Simulation Engine can also provide models that interoperate 
with each other and with the Federate. Optimistic computing 
may occur within the HPC Engine, but through advanced 
time management techniques, the Federate only receives 
valid data from the HPC Engine. 

Second, the HPC-RTI actually connects two 
simulation engines together within a single 
process. It does this in a way that supports 
interoperability between models implemented in 
the two engines without sacrificing performance. 
Integrating a legacy federate with reusable entities 
or components that are modeled in the Standard 
Simulation Architecture can extend the 
functionality and software lifetime of legacy 
simulations. 

Third, Federates using the HPC-RTI can 
participate in Standard Simulation Architecture 
Federations executing on high-performance 
computers (see Figure 4). One very important 
capability provided by the HPC-RTI over 
traditional RTIs is that everything, including DM, 
DDM, and OWM services are potentially 
managed in logical time. Furthermore, the HPC-
RTI provides a seamless integration between 
mixed real-time and logical-time modes of 
operation.19 
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6 The Standard Simulation Architecture 
This section first provides an overview of the 

layered architecture. It then provides a detailed 
description of each layer in the architecture. 

6.1 Architecture Overview 
The proposed Standard Simulation 

Architecture is shown in Table 1. It is comprised 
of multiple software layers that simulation 
systems build upon.20 The standardization process 
defines the set of interfaces for each of these 
layers.21 Once this is accomplished, different 
implementations of these layers can be combined 
to form complete simulation infrastructures that 
may be optimized for different types of 
simulations, communication networks, computing 
platforms, operating systems, languages, and 
compilers. Commercial organizations 
(Commercial Off The Shelf - COTS), government 
laboratories (Government Off The Shelf - GOTS), 
and academic institutions (Open Source) can 
independently contribute their own optimized 
implementations of any of these layers. A quick 
overview of the SSA layers is provided below. 

                                                                                  
19 Because the HPC-RTI layered on top of a parallel and distributed time-

managed simulation engine, all operations are fundamentally 
coordinated in logical time. To support real-time federates, events are 
simply time-tagged by the wall clock. This unified approach to 
managing events does not require separating real-time messages from 
logical time messages in message queues. 

20 The layered architecture selectively allows upper layers to invoke 
services provided by lower layers, not just the layer immediately below. 
In this way, the layered architecture is like public inheritance in object-
oriented software. 

21 One of the first issues to address when standardizing interfaces is 
programming and naming conventions. This includes standards for 
naming classes, data members, methods, functions, arguments, local 
variables, macros, and macro-generated functions. It also involves 
standards for global variables, error handling, header file rules, operator 
overloading, and templates. The programming standards do not include 
rules for bracket indentation, or other personal style issues that can be 
resolved through pretty print formatting tools. 

Table 1: The Standard Simulation Architecture. Notice that 
the color-coding of the layers indicates groupings of related 
functionality. Green layers indicate low-level interprocess 
communications or system services. Dark blue layers 
indicate frameworks that coordinate processing. Yellow 
layers indicate programming interfaces for model 
developers. Red layers provide HLA services. Light blue 
layers indicate models or federate applications. Finally, the 
purple layer indicates graphical tools that can be used to 
simplify model construction, scenario generation, and data 
analysis. 

System Services
Threads
UtilitiesUtilities

Network Communications
Internal High Speed Communications External Distributed Communications

Rollback FrameworkRollback Framework
Rollback UtilitiesRollback Utilities

PersistencePersistence
Standard Template LibraryStandard Template Library
Event Management ServicesEvent Management Services

Time ManagementTime Management
Standard Modeling FrameworkStandard Modeling Framework

Distributed Simulation Management ServicesDistributed Simulation Management Services
SOM/FOM Translation ServicesSOM/FOM Translation Services

ExternalExternal
ModelingModeling

FrameworkFramework

HLAHLA
GatewayGatewayHPC-RTIHPC-RTI

Component Repository
Entity Repository

CASE ToolsCASE Tools

Direct
Federate

Abstract
Federate

HLA
Federate

HLA
Federation

External
System

 
The System Services, Threads, Network 

Communications, Internal High-Speed 
Communications and External Distributed 
Communications layers provide a full-spectrum of 
system utilities and inter-process communication 
services in a standard portable manner. 

The Rollback Framework, Event Management 
Services, and Time Management layers provide 
the basic infrastructure that is necessary to support 
discrete-event and real-time simulations executing 
on single or multiple CPU machines. 

The Utilities, Rollback Utilities, Persistence, 
Standard Template Library, Standard Modeling 
Framework, Distributed Simulation Management 
Services, and External Modeling Framework 
layers provide the basic set of constructs and tools 
required for software developers to efficiently 
build simulation models and to directly connect 
them to external systems such as graphical user 
interfaces and hardware devices. Persistence is 
critical for supporting checkpoint/restart and 
dynamic load balancing functionality. 

The SOM/FOM Translation Services, HPC-
RTI Interface, and HLA Gateway layers support 
interoperability between Standard Simulation 
Architecture Federates, legacy HLA Federates, 
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and HLA Federations. The FO and Interaction 
data translation services allow a Federate to define 
its own specialized SOM while promoting 
interoperability with other Federates. The HLA 
Gateway may provide multi-level security 
services between networked Federates. 

The Component Repository and the Entity 
Repository provide a library of models that were 
designed for reuse across multiple simulation 
domains. Note that entities interoperate through 
federation objects and interactions, while 
components interoperate through polymorphic 
methods. 

The CASE tool layer allows commercial 
vendors to generate code through specialized 
compilers and/or graphical programming 
environments to simplify the development of new 
models. The CASE tool layer may also provide 
graphical tools to simplify scenario generation 
and object compositions with mixed levels of 
resolution. The CASE Tool layer may also 
provide backward compatibility services to map 
legacy simulations to the standard simulation 
Architecture. 

The complete architecture provides high-speed 
software reuse and interoperability between SSA 
federates, entities, and components. It further 
provides interoperability with legacy Federates 
and HLA Federations through the HPC-RTI 
Interface and HLA Gateway layers. Non-HLA 
external systems such as high-speed hardware or 
specialized graphical displays may integrate and 
directly interoperate with the overall system 
through the External Modeling Framework. 

6.2 Architecture Layers 
This section provides further descriptions of 

each layer in the architecture. Note that each layer 
at most only depends on the layers below in the 
architecture. 

6.2.1 System Services 

In order to preserve portability between 
operating systems, the System Services layer 
abstracts all of the system-specific services that 

might be invoked by the Standard Simulation 
Architecture. Examples of these services include 
operations such as forking a process, spawning 
the execution of a new program, obtaining the 
time of day, determining CPU usage, waking up 
the process when a message arrives, establishing 
network connections, creating/deleting shared 
memory segments, etc. 

6.2.2 Threads 

The Threads layer defines portable standard 
interfaces for supporting lightweight processes 
across different operating systems and 
languages.22 The thread interfaces must be 
implementable for both UNIX (e.g., Pthreads, 
Solaris threads, DCE threads, etc.) and Windows 
operating systems (e.g., WIN32 Threads). This 
layer must minimally support C++ and Java 
programming languages. The interface must also 
include default functions for systems that do not 
support multithreading.23 Basic services include 
the following. 

1. Ability to spawn and terminate a thread. 
2. Ability to assign a priority to a thread. 
3. Mutual exclusion mechanisms. 
4. Storage of local data associated with a 

thread. 
5. Method to provide the maximum number of 

threads. 
6. Method to provide the number of active 

threads. 
 

6.2.3 Utilities 

The Utilities layer defines a standard set of 
interfaces for general-purpose classes including 

                                                 
22 Threads, or lightweight processes, allow an application to have more 

than one process active within a single heavyweight process. They share 
the full memory state of the application; so all memory is “shared 
memory” in a multithreaded process. This is not the same as running 
multiple heavyweight processes that communicate through specially 
created shared memory segments. Threads can run concurrently on 
machines with multiple CPUs, which can often provide parallel speedup. 

23 A system that does not support multithreading sets the maximum 
number of threads equal to one. 
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random number generation,24 data parsers, XML 
parsers, various container classes, dynamic arrays, 
strings,25 generic algorithms, timers, math 
utilities, motion libraries,26 data logging, portable 
big/little endian data types, I/O stream extensions, 
memory management tools, object factories, 
checksum, data compression algorithms, error 
handling, and internal memory tracking. When 
applicable, these utilities should be thread-safe, 
which is why they depend on the threads layer. 

6.2.4 Network Communications 

The Network Communications layer defines 
the interfaces for the standard communication 
infrastructure that is used to connect networked 
simulations together. A general-purpose 
client/server infrastructure coordinates message 
passing between machines in a local area network 
and between multiple local area networks in a 
wide area network.27 Standards such as CORBA 
may be used to support this layer. However, it is 
important to define interfaces that are powerful, 
yet open to the research community. An over-
reliance on commercial products may not support 
innovative R&D efforts that explore new 
protocols and performance optimizations. 
Possibly, a simplified version of the CORBA 
interface is needed. 

A Publish/Subscribe wide-area network 
approach efficiently distributes data between 
platforms by evaluating subscription filters on the 
published data, or meta-data associated with each 
outgoing message. Multiple servers may be used 
to connect local networks to other local networks. 

                                                 
24 The random number generator must support a wide variety of statistical 

distributions. 
25 Various types of string classes are provided including variable-length 

strings, fixed-length strings, and XDR strings. 
26 A good example of a reusable motion library is the Common Algorithm 

Software Services (CASS) library in JSIMS. It supports a wide range of 
motion types in four different coordinate systems (ECR, ECI, Round 
Earth, and WGS84). 

27 High performance scalable communications across wide area networks 
is an extremely active area of research and development within the 
network community. It is anticipated that the Network Communications 
layer will benefit from this ongoing work. By standardizing the 
distributed network interfaces, and by describing how they are used in 
the Standard Simulation Architecture, the networking community will 
be more focused in their research efforts. 

In this manner, spider-web networks of servers try 
to minimize message congestion while optimally 
routing messages. This approach supports the 
usage of reliable message passing services while 
still conserving bandwidth consumption. An 
example of this is shown in Figure 9. 
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Figure 9: An example of a distributed spider-web network 
where one publisher sends a message to multiple 
subscribers. The message is provided to the subscribers as it 
is routed once through the network. Notice that this active 
routing approach minimizes bandwidth consumption. 31 
hops are required if the message is individually sent to each 
destination. The smarter active routing approach in this 
example only requires 13 bandwidth-consuming hops. 

The network layer must support dynamic 
connectivity to allow new applications or routers 
to join the system and fault tolerance when 
applications exit the system. The client/server 
infrastructure must be distributable, provide 
redundant routing paths, facilitate multiple 
network protocols, and coordinate multiple 
application groups when more than one 
application shares the network. It must also 
support heterogeneous networks that mix big and 
little endian data formats. Additional network 
services to fulfill security requirements may be 
implemented in this layer.28 

A generic client/server model is used to 
support multiple services types within a server 
process. Each server type is represented as a class 
in the server process. Message headers for 
services requested by the client to the server 
process include information describing the type of 
service requested, the specific service requested, 
and the group Id of the requester. The Object 
                                                 
28 Radiant Mercury can be integrated with routing servers to provide 

multilevel security between networks at different security levels. 



 17

Request Broker (ORB) in the server process 
automates method invocations for server objects. 
Applications never actually deal with low-level 
messages. 

Table 2 shows performance measurements for 
the RAM ORB distributed client/server 
framework involving different configurations. In 
these measurements, up to 75,000 short messages 
can be exchanged between two machines on a 
gigabit Ethernet. Sustained bandwidth for larger 
messages was measured to be about 15 megabytes 
per second.29 
Table 2: Network communication performance between 
two processors on the same machine, and between two 
machines. 

Configuration Test Name Description Performance

Synchronous Ping Pong
Client sends ping message and waits for server to 
respond with pong. Process repeats for 5 seconds. 38,000 messages per second

Synchronous Variable-length Data
Client sends ping message with variable-length 
data and waits for server to respond with pong. 
Process repeats for 5 seconds.

35,000 messages per second

Asynchronous Ping Pong

Client repeatidly sends ping messages for 5 
seconds. Server responds to Pings by sending Pong 
messages back to the client. The client consumes 
Pong messages as they arrive until all Pongs are 
received. 

71,000 messages per second

Bandwidth
Client synronously sends 1 megabye Ping message 
to the server and waits for the 1 megabyte Pong 
reply from the Server.

111 megabytes per second

Configuration Test Name Description Performance

Synchronous Ping Pong
Client sends ping message and waits for server to 
respond with pong. Process repeats for 5 seconds. 14,000 messages per second

Synchronous Variable-length Data
Client sends ping message with variable-length 
data and waits for server to respond with pong. 
Process repeats for 5 seconds.

13,000 messages per second

Asynchronous Ping Pong

Client repeatidly sends ping messages for 5 
seconds. Server responds to Pings by sending Pong 
messages back to the client. The client consumes 
Pong messages as they arrive until all Pongs are 
received. 

75,000 messages per second

Bandwidth
Client synronously sends 1 megabye Ping message 
to the server and waits for the 1 megabyte Pong 
reply from the Server.

15 megabytes per second

Network Performance

Local Client-Server
Dual 1.8 Ghz Linux PC

Client
1.8 Ghz Linux PC

Server
2 Ghz Linux PC

Network
1 gigabit Ethernet

 
6.2.5 Internal High-Speed Communications 

The Internal High-Speed Communications 
layer defines the standard set of interfaces that are 
required to provide high-speed message passing 
through shared memory and/or through high-
speed networks. Multi-node Federates 
communicate internally through this layer. The 
Internal High-Speed Communications layer may 
use services provided by the Network 
Communications layer to join multiple parallel 
machines in a network environment. The basic 
categories of service are described below. 

1. Startup and terminate functions to fork 
processes, create internal shared memory 
segments, etc., and then to clean up shared 
memory segments when the Federate exits. 

                                                 
29 Network performance is highly sensitive to the speed of the network 

card used by each computer. 

2. Node information to provide the number of 
nodes (e.g., a UNIX process) and the node 
Id (ranging from zero to the number of 
nodes minus one). 

3. Synchronization operations to support 
blocking synchronizations and split-phase 
fuzzy barrier synchronizations that allow 
processing to continue while waiting for 
synchronizations to complete. 

4. Global reductions to support basic 
operations for determining the minimum, 
maximum, and sum of integer or floating 
point values provided by each node. A 
general reduction service must also be 
provided to support applications that 
perform general reductions on arbitrary 
data types. 

5. Synchronous data distribution services for 
broadcast, scatter, gather, and vector/matrix 
formation. 

6. Asynchronous message passing services 
between nodes. Unicast, destination-based 
multicast, and broadcast capabilities must 
be provided. 

7. Coordinated message passing services 
between nodes that guarantee the receipt of 
all messages before completing the 
coordinated message-passing operation. 
Unicast, destination-based multicast, and 
broadcast capabilities must be provided. 

8. Remote method invocation services 
between objects residing on different 
processors. Unicast, multicast, or broadcast 
messaging services must be provided. 

Performance benchmarks have been collected 
using the WarpIV High Speed 
Communications library (see Figure 10 and 
Figure 11).30 All of the shared memory 
benchmarks to date show nearly perfect 

                                                 
30 These measurements were obtained from an older 48-processor HP 

Superdome computer running about 1/4 the speed of a 500 MHz 
Pentium 3. Today’s machines are expected to perform about 20 times 
faster. 
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scalability as a function of the number of 
nodes. This kind of scalable performance is 
impossible to achieve on networked systems 
(e.g., Ethernet) using standard Internet 
protocols. Furthermore, all messages are 
transported reliably though the shared memory, 
which is critical in supporting high-
performance computing for parallel federates 
executing in logical time. 

AsyncUnicast Messages/Sec AsyncMulticast Messages/Sec AsyncBroadcast Messages/Sec

CoordUnicast Messages/Sec CoordMulticast Messages/Sec CoordBroadcast Messages/Sec  
Figure 10: Message throughput performance of the WarpIV 
High Speed Communications library for message bandwidth 
on up to 44 processors using shared memory. The 
throughput scalability is nearly linear as the number of 
nodes increases.  

 

AsyncUnicast Bandwidth AsyncMulticast Bandwidth AsyncBroadcast Bandwidth

CoordUnicast Bandwidth CoordMulticast Bandwidth CoordBroadcast Bandwidth  
Figure 11: Message bandwidth performance of the WarpIV 
High Speed Communications library for message bandwidth 
on up to 44 processors using shared memory. The 
bandwidth efficiency scalability is nearly linear as the 
number of nodes increases. 

6.2.6 External Distributed Communications 

The External Distributed Communications 
layer defines the standard set of two-way 
interfaces for communicating between distributed 
Standard Simulation Architecture Federates or 
with an external system. The client/server 
interfaces provided by the Network 

Communications layer are used to support the 
various kinds of external distributed 
communication services required. Note that while 
these interfaces are defined in this layer, much of 
their implementation is actually in the Event 
Management and External Modeling Framework 
layers. 

Services provided by the External Distributed 
Communications layer include the various 
command-line utilities that can cause a Standard 
Simulation Architecture Federation to pause, 
resume, checkpoint, or exit. 

6.2.7 Rollback Framework 

The Rollback Framework layer defines the 
basic interfaces for supporting rollbackable 
operations. This includes a rollback manager that 
automatically stores rollback items generated 
when rollbackable operations are performed. Each 
event provides its own rollback manager. This 
allows events to be individually rolled back when 
necessary. 

The framework must efficiently support all 
rollbackable operations while consuming minimal 
additional memory. Like standard undo and redo 
features provided by most commercial business 
products, all rollbackable operations must be able 
to rollback and rollforward without constraints. 
To minimize processing overheads, rollback items 
are managed in highly optimized free lists to 
reduce memory allocation and deallocation times. 
Each rollback item stores only the information 
necessary to undo or redo its specific operation. 

The rollback framework must also be 
extensible to allow users to define their own 
rollbackable operations when necessary. A 
standard interface has been developed to simplify 
this task. Users must define a rollback item to 
undo or redo the operation when necessary. The 
rollback item inherits from a base class rollback 
item. Virtual functions are defined on this base 
class to rollback, rollforward, commit, or 
uncommit the operation. A simple macro is used 
to define the memory allocation and deallocation 
functions. These functions encapsulate the free list 
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memory management that is critical to maintain 
high performance execution. 

To assist in troubleshooting, the rollback 
framework also provides diagnostics such as the 
ability to display all rollbackable operations 
performed during an event. This information can 
be printed to the screen, or it can be included in 
generated trace files that provide information 
about each processed event. 

6.2.8 Rollback Utilities 

The Rollback Utilities layer provides a 
comprehensive set of primitive rollbackable data 
types, container classes, static and dynamic 
arrays, standard C functions, I/O services 
including sorted data logging when executing in 
parallel, external message passing interfaces, and 
dynamic memory allocation/deallocation 
operations.31 Rollback support can be disabled at 
run-time through a configuration file setting, or 
rollbacks can be more optimally disabled through 
a compile-time flag that eliminates overheads 
when executing conservatively or when using 
software designed for reuse in other applications. 

6.2.9 Persistence 

Persistence fundamentally keeps track of 
memory allocations and pointer references within 
a high-speed internal database linked with 
applications. Through persistence, an object, and 
the collection of objects it recursively references, 
can be automatically packed into a buffer that is 
written to disk or sent as a message to other 
computers. Later, that buffer can be used to 
reconstruct the object and all of its recursively 
referenced objects. These reconstructed objects 
are normally instantiated in different memory 
locations. The persistence framework 
automatically updates all affected pointer 
references to account for the new memory 
locations. 

Because of the large number of pointers 
involved, special optimizations are required for 
                                                 
31 Rollbackable dynamic memory allocation and deallocation functions 

with rollbackable pointers must be integrated with persistence to 
automate checkpoint restart and object migration functionality. 

persistent container classes. The individual 
pointers required for managing persistent data 
structures such as lists and trees are not actually 
registered with the database. Instead, the container 
itself is registered. It has been observed that more 
than a factor of two in memory reduction and 
performance improvement is achieved by this 
optimization. 

Persistence must be fully integrated with the 
rollback framework to automate support for 
optimistic event processing.32 Persistence also 
enables dynamic load balancing algorithms to 
migrate complex objects to different processors. 

Persistence provided by CCSE has been used 
to successfully support the checkpoint/restart 
requirements for the JSIMS program. 

6.2.10 Standard Template Library 

The Standard Template Library (STL) provides 
a suite of generic container classes and algorithms 
that have evolved into standard C++ utilities. The 
Standard Simulation Architecture must provide a 
fully functional STL that also supports persistence 
and rollbacks. 

The STL data structures that are currently 
supported by the JSIMS Common Component 
Simulation Engine (CCSE) include: list, map, 
multimap, set, multiset, vector, string, queue, 
stack, and priority queue.33 All iterator types are 
supported. Four versions of each container are 
provided: standard, rollbackable, persistent, and 
rollbackable-persistent. 

6.2.11 Event Management Services 

The Event Management Services layer 
provides the core set of services used by the SSA 
simulation engine. It provides the internal 
mechanisms for coordinating startup procedures, 
event processing, and termination procedures. 
This layer includes interfaces for defining logical 
processes, creating and deleting event objects, 
                                                 
32 For example, memory allocation/deallocation operations, pointers, and 

container classes may be both persistent and rollbackable. 
33 The double-ended queue (deque) data structure was not implemented 

because it was not used by any of the JSIMS applications. This data 
structure will be incorporated at a later date. 
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managing pending and uncommitted event 
queues, supporting event-message passing, 
handling event retraction, providing event 
rollback, and invoking event-processing methods. 
It also provides support for basic trace file 
generation and the gathering of internal run-time 
statistics. 

Fault-tolerance is supported through 
checkpoint/restart capabilities. Checkpoint/restart 
can also be used to support the multi-replication 
framework that is currently being developed using 
WarpIV technology for the Air Force. 

The multi-replication framework coordinates 
with the Event Management Services layer to 
allow large numbers of replicated simulations to 
execute within a grid-computing system. 
Replications may be required to explore 
parameter spaces, generate Monte Carlo statistical 
results, or to explore multiple courses of action. 
To further support real-time decision aid 
capabilities, the multi-replication framework 
evolves each replication coherently in time.34 As 
live data is received, replications are potentially 
pruned for those replications whose predictions 
are now out of sync with the real world. New 
replications may be launched to ensure that the 
starting state of each replicated simulation 
matches the current state of the real world. 
Otherwise, predicted results will not be useful. To 
explore what-if excursions, the multi-replication 
framework can execute different plans at critical 
future decision points in time, and then later prune 
those plans that do not meet the objectives. 

6.2.12 Time Management 

The Time Management layer defines the 
standard interfaces that are required to support 
various time management algorithms including 
those that run sequentially on a single processor, 

                                                 
34 For example, suppose each replication starts at time 0 and ends at time 

1000. Each replication may be executed up to 10 times with time 
windows [0,100], [100,200], … [900,1000]. A replication checkpoints 
its state at the end of each execution, which allows it to be restarted later 
for resumed execution. This “breadth-first” approach for evolving time, 
rather than “depth-first”, saves wasted processing time when replications 
are pruned. It also provides near-term projections more quickly to the 
user. 

conservatively,35 optimistically,36 or in real time.37 
The time management layer must also provide 
generic mechanisms to coordinate the 
advancement of logical or real time with external 
systems.38 

SPEEDES, CCSE, and WarpIV all provide 
sequential, conservative, and optimistic time 
management capabilities with built-in flow 
control. The WarpIV simulation kernel uses 
several new time management algorithms and 
internal data structures to further lower the 
overheads associated with sequential, parallel 
conservative, and parallel optimistic event 
processing. WarpIV uses adaptive flow control 
techniques to further limit rollbacks and message 
retraction to stabilize the performance of poorly 
balanced simulations. 

6.2.13 Standard Modeling Framework 

The Standard Modeling Framework (SMF) 
layer defines the interfaces for scheduling events 
locally for objects within an entity or for entities 
potentially residing on different processors. It also 
defines process model constructs that are used to 
support interruptible re-entrant events and method 
invocations on distributed objects. This layer 
further defines hierarchical “plug-and-play” 
components with polymorphic methods to 
facilitate interoperability between sub-models 
while minimizing software dependencies. 

The SMF provides a sensitivity list mechanism 
that automatically invokes registered methods 
when specified attributes are modified. This 
capability is extended to processes to allow them 
to wake up from WAIT statements when arbitrary 
complex expressions involving attributes are 

                                                 
35 Conservative time managements may impose topology and/or lookahead 

restrictions. 
36 Optimistic time management may provide message-sending flow control 

mechanisms to promote rollback stability. 
37 Real time event scheduling uses the wall clock to assign time tags to 

events. Real-time events may be scheduled for the current wall time or 
for real-time values in the future. 

38 The HLA gateway is an example of where generic time synchronization 
services are used. The generic time synchronization services keep the 
Federate from advancing (i.e., committing events) beyond the granted 
time provided by the RTI. 
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satisfied. Because the invoked functions 
themselves are allowed to modify other variables 
in sensitivity lists, a powerful capability is 
provided to support cognitive algorithms, neural 
networks, and rule-based logic in expert systems. 
These services are critical for developing reusable 
Human Behavior Representation (HBR) 
components. 

The SMF provides automatic entity distribution 
to one or more processing nodes that are defined 
within a cluster. Scatter, Block, and direct entity 
placement decomposition algorithms are 
supported. Object clustering algorithms allow 
entities to be constructed on specific machines or 
nodes within a machine to reduce communication 
overheads. The SMF must support dynamic entity 
creation and deletion services. Through object-
oriented persistence, the SMF must eventually 
provide the capability to migrate entities from one 
node to another node. The entity’s complex state 
and its pending events must be packaged into a 
message that is used to initialize the entity when it 
is reconstructed. Object migration is coordinated 
by dynamic load balancing algorithms that plug 
into the SMF. 

The SMF layer supports object composition 
capabilities to allow users to hierarchically define 
entities and their components in a flat file or 
database. The modeling framework automatically 
distributes, constructs, and initializes the entities. 
This capability allows entities to be hierarchically 
constructed from component repositories. Already 
composed entities can also be saved in entity 
repositories for later reuse. Construction of these 
repositories is critical for reducing the cost of 
developing highly performing simulations. 

6.2.14 Distributed Simulation Management 
Services 

The Distributed Simulation Management 
Services (DSMS) layer mirrors HLA functionality 
with automated easy-to-use interfaces. It provides 
a standard set of interfaces for supporting 
Federation Objects (FOs), Interactions, interest 
management, and ownership management. 

It is critical for the DSMS layer to provide 
efficient and scalable interest management for 
FOs and Interactions. Without efficient interest 
management, performance breaks down quickly 
when the numbers of entities gets large. It is also 
critical for interest management algorithms to 
support multiple resolutions. The interest 
management computations should be distributed 
to avoid bottlenecks when executing in a 
multiprocessing environment. Efficient multicast 
techniques to distribute the filtered data through 
shared memory and networks are also critical to 
reduce message-passing overheads in large 
systems. 

6.2.15 SOM/FOM Translation 

The SOM/FOM Translation layer allows 
Standard Simulation Architecture Federates to 
work internally with their own SOM while still 
being able to interoperate with other Standard 
Simulation Architecture Federates or HLA 
Federations. If all Federates use the same object 
model, then this layer can be bypassed. 
Translations might include the following. 

1. Class name translations for FOs and 
Interactions. 

2. Name translations for FO attributes and 
Interaction parameters. 

3. Unit conversions for attributes and 
parameters. 

4. General translations (e.g., {X, Y, Z} → 
{Lat, Lon, Alt}) 

5. Split/merge attributes between multiple 
FOs.39 

6. Dynamic values (e.g., motion) with 
predictive contracts40 that are computed as 
a function of time. 

                                                 
 

 
39  For example the FOM might provide two attributes within a single FO. 

The Federate’s SOM, however, might choose to provide each of the 
attributes in separate FOs. The split/merge functionality provides re-
mapping of FO attributes to different FOs. 



 22

The SOM/FOM translation services provide an 
API that can be used to define the translations. A 
translation description file can be used to specify 
basic translations. However, to support highly 
complex translations for applications having a 
SOM that is very different from the FOM, it is 
critical to preserve the more general programming 
interface. 

Multiple translations may be applied in series 
to provide step-wise operations. For example, 
reflected attributes for an object may first be 
renamed, then translated to the correct units, and 
then split into two FOs. These ordered operations 
should be specified separately. 

6.2.16 External Modeling Framework 

The External Modeling Framework (EMF) 
provides interfaces to directly connect Federates 
with external systems such as graphical user 
interfaces,41 analysis tools, remote models, and 
hardware systems (see Figure 12). It does this in a 
manner that preserves the same basic set of 
interfaces provided by the Standard Modeling 
Framework and the Distributed Simulation 
Management Services layer. 

                                                                                  
40 Predictive contracts publish time-based equations as attributes to reduce 

update rates. The computed value received by subscribers must be 
within a specified tolerance as defined by the agreed upon predictive 
contract. The equations may change several times between updates, but 
the computed values performed by subscribers must remain within the 
specified tolerance. 

41 A good example of a graphical interface using the External Modeling 
Framework on JSIMS is the Model Drive Diagnostic Interface (MDDI) 
tool that allows users to view the attributes of Federation Objects and 
the parameters of Interactions. 
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Figure 12: The SPEEDES approach for supporting external 
systems connecting to a parallel SPEEDES simulation 
coordinates activities through the Host Router network 
server. The EmHostUser interface provides the basic 
interfaces for the remote process, while the SpHostUser 
provides the interfaces for applications executing within 
SPEEDES. 

External systems using the EMF can schedule 
events for themselves, and they can schedule or 
receive events from the simulation. Both logical-
time and/or real-time synchronization is provided 
to ensure that the external module maintains 
consistency with the simulation. Multiple external 
systems can connect to an SSA federation. Fault 
tolerance in the time management synchronization 
allows the external system to dynamically connect 
or disconnect without disrupting the overall flow 
of time in the integrated simulation. 

The EMF provides rollbackable state 
management that can be directed to go forward or 
backward in time. This is critical for scientific 
data visualization, real-time analysis, and after-
action-review capabilities. With received message 
capturing, the EMF provides a useful capability to 
facilitate offline analysis or After Action Review 
(AAR). Data mining algorithms can be used with 
the EMF to search for unexpected patterns in a 
simulation exercise. 

6.2.17 Component Repository 

The Component Repository layer, populated by 
model developers, provides a set of reusable 
components with standardized polymorphic 
interfaces that can be used to compose entities 
with models of different or mixed resolutions. 
Examples of such components might include 
models of motion, human behavior, sensors, 
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trackers, weapon systems, network 
communications, guidance systems, logistics, 
environment, command and control, etc. 

The development of component repositories is 
one of the critical goals of the SSA. This allows 
entities to be composed by non-programmers 
when constructing new simulations for supporting 
studies. Analysts simply decide which 
components to use when specifying an entity. 
Different resolution models can be mixed or 
matched depending on the goals of the simulation 
exercise. 

Keep in mind that the overhead associated with 
supporting interoperating components is up to six 
orders of magnitude lower than the overhead 
between interoperating federates. Components, 
and their use of polymorphic methods, allow a 
user to quickly construct a high-performance 
simulation in a way that was never before 
achievable through HLA alone. 

6.2.18 Entity Repository 

The Entity Repository layer provides a library 
of reusable entities that can be easily instantiated 
in different simulation applications.42 Entities may 
include ships, aircraft, tanks, ground units, 
bridges, command and control centers, etc. 

Entities are defined in the repository by their 
hierarchical component structure and by their 
initial parameter settings. The entity repository 
reuses the effort in defining entities. For example, 
an F-15 model might be constructed once and 
then reused in many different simulation 
applications. There may eventually be several F-
15 entity models, each uniquely composed of 
components to obtain different performance or 
behavior characteristics. The various F-15 models 
will likely share many of the same components, 
but each might have different weapon systems, 
sensor systems, flight dynamics, or human 
behavior representations. 
                                                 
42  A good example of entity models that naturally fit in the Entity 

Repository is the representation of the environment. Objects such as 
bridges, roads, weather, and even the terrain are best represented as 
special types of entities that can publish their attributes to subscribing 
entities through FOs. 

6.2.19 CASE Tools 

The CASE Tools layer provides a graphical 
interface to the Standard Simulation Architecture 
in order to facilitate higher-level representations 
of models through code generation and object 
composition. Code generation has the benefit of 
reducing human software development errors by 
automating routine tasks that are error-prone.43 

The CASE Tools layer may provide API 
compatibility layers that map interfaces from 
legacy simulations to the Standard Simulation 
Architecture.44 Specialized simulation languages 
such as Verilog and VHDL may also be provided 
in this layer. 

The CASE Tools layer may include graphical 
tools to support scenario generation and 
entity/component model compositions with mixed 
levels of resolution. It may provide a graphical 
interface to the component and entity repositories. 
CASE Tools can also assist in coordinating usage 
of the SOM/FOM Translation services. 

One of the important benefits of standardizing 
the simulation architecture is that CASE tools can 
be built by industry with the understanding that 
their tools will have a market beyond any specific 
program. This again lowers the cost of 
developing, composing, executing, and analyzing 
the generated results of simulations. 

6.2.20 HPC-RTI Interface 

This layer provides a direct HLA interface to 
the Standard Simulation Architecture in order to 
facilitate interoperability with legacy simulations 
that have their own simulation engine. The benefit 
provided by this layer is to reduce communication 
overheads by using shared memory, while 
additionally providing time managed HLA 
services for Declaration Management, Data 
Distribution Management, and Ownership 
                                                 
43 For example, code generation can ensure that all internal entity state 

variables are rollbackable when executing optimistically. 
44 The JSIMS Compatibility Layer (JCL) was developed for WARSIM to 

migrate legacy models to the Common Component Simulation Engine. 
A prototype JMASS Compatibility Layer was developed for SPEEDES 
in 2001. A CCSE-SPEEDES Compatibility Layer should be provided to 
provide backward compatibility for DoD models developed in JSIMS. 
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Management. Real-time Federates automatically 
use the wall clock to assign logical time tags to 
events. 

The HPC-RTI can be used to speed up 
simulations on high performance computing 
platforms. Its support of time management across 
all services makes it an ideal choice for analytical 
simulations that require more processing 
horsepower to speed up executions. 

6.2.21 HLA Gateway 

The HLA Gateway provides connectivity to 
existing HLA Federations using any standard 
HLA-compliant RTI. It coordinates the flow of 
data (i.e., Federation Objects and Interactions) 
through the RTI while also coordinating the 
advancement of logical and/or real time. 

The gateway is implemented as a simulated 
entity that publishes and subscribes Federation 
Objects and Interactions with both the RTI and 
the DSMS layer. For example, an Interaction 
received by the gateway from the RTI is passed to 
entities within the Federate by scheduling the 
Interaction in the DSMS. Similarly, the gateway 
forwards Interactions through the RTI as it 
receives them from the DSMS. The gateway may 
also provide multilevel-security services such as 
data encryption and security markings for 
Interactions. 

7 Standardization Strategy 
The standardization strategy requires the 

formation of several working groups. First, a Joint 
Government Sponsor should be established to 
fund and oversee the development of the standard. 
The Joint Government Sponsor has final decision-
making authority over any disputes that may arise 
during the design and review process. The 
Government Sponsor may also provide support 
for basic software processes, configuration 
management, and formal documentation.45 

                                                 
45 Software engineering processes should support the Capability Maturity 

Model (CMM) key process areas through level three. 

Second, a small Engineering Team comprised 
of proven simulation technologists should be 
formed to define the initial standard for each of 
the layers in the architecture. This engineering 
team should consist of recognized experts from 
the commercial sector, government laboratories, 
and academic institutions.46 Prototype software 
implementing the layers should be developed to 
ensure that the initial standard is consistent. The 
standard interfaces for each layer should be jointly 
designed by the three groups and then 
independently developed by each group to 
validate the standard. 

Both unit and system test suites should be 
jointly developed by all three groups to ensure 
that the standard interfaces are implemented 
correctly. The layers should be standardized 
starting from the bottom, working upwards until 
all of the layers are designed, developed, and 
validated with multiple implementations 
constructed from within the engineering team. A 
spiral engineering process is used to permit the 
refinement of lower layers as the upper layers are 
developed. 

An independent Technology Panel of experts47 
will review the standard prototype to ensure that 
the prototype architecture is robust. Iterations on 
the standard may occur as recommendations are 
suggested. 

A User Group48 generates feedback on the 
services provided by the standard. The goal is to 
attain buy-in from the User Group. Again, 
iterations on the standard may occur as 
recommendations are suggested. 

                                                 
46 The commercial sector provides COTS proprietary software products 

that are licensed to users through purchases, maintenance contracts, etc. 
The government laboratories provide GOTS software that is free for use 
on government projects only. For GOTS software to succeed, a 
government sponsor must provide life-cycle support. Academic 
institutions may develop open-source software that is generally 
maintained by grass-roots user communities. All three software business 
models are represented by this strategy. 

47 Members of the Technology Panel are specialists in specific layers of the 
Standard Simulation Architecture. Unlike the engineering team, these 
experts may not have a full background in all of the layers. 

48 Members of the User Group should represent projects that have a vested 
interest in using the Standard Simulation Architecture. 
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Once the prototype architecture becomes stable 
(i.e., no further changes are recommended by the 
Technology Panel or the User Group), the 
architecture should go through the formal IEEE 
Standardization Process. At this point, all 
parties49 interested in the standard are invited to 
participate in the further standardization of the 
layered Standard Simulation Architecture. 

8 Benefits 
A number of important benefits will be 

provided to the DoD simulation community once 
the standardization process is completed. 

1. A common infrastructure will exist to 
facilitate the development of reusable 
Federates, Entities, and Components. 

2. The layered simulation architecture will 
allow simulation projects to individually 
combine the most efficient implementations 
of each layer on targeted machines to 
achieve the best performance. 

3. Optimized sequential and parallel 
processing capabilities will provide 
efficient usage of CPU resources ranging 
from single processor desktop machines to 
massively parallel supercomputers. 

4. A cost effective strategy is provided to 
focus applied research and development 
efforts. 

5. High-speed interoperability between new 
models and legacy systems will be fully 
supported. 

6. Software models will be portable to 
different machines, operating systems, 
networks, languages, and compilers. 

7. The popular business models (i.e., COTS, 
GOTS, and Open Source) for software 
development are not only supported, but 
also encouraged. 

                                                 
49 New parties interested in participating in the IEEE standardization 

process may include the entertainment industry, hardware vendors, and 
Operating System vendors. 

Through the formation of standards, the 
Standard Simulation Architecture will 
significantly lower the cost of developing, 
composing, and executing simulations. It will also 
focus both technology and model development 
software for reuse, providing synergy in the DoD 
simulation community. 

9 Summary 
This paper first provided an overview of the 

critical issues relating to interoperability and 
reuse, showing how interoperability concepts 
from HLA can also be applied to entities and 
components. High performance is achieved by 
recognizing the different levels of granularity 
between interacting federates (milliseconds), 
entities (microseconds), and components 
(nanoseconds). 

A high-level composable modeling 
methodology was introduced, showing the 
relationship between HLA federations, HLA 
federates, SSA Federations (which are a special 
kind of HLA federate), HPC-RTI federates (which 
operate inside the SSA), SSA Federates, entities, 
components, and federation objects. Another view 
describing system composability focused on inter-
processor communications considerations 
involving threads, nodes, machines, shared 
memory, local area networks, and wide area 
networks. 

This paper then provided an outline of the 
Standard Simulation Architecture that is based on 
experience from several large DoD simulation 
programs. The Common Component Simulation 
Engine (CCSE) developed on the Joint Simulation 
System (JSIMS) provides the starting point for the 
requirements and initial implementation of the 
standard. 

A dependency-layered approach is used to 
describe the software libraries that comprise the 
architecture. This allows technology providers 
(i.e., universities, government laboratories, and 
commercial organizations) to develop optimized 
libraries for the overall system. These libraries 
can plug and play together because the interfaces 
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are standardized. The layered approach will help 
focus and apply R&D efforts for transition onto 
real DoD simulation programs. 

The proposed Standard Simulation 
Architecture promotes COTS, GOTS, and Open 
Source business models, thereby providing a cost-
effective way for commercial, government, and 
academic institutions to participate in developing 
common models, tools, and simulation technology 
for reuse on multiple DoD simulation programs. 

An outline for the standardization strategy was 
provided. A joint government sponsor is needed 
to oversee and manage the overall process. Three 
teams are required to develop the standard. The 
Engineering Team should be comprised of 
members from industry, academia, and 
government laboratories to develop and test 
prototypes of the standard layers. The Technology 
Panel should be comprised of experts and 
specialists in critical areas of the architecture. 
Their job is to ensure that the right technologies 
are applied to the architecture. The User Group is 
comprised of actual model developers and 
simulation users. Their job is to generate 
requirements and approve of the capabilities being 
developed. 
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