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Abstract
A new methodology is given in this paper to obtain a near-optimal strategy (i.e., specification of courses
of action over time), which is also robust to environmental perturbations (unexpected events and/or
parameter uncertainties), to achieve the desired effects.  A dynamic Bayesian network (DBN)-based
stochastic mission model is employed to represent the dynamic and uncertain nature of the environment.
Genetic algorithms are applied to search for a near-optimal strategy with DBN serving as a fitness
evaluator.  The probability of achieving the desired effects (namely, the probability of success) at a
specified terminal time is a random variable due to uncertainties in the environment.  Consequently, we
focus on signal-to-noise ratio (SNR), a measure of mean and variance of the probability of success, to
gauge the goodness of a strategy.  The resulting strategy will not only have a relatively high probability
of inducing the desired effects, but also be robust to environmental uncertainties.

Keywords: Effects-based operations, optimization, organizational design, robustness, signal-to-noise
ratio, Taguchi method, dynamic Bayesian networks, genetic algorithms, confidence region, hypothesis
testing

1. Introduction

Robustness is a key issue in stochastic planning problems under uncertainty.  This paper describes the
application of dynamic Bayesian networks, along with evolutionary optimization through genetic
algorithms, to derive robust strategies that induce the desired effects in a mission environment.  The
methodology discussed here is applicable to both military organizations and commercial enterprises.

An organization’s ability to choose an efficient and effective strategy for its mission execution is
critical to its superior performance.  Given the dynamic nature of a modern military environment, an
effective C2 strategy is to create the desired effects at the right place and at the right time.  Actions
constitute the means by which an organization attempts to shape the future.  However, environmental
conditions also affect the feasibility of organization’s actions, making some strategies more likely to
succeed than others. The uncertainty about the dynamics of potential interactions between organization’s
actions and its environment could result from two different sources: (i) the inability to predict some of
the indirect cross-influence effects of organization’s actions [Leblebici81], and (ii) the stochastic nature
of the dynamic environment faced by the organization [Emery65].  Consequently, the extent of a
potential organization’s control over the effects it desires to achieve is limited and, in some cases,
indirect.  The corresponding models must capture and quantify the influence of organization’s actions,
various stochastic events, and direct or latent effects.

In most cases, there are a large number of cause-effect relationships within an environment, many
of which are not observable by the organization.  Probabilistic models, such as dynamic Bayesian
networks, are natural candidates for representing uncertainties in a dynamic environment.  A robust
strategy seeks to maximize the probability of successfully achieving the desired effects, while
minimizing its variability.

This paper introduces a framework for devising a robust organizational strategy to induce desired
effects in a dynamic and uncertain mission environment.  A normative model of the stochastic
environment, based on a dynamic Bayesian network (DBN), to infer indirect influences and to track the
time propagation of effects in complex systems is developed.  For a specified set of mission goals (i.e.,
desired effects) and organizational constraints, intermediate organizational objectives are derived, and a
near-optimal organizational strategy is obtained via genetic algorithms, where the DBN serves as a
fitness evaluator for candidate strategies.  The results of this paper will form a foundation for current
research on dynamic adaptation of organizational strategies.



The remainder of the paper is organized as follows.  In section 2, we will formalize the problem as a
graph model, which we call an effects-based mission model.  This model represents the concepts from
effects-based operations (EBO) (see [McCrabb01], [Davis01]) in the form of a Bayesian network.
Section 3 describes our approach for this problem, which combines DBN with genetic algorithms to
compute robust action strategies.  Signal to noise ratio (SNR), computed from Monte Carlo runs, is used
as a criterion of robustness.  In section 4, two conceptual examples, one commercial and the other
military, are solved to demonstrate the feasibility of the methodology.  Finally, we conclude with a
summary of current research and future research directions.

2. Model and Formulation for Strategy Optimization

A stochastic planning problem in an uncertain environment can be defined as follows: given an initial
environment state, determine optimal action sequences that will bring the environment to a specified
destination (goal) state at a specified time with a relatively high probability.  The destination, in our
case, is the set of desired effects.

The process to solve this problem is to:
(i) Represent the joint dynamics of the organization and its environment;
(ii) Optimally select appropriate courses of action;
(iii) Assess the probability of successfully achieving the desired effects and the corresponding risks.
As illustrated in Fig.1, a dynamically evolving effects-based mission model ),,()( kkk PEVtGG == ,

which can be viewed as a Bayesian network at time tk, combines knowledge about the organization and
its environment. kG  is a directed acyclic graph consisting of a set of nodes V  and a set of directed edges

E  with a fixed structure.  Every node is considered as a random variable and can assume Boolean
values --- either true (‘1’) or false (‘0’).  For each node Vvi ∈ , we define a probability mass function
(pmf) { })()( kiik tvPvP =  to characterize the environment uncertainty at time kt .
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Fig.1:  A Simple Effects-Based Mission Model

The dynamic evolution of the effects-based mission model unfolds through a finite horizon
timeline, which is discretized into T time slices (from t1 to tT).  Time slices are used to represent a
snapshot of the evolving temporal process [Kanazawa95].  This evolution can be depicted as a DBN as
shown in Fig.2 (t0  is the time before the first time slice).  The nodes in this network have causal-
temporal relationships with each other.  The solid arcs are “synchronic” to portray the causal
relationship in a single time slice, and the dashed edges are “diachronic” to show the temporal evolution
of the model between neighboring time slices [Boutilier98].  With these assumptions, the DBN is
Markovian.
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Fig. 2:  Time-evolution of Effects-Based Mission Model as a DBN

Based on Fig.2, the key elements of this model are as follows:
(i) Critical objects (including centers of gravity, or COG [McCrabb01]) that constitute the

environment of interest, with { }VvvPtX iikk ∈= |)()( to portray the overall state of the

environment at time kt ;

(ii) Objectives (to be framed in terms of desired effects) }1|{ Dn NnDD ≤≤= specified by the

desired outcomes (‘1’ or ‘0’) and the corresponding terminal time 
nDt  for each effect:

0 )(or   1)( ==
nn DnDn tDtD .  Here DN D = is the total number of effects we are interested in;

(iii) Critical/important exogenous events, regarded as noise factors, whose occurrence is beyond the
control of the organization, but will affect the environmental dynamics: }1|{ Bj NjBB ≤≤= .

BNB =  is the total number of exogenous events in the environment.  In many cases, one has

partial knowledge of the statistical properties (e.g., means and variances, probability
distributions) for these events.  For instance, if event 1B  in Fig.1 occurs with a probability that

is uniform between [0.2,0.6] at time kt , then 1111 1}0{,}1{ pBPpBP kk −==== , where

]6.0,2.0[~1 Up .  The prior pmfs in the model are application specific and are normally elicited
from domain experts.  We may also consider the enemy actions (or competitor actions in
business applications) as exogenous events.  Note that some events may have inhibiting effects
in that they reduce the probability of achieving certain desired effects;

(iv) Feasible actions, regarded as control factors, which can be employed by an organization to
influence the state of the environment: }1|{ Aq NqAA ≤≤= , where AN A =  is the total number

of feasible actions.  Each action will take a value of “true” or “false” at each time slice once the
decision maker determines a strategy.  That is, 1}1{ ==qk AP if action qA is activated at time

slice kt ; otherwise, 0}1{ ==qk AP .  If there are no constraints on actions, potential choices for

each action consist of T2 strings of binary digits ranging from ‘ )(0)(0 1 Ttt Λ ’ to ‘ )(1)(1 1 Ttt Λ ’.
In real applications, however, the available potential actions maybe very limited and much less
than T2 .  Without loss of generality, we assume that T

qr 2)1( <<+  feasible choices for action

qA  from a domain },,,{ 210 q

q

r

qqqqA aaaa Λ=Ω are available.  Each element )ri(0 q≤≤i
qa  in this set

maps to a string ‘ )()( 1 T
i
q

i
q tata Λ ’ with T)k(0 }1,0{)( ≤≤∈k

i
q ta .  Let 

qaf  be the cost of



selecting string qa for action qA .  A strategy under a given initial environment state )( 0tX is a

set of strings for all the actions: }1 ,|),,{( 21 AAqN NqaaaaS
qA

≤≤Ω∈= Λ .  Thus, the space of

feasible action strategies is 
ANAAAs Ω××Ω×Ω=Ω Λ

21
and the cost of the strategy is ∑

=

=
A

q

N

q
aS fF

1

.

(v) Intermediate effects are defined to differentiate those effects that are not desired end effects per
se, but are useful in connecting the actions and events to the desired effects.  These effects are
termed direct effects in Effects-Based Operations [McCrabb01]. All the intermediate effects
form a set }1|{ Cm NmCC ≤≤= with CNC = .  Fig. 2 shows that only desired effects and

intermediate effects are connected by diachronic edges;
(vi) Direct influence dependencies between all the objects of the system and their mechanisms are

specified by conditional probability tables (CPTs) in Bayesian networks parlance.  We assume
that actions and events in our model are root nodes and the desired effects are conditionally
independent.  Consequently, directed synchronic edges },{ ><= ji vvE  exist only from an action

to an intermediate effect or a desired effect ( DCvAv ji ∪∈∈ , ), from an event to an

intermediate effect or a desired effect ( DCvBv ji ∪∈∈ , ), and from an intermediated effect to a

desired effect or another intermediate effect ( DCvCv ji ∪∈∈ , ).  Diachronic edges are directed

from immediately prior time slice to the current one for each intermediate and desired effect.
Evidently, the number of CPTs needed is (NC+ND).

(vii) The total budget available for the organization is constrained by budgetF .

It can be seen that four types of nodes are defined in our effects-based mission model such that
DCBAV ∪∪∪= .  The total number of nodes in the mission model is DCBA NNNNN +++= .  Define

the timeline starting from initial time 0t to the terminal time Tt for achieving all the desired effects,

where )1(  ),max( DDT Nntt
n

≤≤= .  Without loss of generality, the initial environment state )( 0tX is

assumed known and deterministic;  in other words, all the effects (desired or intermediate) are observed
as being “true” or “false”.  Given that the total number of nodes is N , the number of possible states is

N2 .  The states span from all “false” to all “true” with each state having a probability, say MP , with the

constraint that 1
2

1

=∑
=

N

M
MP .

Conceptually, the problem is to achieve the desired effects {D} with a very high probability at
specified times.  Thus, we only need to focus on the marginal probabilities of all the D’s.  For example,
in Fig. 2, if 1)(

11 =DtD and 1)(
22 =DtD are desired, the objective of our problem is to make the initially

0)( 011 =tP  to be a “statistically significant” )(11 TtP , where ijP is the joint probability of desired

effect 1D in state i and desired effect 2D in state j . Evidently, 1)()()()( 11100100 =+++ kkkk tPtPtPtP  holds

for all kt .

The mathematical formulation of the strategy optimization problem is as follows:
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3.  Solution Approach

3.1 Overview of the Solution Approach
As shown in Fig.3, our approach to solve the strategy optimization problem combines concepts from
robust design, dynamic Bayesian networks and heuristic optimization algorithms.  DBNs, which adopt
probability evaluation algorithms such as the junction tree for stochastic inference [Jordan99], are used
to model the dynamics of the environment and to calculate the probability of desired effects at specified
times.  Monte Carlo runs are made to account for uncertainty in system parameters in the inner loop of
DBN.  That is, disturbances are introduced by randomly choosing network parameters (prior pmfs of
events and conditional probabilities).   In each Monte Carlo run, DBN will evaluate the joint probability
of achieving the desired effects.  The results of Monte Carlo runs provide a histogram, and we
approximate it as a Gaussian density (based on the Central Limit Theorem) with sample mean and
sample variance.  Using the sample mean and variance and following robust design techniques of
Taguchi [Phadke89], a signal-to-noise ratio (SNR) is computed; this criterion maximizes the probability
of achieving the desired effects while minimizing its variability.  A genetic algorithm is employed in the
outer loop to optimize the action strategies.

Genetic
Algorithm 

Genetic
Algorithm 

Candidate Strategies Candidate Strategies 

Generate Events and
Conditional Probabilities

Generate Events and
Conditional Probabilities

Event Statistics

Uncertainties 
in CPTs

Evaluate Node
Probabilities Using DBN
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at Specified Times
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at Specified Times

Statistics of Probability
of Achieving Desired Effects

(Mean, Variance, SNR)

Statistics of Probability
of Achieving Desired Effects

(Mean, Variance, SNR)

Monte
Carlo
Runs

Fig. 3: Approach Overview



Conceptually, the probability of achieving the desired effects is a function of actions A , exogenous
events B  and time kt , that is, ),,()( ktBAfDP = .  In iterations of the genetic algorithm, since we choose

candidate strategies, thereby fixing the values of A , the probability will be a function of events B and
time kt , that is, ),()|( ktBgADP = .  Then, in each Monte Carlo run of DBN inference, for the given

sequences of actions A , we estimate the occurrence probabilities of exogenous events B .
Consequently, from a single Monte Carlo run, we have )(),|( kthBADP = .  We can see that Monte Carlo

runs inside the DBN inference makes it possible to measure the robustness of a strategy in an uncertain
environment in terms of the signal-to-noise ratio.

3.2 Probability Propagation through DBN
Bayesian networks (BN), also known as probabilistic networks, causal networks or belief networks, are
formalism for representing uncertainty in a way that is consistent with the axioms of probability theory
[Pearl88].  As a Graphical model with strong mathematical background, it has grown enormously over
the last two decades.  Indeed, there is now a fairly large set of theoretical concepts and results
[Jordan99], as well as software tools for model construction, learning and analysis, such as Microsoft’s
MSBNX [Microsoft], Nettica [Nettica] and Matlab Toolbox [Murphy].

Given a set of nodes { }nvvvV Λ,, 21= , a Bayesian network computes the joint probability of

variables in the network via:

∏
=

=
N

i
iiN vvPvvvP

1
21 ))(|(),,( πΛ (3)

where )( ivπ is the possible instantiation of the parent nodes of iv .  This equation is derived based on the

chain rule of probability and conditional independence [Heckerman 95].  To be precise, given the state
of a node’s parents, all the ancestors are conditionally independent of the node.  Here, we use  “parents”
to depict the directly fan-in nodes, and  “ancestors” to represent the parents’ parents, and so on.

A major drawback of the standard theory of Bayesian networks is that there is no natural
mechanism for representing time [Aliferis96].  Dynamic Bayesian networks (DBN) are normally used
for representing Bayesian networks that also take into account temporal information.  As we see from
Fig.2, DBN is a compact, factored representation of a Markov process [D’Ambrosio99].  Since the state
of the environment is still static during one time slice, DBN can be decomposed as a sequence of static
Bayesian networks with certain connections [Barrientos98].

Based on Markov hypothesis, the probability of state at time slice kt  in a DBN, given all the

evidence (in our case, actions and events) up to that time is given by [Russell95]:
))();();(|)(())}(),({;)}({|)(( 11

1
0 kkkk

k
iii

k
iik tBtAtXtXPtBtAtXtXP −=

−
= = (4)

In our model, intermediate and desired effects between adjacent time slices have temporal links;
other nodes are supposed to be temporally independent [Tawfik00].  The temporal independence implies
that the probability mass functions of node iv at time kt and that of jv at time qt , which are not

temporally connected, are independent, that is, { } { } )(  )()(|)( ikkiqjki vPtvPtvtvP ∆=  for qk tt ≠ .

Fig. 4 shows the augmented Bayesian network which is applied for probability propagation in the
effects-based mission model.  It is logically extended from the initial static Bayesian Network by
introducing dummy nodes for all the intermediate and desired effects.  Dummy nodes are defined as:

}|{ 00 DCvvV iii ∪∈=  with }{}{ 0
1 ikik vPvP =+ .  The corresponding CPTs are listed in Tables I-III.   This data

will be used in a later example.
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Fig. 4:  Augmented Bayesian Network

          Table I: CPT for C1

Parent Nodes C1

A2 A3 C1
0 Yes No

Yes 1.0 0.0
Yes

No 0.4 0.6

Yes 1.0 0.0
Yes

No
No 0.0 1.0

Yes 1.0 0.0
Yes

No 0.1 0.9

Yes 1.0 0.0
No

No
No 0.0 1.0

Table II: CPT for D1

Parent Nodes D1

A1 C1 D1
0 Yes No

Yes 1.0 0.0
Yes

No 0.4 0.6

Yes 1.0 0.0
Yes

No
No 0.05 0.95

Yes 1.0 0.0
Yes

No 0.35 0.65

Yes 1.0 0.0
No

No
No 0.0 1.0

         Table III: CPT for D2

Parent Nodes D2

B1 C1 D2
0 Yes No

Yes 1.0 0.0
Yes

No 0.1 0.9

Yes 1.0 0.0
Yes

No
No 0.0 1.0

Yes 1.0 0.0
Yes

No 0.5 0.5

Yes 1.0 0.0
No

No
No 0.0 1.0

In the DBN of Fig. 2, the probability will propagate vertically from causal nodes to effect nodes,
and propagate horizontally from one time slice to the next as follows:

(i) Set the initial pmfs of nodes: DCvvPvP iii ∪∈=   },{}{ 0
10  based on known )( 0tX ;

(ii) Let k = 1;
(iii) Select an action strategy: }1 ,|),,{( 21 AAqN NqaaaaS

qA
≤≤Ω∈= Λ ,

where if  ,1)( =kq ta set 1}1{ ==qk AP ; else 0}1{ ==qk AP ;

(iv) Randomly select probability mass functions of exogenous events Bjk NjBP ≤≤1 },{ ;

(v) Calculate probability mass functions of the intermediate and desired effects using Bayesian
model averaging [Madigan96]:

}{)}({}),(|{}{ 0

),(

0
ikik

vv
iiiik vPvPvvvPvP

o
ii

ππ
π

⋅= ∑ DCvi ∪∈  , ;

(vi) Propagate the current probability mass functions to the next time slice:
DCvvPvP iikik ∪∈=+   },{}{ 0

1 ;

(vii) Let k = k+1.   If Tk ≤ , go back to step (iii); otherwise, stop.

3.3 Action Strategy Optimization with GA

3.3.1 Algorithm Overview
Genetic algorithms (GAs) are general-purpose global optimization techniques based on the principles of
evolution observed in nature.  They combine selection, crossover and mutation operators with the goal
of finding the best solution to a problem.  GA creates an initial population, evaluates the fitness of each
individual in this population, and searches for a near-optimal solution from generation to generation
until a specified termination criterion is met.  These algorithms have been widely used in areas where
exhaustive search maybe infeasible because of a large search space and where domain knowledge is
difficult or impossible to obtain.



The use of genetic algorithms requires the specification of six fundamental elements: chromosome
representation, selection function, the genetic operators making up the reproduction function, the
creation of initial population, termination criteria and the evaluation function [Houck95].

In this section, we use GA to navigate the solution space to obtain a near-optimal action strategy. A
typical GA may have a genetic cycle as follows [Stender94]:

(i) Initialize the population randomly or with potentially good solutions;
(ii) Evaluate the fitness for each individual in the population;
(iii) Select parents for alteration;
(iv) Create offspring by crossover and mutation operators;
(v) Reorganize the population by deleting old ones and creating new ones while keeping the total

size fixed;
(vi) Go to (iii) until termination criteria are met.

Our implementation of GA for strategy optimization is illustrated in Fig.5.   Important steps and
fundamental issues will be explained in more detail in the following subsections.

Fig. 5:  GA Cycle for Strategy Optimization

3.3.2 Chromosome Representation
For any GA, a chromosome representation is necessary to describe each individual in the solution
population.  The population in our problem corresponds to candidate strategies to induce the desired
effects.  We use integer-valued GA in our problem.  In section 2, the feasible actions are given by

}1|{ Aq NqAA ≤≤= with },,{ 10 qr
qqqq aaaA Λ∈ . Thus, the chromosome can be represented as a string of

integer genes )( 21 qωωωω Λ= , where qq r≤≤ ω0 .  The lower bound “0” corresponds to the null action

“do not perform qA ” in the entire timeline.  If 1=qω , 1
qa is picked for qA , if 2=qω , 2

qa  is picked for

qA , and so on.  In other words, the gene is coded to represent the assignment of an action, and the whole

chromosome is a code representing an action strategy.

3.3.3 Initial Population and Pre-filtrating
Population initialization is the first step in GA.  The most popular method is to randomly initialize the
population.  However, since GAs can iteratively improve existing solutions, the beginning population
can be seeded with potentially good solutions [Houck95], especially for cases where partial knowledge
about the solution is known.  In our problem, we generate the initial strategy randomly. Thus, for any
individual )( 21 qωωωω Λ=  in the initial population, qω )1( ANq ≤≤  is randomly selected from

},,1,0{ qrΛ . The size of the population can be selected to conform to available computational resources

(time and memory) and to accommodate the size of the solution space.

Optimized
Strategy

No

Yes

Initialize
Strategy

Strategy
Validation

Alteration
(Crossover)
(Mutation)

Candidate
Strategies

Fitness
Evaluation

(DBN)

Parents
Selection

Termination
Criteria

Met?



In planning, other important issues such as the cost of a strategy and the available resources need to
be considered.  A randomly created individual )( 21 qωωωω Λ=  is pre-filtered to satisfy the constraints of

cost and resource budgets.  For example, verifying for each individual if 
budget

N

q
a Ff

q

q
≤∑

=1

 is satisfied

enables us to check the cost constraint for feasibility.

3.3.4 Evaluation Function
DBN performs the inner loop inference to compute the evaluation function for GA.  The evaluation
function will map the population candidate into a partially ordered set [Houck95], which will be input to
the next step, i.e., population selection.

DBN is used to obtain the probability of achieving the desired effects at certain time slices for a
given strategy { }StXtDtDtDP

ND DNDD ),(|)()()( 021 21
Λ .  In a noisy environment, this probability is a

random variable because of the uncertainty in the statistical description of exogenous events B .  In the
DBN loop, we generate a histogram of this probability via M Monte Carlo runs, the sample mean and
variance are computed via:

{ }∑
=

=
M

i
DNDDi StXtDtDtDP

M ND
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021 ),(|)()()(
1

21
Λµ (5a)
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1

1
21

µσ Λ (5b)

Signal-to-noise ratio (SNR) provides a measure of goodness or fitness of a strategy.   SNR is
computed via [Phadke89]:
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This SNR corresponds to larger-the-better type robust design problem. The term 

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µ
is an

approximation of mean square reciprocal quality characteristic, which implies maximization of µ , while
minimizing 2σ .  The optimized evaluation function, SNR, corresponds to a strategy that has high
probability of success, and that is also robust to changes in the environment (unforeseen events,
uncertainty in parameters, etc.).

3.3.5 Selection Function
The fitness evaluation provides a partially ordered set of candidate strategies from the best to the worst.
If the termination criteria are not met, successive generations are produced from individuals selected
from a partially ordered set.  There are several schemes for the selection process: roulette wheel
selection and its extensions, scaling techniques, tournament, elitist models, and ranking methods
[Houck95].

Holland’s roulette wheel [Holland75] is the first and maybe the most popular selection scheme
imitating the natural selection.  However, traditional roulette wheel limits the evaluation function in a
way that it must map the solutions to a fully ordered set of values on +ℜ .  Since SNR is negative in our
case, we use the normalized geometric ranking method [Joines94] as follows.

 When population is }1 |{ Pi NiS ≤≤ , the probability of selecting iS is defined as:

PN

r

i
q

qq
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)1(1

)1(
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1

−−
−

=
−

(7)



where q is a specified probability of selecting the best individual, r is the rank of the individual with the
best individual ranked at ‘1’.  The best individual will have a better chance of being selected for
reproducing an offspring for the next generation.

3.3.6 Genetic Operators
Mutation and crossover are basic operators to create new population based on individuals in the current
generation.  Crossover takes two individuals and produces two new individuals, while mutation alters
one individual to produce a single new solution [Houck95].  Since our chromosome is a string of
integers, we employ the following genetic operators to generate individuals for the new strategy:

Uniform mutation: 






=′
otherwise

mutationected for ome is selhe chromos gene of tif the qrU

q

th
q

q         ω
ω

),0(      (8)

Integer-valued simple crossover generates a random number l from ),1( ANU , and creates two new

strategies iS ′ and jS ′  through interchange of genes as follows:



 <

=′
else

)( if

j

i

i

li

ω
ω

ω                     


 <

=′
else

)( if

i

j
j

li

ω
ω

ω  (9)

3.3.7 Termination Criteria
GA runs from one generation to the next, evaluating, selecting and reproducing until a predefined
termination criterion is met.  Typically, there are three kinds of stopping criteria:

(i) Define a maximum number of generations and stop at a predefined generation.
(ii) Stop when the population converges.  That is, all the individuals in the population have

approximately same fitness function.
(iii) Stop when there is no distinct improvement in the fittest solution over a specified number of

generations.
The fittest strategy at the terminal generation corresponds to the optimized strategy.

4.  Illustrative Examples and Results

4.1 Business Scenario

4.1.1 Example Description
Fig.1 is a simplified partial model of a marketing problem faced by a hypothetical company.  Suppose
the company wants to advertise and promote sales via traditional media marketing, as well as Internet
marketing (online promotions).  The relevant actions are:

A1 ---Use Sunday newspaper to advertise products and deliver discount coupons to    potential
customers;

A2 ---Promote the URL (Uniform Resource Locator) of the company in the Sunday newspaper.  This
action is also known as integrated marketing that promotes online clients through traditional
media;

A3 ---Advertise on Company’s Website and make coupons available for download and print out.
The marketing and sales divisions of the company must choose the best strategy to achieve a direct

goal of redeeming the coupons, as well as having the majority of customers return to company’s URL.
We define the desired effect D1 as “Promotional coupons are redeemed” and D2 as “Customers revisit
URL”.  However, aside from the actions taken by the company, other events such as specific customers’
preferences may also significantly affect the desired effects.  Define “Customers dislike the promoted
products” as exogenous event B1.  The redeemed coupons may either be the coupons published in



newspapers or coupons downloaded and printed from the website.  An intermediate effect E1 is used to
depict “Coupons are downloaded from website”.  In conclusion, we have three potential actions A1, A2

and A3; two desired effects D1 and D2, an intermediate effect C1 that transfers the influences from A2 and
A3 to D1; one exogenous event B1, which has certain influence on D2.

4.1.2 Experiment Results
Suppose the initial effects (desired or intermediate) are all zeros and we desire 1)7(1 =D  and 1)7(2 =D .
Devise },{ 1

1
0
11

aaA =Ω , },{ 1
2

0
22

aaA =Ω  and },,,,,,,{ 7
3

6
3

5
3

4
3

3
3

2
3

1
3

0
33

aaaaaaaaA =Ω , where )3,2,1(0 =iai implies no

action, 1
1a  corresponds to the action to advertise coupons in the Sunday newspaper, and 1

2a is the action to
advertise URL in the Sunday newspaper.  Note that these two advertising actions are valid for the entire
week.  For the third action, 7

3a  corresponds to online coupons being available at the same time as the URL

promotion; 6
3a  has one day delay, 5

3a has two days of delay, and so on.  All the actions are listed in Table

IV. Event 1B (customers dislike the promoted products) is supposed to occur with a probability that is
uniform between [0.2,0.6].

Table IV:  Potential Actions for the Marketing Problem
A1 A2 A3

Action 0
1a 1

1a 0
2a 1

2a 0
3a 1

3a 2
3a 3

3a 4
3a 5

3a 6
3a 7

3a
t1 0 1 0 1 0 0 0 0 0 0 0 1

t2 0 1 0 1 0 0 0 0 0 0 1 1

t3 0 1 0 1 0 0 0 0 0 1 1 1

t4 0 1 0 1 0 0 0 0 1 1 1 1

t5 0 1 0 1 0 0 0 1 1 1 1 1

t6 0 1 0 1 0 0 1 1 1 1 1 1

t7 0 1 0 1 0 1 1 1 1 1 1 1

Consider three strategies: ),,( 4
3

1
2

1
11 aaaS = , ),,( 7

3
1
2

0
12 aaaS = , ),,( 7

3
1
2

1
13 aaaS = . Figs. 6 (a-c) show results

of single runs of the DBN with a fixed prior probability for event B1: 4.0)1( 1 ==BP .  Evidently, the
probability of desired effects D1 and D2, as well as the intermediate effect E1, are functions of time.
Since the occurrence of the exogenous event B1 is random, we generated 100 Monte Carlo runs for these
three strategies and computed the joint probability of desired effects }|1)7(,1)7({ 21 SDDP == .  Fig. 6(d)
shows that the variance of the joint probability may also change with time and clearly the strategy 

3S  is

the best.
Indeed S3 is the optimal strategy.  The results in Fig. 6(e) were obtained from GA of 20 generations,

with each generation having a population of size 10.  The sample mean and variance of the joint
probability of desired effects for each individual are obtained from 1000 Monte Carlo runs.  SNR, as
defined earlier, serves as the fitness measurement. Under randomly generated initial populations in Fig.
6(f), Fig. 6(e) shows that the best strategy is 3

7
3

1
2

1
1 ),,( SaaaSopt ==   and the GA converges in less than 10

generations.
The following conclusions can be made from the results in Fig.6:

(i) Since S3 is substantially better than S1, the time to put coupons on website (A3) cannot lag too
much after the advertisement in the newspaper (A2).

(ii) Since S2 and S3 have similar performance, the benefit of a traditional marketing is very limited.
Consequently, action A1 maybe removed from the action set.



(a) Single Run of S1 (b) Single Run of S2

(c) Single Run of S3 (d) 100 Monte Carlo Runs of S1, S2 and S3

(e) Strategy Optimization through  GA

A1 A2 A3 SNR(DB) 
1 1 1 -22.05 
0 1 2 -20.64 
1 1 5 -3.52 
0 1 2 -20.73 
1 0 1 -35.12 
1 0 1 -34.91 
0 1 3 -12.89 
0 1 6 -3.55 
1 0 0 -100.00 
0 1 2 -20.83 

(f) Initial Population



Fig.6 Simulation Results

4.1.3 Statistical Analysis
Fig.7 shows a histogram, obtained from 1000 Monte Carlo runs, of the probability of achieving desired
effects given strategy S3.  It can be seen that the histogram is nearly Gaussian which is consistent with
the Central Limit Theorem (CLT).  In Fig. 8, we plot P00, P01, P10, P11 which represent the sample means
of )|0)7(,0)7(( 21 optSDDP == , )|1)7(,0)7(( 21 optSDDP == , )|0)7(,1)7(( 21 optSDDP == and

)|1)7(,1)7(( 21 optSDDP == , respectively.  We can see that P11 is significantly higher than others.  Based

on the Gaussian approximation, the following statistical analysis can be performed on the obtained
results:

         Fig.7 Histogram of 1000 Monte Carlo Runs Fig.8 Pdf of Sample Mean

(i) Two-sided Confidence Region
If the sample size is sufficiently large, the two-sided confidence region for the probability of reaching
desired effects can be calculated from the sample mean µ and sample variance σ as:

( )2/2/  , αα σµσµ Ζ+Ζ− (10)

Here 2/αΖ denotes the )%1( α−  two-sided probability region for a N(0,1) random variable. With the

sample mean 837.0=µ and standard deviation 0141.0=σ , the 95% confidence region is
]8646.0,8095.0[ .  Thus, given the prior pmfs for the exogenous events and conditional probability tables

of the Bayesian network, we can be quite confident that the probability of achieving the desired effects
is in the range ]8646.0,8095.0[ , as illustrated in Fig. 9.  A narrower confidence region means better
control of the environment.

Fig. 10 shows the propagation of the mean probability of achieving the desired effect D2 and 95%
confidence intervals under strategies ),,( 7

3
1
2

0
12 aaaS =  and ),,( 6

3
1
2

1
14 aaaS = .  We can conclude from Fig.

10 that different strategies may have very different trajectories and that the confidence regions may also
change with time.

In some cases, the confidence regions may overlap with each other for two strategies. In this case,
we cannot simply declare one strategy to be superior to another one.  Cost of the strategy can be
included as a secondary criterion, that is, a strategy with less cost will be preferable to one with a higher
cost, even though both may be within the cost budget.

(ii) One-sided Confidence Region



Two-sided confidence region depicts the precision of the predicted probability.  Since our purpose is to
maximize the probability of achieving the desired effects, another parameter of interest is a lower bound
on µ .  This results in one-sided probability region as )1,(µ , where ασµµ Ζ−=  .  For the above Monte

Carlo runs, µ  = 0.8139 for a 95% confidence level.  The lower bound tells us that the probability of

achieving the desired effects will be no less than 0.8139 with a 95% confidence.

Fig.9  95% Confidence Region Fig.10 Trajectory of Desired Effect 1)(2 =ktD

(iii) Hypothesis Testing
Suppose the probability of achieving the desired effects is required to be at least 0µ . Then, the

question is: can we accept the results from Monte Carlo Runs?  The following binary hypothesis-
testing formulation answers this question:

 




>

≤

01

00

 :
  

 :  

µµ

µµ

H

H
(11)

For a specified tail probability α , if 
σ

µµ 0− exceeds a threshold αΖ , we will reject H0 and accept

that the true value will be higher than 0µ .  Thus, the strategy is acceptable.  Otherwise, accept H0 ,

that is, the best strategy does not meet our expectation.  If the model is credible, the latter result
implies that the desired effects are beyond the capability of available actions.

4.2 Military Scenario

4.2.1 Example Description
Friendly forces are assigned to capture a seaport.  There is a suitable landing beach with a road leading
to the seaport.  An approximate concentration of the hostile forces is known from intelligent sources.
In addition, friendly intelligence reports that the enemy is using tanks to prevent the infantry
advancement along the roads.  The mission objective is to capture the seaport, while minimizing the
friendly losses due to attrition.  Drawing upon intelligence-generated knowledge, the commander
identifies the following tactical and operational centers of gravity (COG) that may need to be attacked
or defended, as well as other objects of interest whose state will affect the dynamics of the battlespace
and the mission outcome: hostile (enemy) air; hostile patrol-boats;  hostile tanks; neutral air; neutral
patrol-boats; neutral tanks; landing beach and the seaport.  This fictitious scenario is shown in Fig. 11.
Suppose that the initial environment state at t0 corresponds to no frinedly losses and non-capture of the



seaport, and that the timeline to execute the mission is divided into five time slices (t1 through t5).  We
will measure the mission performance (in term of the joint probability of achieving desired effects) at
time t5.

The hostile forces are modeled as exogenous events, where: B1 --- hostile patrol-boats; B2 ---
hostile air; B3 --- hostile tanks.  Each event has an approximate  probability, based on intelligence
information on the strength of the hostile forces.  However, the enemy’s decision as to the time at
which the enemy uses its forces is unpredictable.

In the same vein, the feasible actions of friendly forces are: A1 --- neutralize hostile patrol-boats;
A2 --- neutralize hostile air; A3 --- neutralize hostile tanks; A4 --- advance to seaport.  The feasible
actions, along with potential times of their application, are listed in Table V.  It is also specified that
action A4 cannot be taken earlier than t4 due to certain constraints.  Since hostile tanks can only be
encountered when friendly forces advance to the seaport, the possible times to take action A3 is t3 or t4.

Desired effects are defind as: D1 --- capture the seaport; D2 --- keep friendly losses to a minimum.
The following intermediate effects are designed to connect actions or events to the desired effects:

C1 --- threat from hostile patrol-boats; C2 --- threat from hostile air; C3 --- threat from hostile tanks; C4

---  friendly losses in landing on the beach.
The nodes are interconnected as a Bayesian network.  Fig. 11 is the corresponding augmented

network by introducing dummy nodes for intermediate and desired effects.  The CPTs are listed in
Tables VI through XI.

 B1 
C1

0 

C1 

A1 

A4 

D1 

D1
0 D2

0 

D2 

B2 
C2

0 

C2 

A2 

C4
0 

C4 

B3 
C3

0 

C3 

A3 

Fig.11  Fictitious Military Scenario

Table V:  Potential Actions

A1 A2 A3 A4

Action
0
1a 1

1a 2
1a 3

1a 4
1a 5

1a 0
2a 1

2a 2
2a 3

2a 4
2a 5

2a 0
3a 1

3a 2
3a 0

4a 1
4a 2

4a
t1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

t2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

t3 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

t4 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0

t5 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1



Table VI: CPT for C1

Parent Nodes C1

C1
0 B1 A1 Yes No

Yes 0.7 0.3
Yes

No 1.0 0.0

Yes 0.7 0.3
Yes

No
No 1.0 0.0

No

Yes
Yes 0.1 0.9

Yes

No 0.7 0.3

Yes 0.0 1.0

No

No
No 0.0 1.0

Table VII: CPT for C2

Parent Nodes C2

C2
0 B2 A2 Yes No

Yes 0.6 0.4
Yes

No 1.0 0.0

Yes 0.6 0.4
Yes

No
No 1.0 0.0

Yes 0.1 0.9
Yes

No 0.9 0.1
No

No
Yes 0.0 1.0

No

No

No 0.0 1.0

Table VIII: CPT for C3

Parent Nodes C3

C3
0 B3 A3 Yes No

Yes 0.3 0.7
Yes

No 1.0 0.0

Yes 0.3 0.7
Yes

No
No 1.0 0.0

Yes 0.1 0.9
Yes

No 0.5 0.5

Yes 0.0 1.0
No

No
No 0.0 1.0

Table IX: CPT for C4

Parent Nodes C4

C4
0 C2 C1 Yes No

Yes 1.0 0.0
Yes

No 0.8 0.2

Yes 0.7 0.3
Yes

No
No 0.2 0.8

Yes 0.9 0.1
Yes

No 0.6 0.4

Yes 0.5 0.5
No

No
No 0.0 1.0

Table X: CPT for D1

Parent Nodes D1

D1
0 C3 A4 Yes No

Yes 0.7 0.3
Yes

No 0.0 1.0

Yes 1.0 0.0
Yes

No
No 0.0 1.0

Yes 0.5 0.5
Yes

No 0.0 1.0

Yes 0.9 0.1
No

No
No 0.0 1.0

Table XI: CPT for D2

Parent Nodes D2

D2
0 C4 C3 Yes No

Yes 1.0 0.0
Yes

No 0.5 0.5

Yes 0.3 0.7
Yes

No
No 0.2 0.8

Yes 0.9 0.1
Yes

No 0.7 0.3

Yes 0.2 0.8
No

No
No 0.0 1.0

4.2.2 Simulation Results
Since the events may happen at arbitrary times, the problem is changed from one of searching for an
optimal strategy to that of finding a set of decision rules, that is, given a possible combination of events,
which strategy will maximize the probability of achieving the desired effects.  Consider two cases: (i)
Friendly forces encounter both threats from hostile air and hostile patrol-boats at time t1.  Whenever
friendly forces advance to the seaport, the hostile tanks will defend immediately;  (ii) Friendly forces
encounter hostile air at time t1 and encounter hostile patrol-boats at time t2; the hostile tanks will act as
in case (i).  The results from these two cases under strategy ),,,( 1

4
2
3

2
2

1
11 aaaaS =  are illustrated in Fig.12

(a) and Fig.12 (b), respectively.  In this scenario, we assumed that the intelligence sources are reliable,
and the action probabilities of hostile forces are: 8.0}1{ ,7.0}1{ ,8.0}1{ 321 ====== BPBPBP .
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(a) S1 for case (i) (b) S1 for case (ii)

(c) S2 for case (ii) (d) S3 for case (ii)

Fig.12  Simulation Results
Since hostile air and hostile patrol-boats are separately encountered in case (ii), the landing beach

will be under a moderate threat.  On the other hand, in case (i), the combination of two events may put
the friendly forces in the landing beach under severe threat due to the infeasibility of simultaneously
dealing with both threats. Thus, the friendly losses will be higher in case (i).

Now, we focus on case (ii) to see which action strategy will be better.  Comparing S1 with
),,,( 1

4
1
3

2
2

1
12 aaaaS = and ),,,( 1

4
2
3

3
2

1
13 aaaaS = , we can see from Figs.12 (b-d) that S2 is the best among these

three strategies because all the hostile forces are immediately neutralized.  As a consequence, the
friendly losses due to attrition are low.  The solid lines in Figs. 12 (c-d) depict the joint probability of
achieving both of the desired effects: }0)(,1)({ 21 == kk tDtDP .  Fig.13 is the result from genetic

algorithm, where we use }0)5(,1)5({ 21 == DDP as a fitness measurement.  Indeed, S2 is the optimal
solution from GA.

Additionally, we consider a scenario where the data from intelligence sources is noisy.  We model
this by assuming that the concentrations of the hostile forces are random. We suppose

343222111 }1)({ ,}1)({ ,}1)({ PtBPPtBPPtBP ====== , where P1 is uniformly distributed between [0.6, 1],



P2 is uniformly distributed between [0.5, 0.9] and P3 uniformly distributed between [0.7, 0.9].  Results of
}|0)5(,1)5({ 221 SDDP == from 1000 Monte Carlo runs are shown in the histograms of Fig. 14, with the

Gaussian distribution superimposed.  The sample mean and standard deviation are 0.8641 and 0.0089,
respectively.  The two-sided 95% confidence region of this strategy is (0.8467, 0.8816).

Fig.13 Strategy Optimization through GA                   Fig.14 1000 Monte Carlo Runs for S2

5. Conclusions and Future Work

This paper introduced a general methodology, based on an integration of dynamic Bayesian networks
and the genetic algorithms, to optimize strategies for offline decision support.  DBN is used for
evaluating the probability of achieving desired effects for a given strategy, while GA is applied to search
for the optimum solution in a relatively large solution space.  Since uncertainty is unavoidable in
military as well as business applications, the desired effects indeed are random processes.  As a
consequence, Monte Carlo runs and probabilistic analysis are employed to determine an action strategy
that trades off goodness and robustness.  The main contributions of this paper are:  the use of DBN to
compute time-dependent probability propagation for desired effects;  use of GA to optimize action
strategies;  introduction of signal-to noise ratio (SNR) as a measure of robustness of a strategy in an
uncertain environment.

The methodology can be extended to more realistic scenarios.  In our examples, we assumed that
CPTs are known and time-invariant.  When CPTs are elicited from many experts, they may not always
be consistent with each other.  In this case, we randomize CPTs in Monte Carlo runs.  If CPTs are time-
varying, the only change needed is to update the CPTs with time.

Candidate Strategies
Event Statistics

CPT Uncertainties

Expected Value for
Events and CPTs

DBN Evaluation

GA

Fitness of
Desired Effects (pmf)

Selected Candidate
Strategy

DBN Evaluation with
Monte Carlo Runs

Statistical Analysis
(Confidence Regions …)



Fig.15: Alternative Optimization Approach

Both GAs and DBN are computationally expensive.  Consequently, this method can be applied
offline in the planning phase.  If computational time is of concern, an alternative optimization approach
is shown in Fig. 15.  Suppose the expected values of the uncertain prior probability of events and CPTs
are known.  Then, we will avoid the Monte Carlo runs in the GA loops.  This may be advisable because
most of the strategies in the solution space tend to be inferior.  Once a strategy is selected, further Monte
Carlo analysis may be conducted on the optimized strategy only.

In some applications, different desired effects may have different priorities.  Using the Gaussian
approximation, suppose the probabilities of achieving desired effects

DNDDD Λ,, 21  are conditionally

independent random variables (nodes without direct connections in a Bayesian network).  Define mean
vector ),,,( 21 DNµµµµ Λ=  as the expected values for the probabilities of achieving desired effects and

let the corresponding covariance matrix =R diag[ 22
2

2
1 ,,,

DNσσσ Λ ].  In this case, we can use a weighted

SNR to measure the goodness of a strategy as in the following equation:
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(12)

In addition to its application in offline strategy planning, the methodology introduced in this paper
may be used for strategy execution phase.  The strategy obtained by the offline planning is open-loop in
that it is an action sequence based on the current forecast of future events [Bertsekas95].  However, in
the strategy execution phase, the strategy can be made open-loop feedback optimal based on observed
events and intermediated effects.  The process works as follows:

(i) Prune the nodes which have no relevance for future effects given current observations;
(ii) Adjust the model parameters to conform with the current environment;
(iii) Optimize the strategy using the methodology of the paper.
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