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Abstract

Goal management is the process of recognizing or inferring goals of individual team
members; abandoning goals that are no longer relevant; identifying and resolving
conflicts among goals; and prioritizing goals consistently for optimal team
collaboration and effective operations.  A Markov decision process (MDP) approach is
employed to maximize the probability of achieving the primary goals (a subset of all
goals).  We seek to address the computational adequacy of an MDP as a planning
model by introducing novel problem domain-specific heuristic evaluation functions
(HEF) to aid the search process. We employ the optimal AO* search and two
suboptimal greedy search algorithms to solve the MDP problem.  A comparison of these
algorithms to the dynamic programming algorithm shows that computational
complexity can be reduced substantially.  In addition, we recognize that embedded in
the MDP solution, there are a number of different action sequences by which a team’s
goals can be realized.  That is, in achieving the aforementioned optimality criterion, we
identify alternate sequences for accomplishing the primary goals.

1. Introduction

1.1. Motivation

Changing patterns of today’s world impose the need for current and future military forces to conduct a
broader and more complex spectrum of operations.  Wars no longer take place between nation-states
on traditional battlefields, but have been replaced by emergent and asymmetric threats involving
cultural factions and trans-national players.  Decisions must be made in real time with simultaneous
tactical, operational, and strategic implications.  In response to these demanding requirements, military
forces need to employ new operational concepts and command approaches.  This calls for much
greater emphasis on realistic modeling of dynamic military organizations that enable them to evaluate
their current strategies, their strengths and weaknesses, and explore various strategic options based on
current knowledge and forecasts.

A team management mechanism, which ensures the cooperation of individuals in their pursuit of
desired organizational goals, involves both managing the team’s intentions and organizing its activities
to fulfill them.  A desired system state describes organization’s internal and external conditions.  It is
comprised of many independent or loosely dependent dimensions of the system and its environment
(i.e., set of desired goals, resources available to pursue the goals, time available for mission processing,
etc.).   Deliberate changes in states are brought out by functions or (a set of) actions, which are
assigned to individuals within a team.  That is, a function can imply a specific intent to change the state
of the environment or an activity carried out by an individual(s) to perform this change. Goal
management is the process of prioritizing goals consistently for optimized team collaboration. The
goal management problem is formulated as a Markov decision problem, in which the objective is to
determine an optimal closed-loop policy that maximizes the probability of reaching the final desired
system state under resource and time constraints.

In order to elucidate the points made throughout the paper, let us consider the following simplified
scenario.  Assume that there are two opposing coalitions: the RED and the BLUE factions. Political
factors (introduced by broad coalitions of all parties involved), the geographic spread of BLUE
military industrial complex (the location of maintenance facilities, army depots and logistics pipelines),
mixed ethnicities, cultures, and religious backgrounds among the parties involved, significantly affect
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the course of operations.  This situation produces complications with a direct bearing on the course of
military activities.  With enormous humanitarian, political, and economic stakes, the BLUE forces
resolve to bring peace to all factions involved.

BLUE’s political and military experts around the globe agree that there are three major avenues to
resolving the conflict.  The first is a pure political solution, wherein all parties involved would resolve
their differences through negotiations and constructive talks.  In this case, the involvement of military
forces would be restricted to minimizing hostilities in the region of conflict.  The second solution
proposes an all out war to remove RED’s forces from the region.  To ensure a successful outcome, this
approach will require BLUE to have accurate assessments on the strengths and weaknesses of both
sides.  In order to do this, reconnaissance missions need to be conducted to accurately estimate RED’s
forces. Based on the gathered information, strategies for an all-out war are drawn.  The BLUE’s
experts also suggest combining the former strategies to produce a comprehensive solution involving
both political and military approaches.  Suppose the BLUE’s military strategists are weighing these
three approaches and are analyzing the possible outcomes.  The tactical roadmap of options and
outcomes can be described by an AND/OR graph as in Figure 1.  The task is to identify a strategy,
which maximizes the possibility of reaching a peace accord, given specified resource and time
constraints.

Gather accurate 
information on BLUE’s

strengths and 
weaknesses

Carry out 
reconnaissance missions 

to assess RED’s strengths 
and weaknesses 

accurately

Ensure ceased fire and 
minimize hostility in the region 

of conflict while negotiations 
for political solutions  are 

undertaken. 

START

0G

Political
Solutions

1G

Accurate 
Assessment
of BLUE’s 
Strengths

2G

AND

OR

Accurate 
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of RED’s
Weaknesses

3G

Conquering
RED 

Forces

4G

PEACE 
ACCORD

5G

3a

1a
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AND

All out war 
on RED 
forces.

Figure 1. The AND/OR Goal Graph of BLUE Coalition

1.2. Representation of the Problem

The Markov decision process-based strategy roadmap connecting the initial system state to the final
state, via a set of intermediate states, is represented by an acyclic graph.   The nodes of the graph
denote system states.  The arcs denote transition probabilities among system states, which depend on
functions executed at the state and on the amount of resource and time available at this state.  Each
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function requires a certain amount of resource to complete3.  Transition probabilities to move from one
state to another, given the control function applied at a state, are given.  The objective is to find a
sequence of control functions (actions) that maximize the probability of reaching the final goal state
under resource and time constraints.

More formally, the approach can be formulated as follows. Let ],,[ DRXS =  denote a state space that
includes the resource state space R  and the duration dimension D  (such that IddD ∈= ],,0[
(integer), and IrrR ∈= ],,0[ ).  The notation },,2,1{ nX Λ=  4 denotes the state space whose elements
represent different ‘states of the system goals’.  Formally, the system state is characterized by the
three-tuple ),( yis = , where i  denotes the state of goals, ),( dry =  with r  denoting the available

resources and d  denoting the available time.

Let )},(,...,1),,({),( yiMmyifyiF m ==  be a set of control functions that can be applied when the

system state is ),( yis = .  The notation 0)),(( ≥yifd m  defines the duration of applying a control

function ),( yifm  in state i , while 0)),(( ≥yifr m  denotes resource requirements for control function

),( yifm .  A function ),( yifm  transitions the goal state iXi ∈  to the goal state jXj ∈  in )( mfd time

units, while utilizing )( mfr  resources.

if 4a 3a 2a 1a )( mfr )( mfd

 1f 0 0 0 1 3 4

2f 0 0 1 0 1 1

3f 0 1 0 0 2 2

4f 1 0 0 0 3 2

5f 0 0 1 1 4 4

6f 0 1 0 1 5 4

7f 0 1 1 0 3 2

8f 0 1 1 1 6 5

9f 1 1 0 0 5 3

Table I.  Functions Available to BLUE Forces to Achieve Intended Goals

Let the strategy roadmap denote a directed graph ),( VSΩ  consisting of primary nodes { }sS =
representing system states and edges }{vV = . The edges denote transition probabilities (i.e.,
probabilities of reaching the intended system states when certain control functions are carried out). Let

)),(,,|()),(( 1 yifyixjxPyifp mkkmij === +  denote the transition probability that the goal state at stage

1+k  is j  given that the goal state at stage k  is i  and that a control function ),( yifm  is applied.

When function ),( yifm  is executed by the system, this execution takes )),(( yifd m  units of time and

expends )),(( yifr m  resource units.  Therefore, when function )( km sf  is applied at state ),(
kk yis = ,

                                                       
3 For elucidation purposes, we consider only one resource type.  Extension to vector of resources is straightforward.
4 The notation ixk =  means that the system goal state is i  at stage k .
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the system state probabilistically changes to ),(
11 ++ =

kk yjs , where

))],(()),,(([
1 kmkkmkk

yifddyifrry −−=
+

.  The probabilistic notions are introduced to accommodate

various unforeseen events, such as execution failures and random state shifts during the execution of
control functions.  Based on the problem constraints, we generate a layered acyclic graph of system
states with N layers.  The objective is to maximize the probability of reaching the final goal states

),( NN XllxP ∈= , subject to ),(
0

dry = , Nky
k

,...,1,0 =∀≥ .

kx 5G 4G 3G 2G 1G 0G ( )kxF 1+kx

1 0 0 0 0 0 1
8765321 ,,,,,, fffffff 1,2,3,4,5,6,7,8, [11,12,13,14]

2 0 0 0 0 1 1
876532 ,,,,, ffffff 2,4,6,8, [11,12,13,14]

3 0 0 0 1 0 1
876531 ,,,,, ffffff 3,4,7,8, [12,14]

4 0 0 0 1 1 1
8763 ,,, ffff 4,8, [12,14,16]

5 0 0 1 0 0 1
876521 ,,,,, ffffff 5,6,7,8, [11,12,13,14]

6 0 0 1 0 1 1
8752 ,,, ffff 6,8, [13,14]

7 0 0 1 1 0 1
986541 ,,,,, ffffff 7,8,9,14

8 0 0 1 1 1 1
94 , ff 8,10, [14,16]

9 0 1 1 1 0 1
8651 ,,, ffff 9,10, [15,16]

10 0 1 1 1 1 1
9f 10,16

11 1 0 0 0 1 1 -
12 1 0 0 1 1 1 -
13 1 0 1 0 1 1 -
14 1 0 1 1 1 1 -
15 1 1 1 1 0 1 -
16 1 1 1 1 1 1 -

Terminal (Absorbing) State

Table II.   Markov State Representation of AND/OR Goal Graph
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Let us examine the scenario presented in Figure 1.  In Table II, we can see the transformation of
AND/OR graph nodes in Figure 1 into the X  states of a strategy roadmap.  The nodes no longer
denote the goal states exclusively; they become representations of the system states.  For example,

6=kx  represents the system state in which goals 1G  and 3G  have been achieved ( 0G  represents the

known initial system state).  Furthermore, if the system is in state 6=kx , it can transition to

13,8,61 =+kx , or 14 by applying 752 ,, fff , or 8f .  That is, the strategy roadmap representation naturally

captures the options and restrictions of the system at each state.  If the system is in 6=kx , the function

9f  may not be executed, for this requires 2G  to have been achieved.   Moreover, being in 6=kx

would make it impossible for the system (given its allowable options) to reach 151 =+kx .  In addition,

being in state 6=kx  also makes state 5  infeasible.  That is, after reaching 1G , it is not viable for the

system to abandon it.  Although this assumption is somewhat restrictive, it is a good assumption in
many situations. For example, it is a good assumption if the goal is to destroy a target; if the goal is
achieved, whatever the system does will not undo it.

In general, execution failures and random state shifts during the execution of control functions may
actually transform the system to states other than the intended one.  The MDP based strategy roadmap
representation easily accommodates this case.  For example, assume that the system is at [ ]dr,,6 .

When function 8f  is applied (that is assuming that 0)( 8 ≥− frr  and 0)( 8 ≥− fdd ), due to various

internal and external events, the system may transition to ( ) ( )[ ]88 ,,6 fddfrr −− ,

( ) ( )[ ]88 ,,8 fddfrr −− , ( ) ( )[ ]88 ,,13 fddfrr −− , or ( ) ( )[ ]88 ,,14 fddfrr −−  (See Table IV in the

Appendix).   Furthermore, in order to reduce the number of system states, we can combine all the
absorbing states into one.  That is, noting that 161514131211 ======kx  all represent the terminal

states, we can simply label them as 11=kx .

1.3. Contributions and Earlier Work

The goal management problem belongs to the class of planning problems under uncertainty (which is
typically termed decision-theoretic planning (DTP)).  We adopt a Markov decision process (MDP)
framework as an underlying model for the problem.

Formulation of planning problems, and in particular probabilistic planning problems, as graph search
problems (specifically as MDP) has attained a surge of interest in recent years, [11], [12].  See also [5],
[6], [13], and [15],.  An MDP is a suitable representation of goal management problems, since the
model takes into consideration problem uncertainties, which include uncertain effects of actions,
incomplete information about the environment, and uncertainties in the goal states.  Moreover, it
models our problem accurately, since the objective of an MDP is to devise courses of actions (plans or
policies) with a high probability of success, in contrast to an assured attainment of intended goals as in
a traditional deterministic planning problem.

Although the representation of a DTP as an MDP is not new, the explicit connection between the
traditional planning routines (in particular AND/OR graph representations, which exclude
uncertainties) and the MDP is novel.  Adopting the MDP framework as a model for formulating and
solving goal management problems has its advantages and shortcomings.  Goal management problems
typically exhibit considerable structure in value functions describing the performance criteria, in
functions depicting state transitions, and in relationships among features used to describe states and
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actions.  These permit the use of special purpose methods that recognize and exploit that structure;
thereby allowing it to be solved with less computational effort than other methods.  Specifically, the
MDP representation takes into account the problem domain specifics and uses them to its advantage,
viz., optimizing the cardinality of the state space.  In the given scenario, the cardinality of the system
states 11 || =S  instead of 52  (the example encompasses 5  goals); the cardinalities of the control

function sets || F  are between 1 to 7 , instead of 42  (the example has 4  possible actions).  See Table I
and Table II.

The general impediment [6] to the more widespread acceptance of MDPs as a general model of
planning is the computational adequacy of MDPs as a planning model: can the techniques scale to
solve planning problems of reasonable size?  One difficulty with the solution techniques for MDPs is
the tendency to rely on explicit, state-based problem formulations.  This can be problematic, since state
space grows exponentially with the number of problem features (e.g., multiple types of resources, large
number of control actions, etc.).  This paper seeks to alleviate the computational burden in the MDP-
based approach by introducing problem domain-based heuristics into the search algorithms.

1.4. Organization of the Paper

We formulate the goal management problem as a finite-state Markov decision problem.  This approach
opens doors to utilizing a broad field of mature graph search techniques.  In particular, we explore
various optimal and sub-optimal heuristic search approaches and contrast the solutions (for small
problems) to those of dynamic programming (DP) recursions.

The paper is organized as follows.  Section 2 explores various graph search techniques, which include
the classical DP techniques, AO* heuristic search algorithm, and greedy heuristics. Novel problem
domain-based heuristic evaluation functions (HEFs) are introduced and evidence of their admissibility
is presented.  Furthermore, greedy heuristic search techniques are also considered in this paper.  In
section 3, we compare various algorithms on an illustrative example.   Finally, we conclude with a
summary of findings and future work.

2.  Solution Approaches

The paper seeks to alleviate the computational burden inherited by MDP-based approaches through the
use of problem domain-based heuristics.  In particular, the paper explores the optimal AO* algorithm,
and several suboptimal greedy heuristics.  The (computational) costs and performances of the
aforementioned approaches are then contrasted with the standard DP recursions.

2.1.  Dynamic Programming (DP) Recursion

The DP is a common technique used in situations when decisions can be made in stages and when,
despite the unpredictable nature of the decision outcomes, the desired outcome can be quantified in
advance.  The idea is to quantify the desired outcome in a mathematical expression (typically referred
to as the objective function) and the goal is to maximize (minimize, depending on the nature of the
problem) it.  An important aspect of the problem is that a decision, made at each stage, is made based
on the present value function and expected future value [1] and [2].  We are interested in knowing
which set of control functions )},({ yifm  to apply at each stage such that it results in maximal

probability of reaching the final goal.
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We represent the next goal state jxk =+1  as a function of the current goal state ixk =  and the control

function being applied ),( yifm :

)),(,( yifigj m=                                                                                              ( 1 )

Furthermore, we consider control laws that consist of a sequence of admissible functions
},...,,{ )1()1()0( −= Nfffπ 5, defined by }1,,0),({)( −== Nksf kk

k Κµ . The notation )(•kµ  signifies

some function of the argument. Given an initial state ),(
000 yxs =  and an admissible policy

},...,,{ )1()1()0( −= Nfffπ , the objective function is given by

),(),(
00 NN XllxPyxJ ∈==π                                                                     ( 2 )

where NX  denotes the set of absorbing states (intended goal states).  Recall that when the absorbing

states are lumped into one state, we set NX =n so that | NX |=1.   Thus, an optimal policy *π is one,

which maximizes the following objective function:

),(max),(
0000* yxJyxJ πππ

=                                                                          ( 3 )

The DP technique is based on the principle of optimality. See [1] and [2]. In words, it states that if

there exists an optimal policy ( ){ }*1)*1()*0(*
0 ,...,, −= Nfffπ , then the truncated policy

( ) ( ){ }*1*1)*(* ,...,, −+= Nkk
k fffπ  is also optimal.  The DP decomposes the problem into a sequence of

optimizations carried over the set of control functions.  The DP algorithm starts with ),(
NNN yxJ  and

proceeds backward in stages from stage 1−N  to 0.   We let ),,( driJ k  be the cost-to-go (value-to-go

in our case) function at stage k .   From the principle of optimality, the dynamic programming (DP)
algorithm can be written as

0,,1,))(),(,(max),,( *
1

)(,)(
),(

*
Λ−=








−−= ∑ +

≤≤
∈

NkfddfrrjJpdriJ
j

kij

dfdrfr
yiFf

k           ( 4 )

with a terminal condition

0,0,,0),,(,1),,( ** ≥≥≠∀== drnidriJdrnJ NN                                               ( 5 )

However, the DP algorithm has computational requirements of ))|((| QMXO , where { }||max FM =
denotes the largest cardinality of the control function sets, || X  represents the cardinality of the goal

states, and })(max,)(maxmin{ fddfrrQ
ff

= .  This can be quite substantial for large

)(or   and |,|, drXM .

                                                       
5 Note that superscripted }),()(:)({)(

kmm
k SssFsfsff ∈∈=  denotes a set of control functions applied at the k -th

stage, kS  signifies the set of system states at stage k ; whereas subscripted mf  signifies the m -th control function.
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2.2.  Heuristic Approaches

Another approach for planning under uncertainty is based on state-based graph search [6]. These
techniques employ estimates of value-to-go functions in (4), called heuristic evaluation functions
(HEFs), to overcome the computational explosion of the DP recursion.  In the following, we consider
two such HEFs, as well as greedy heuristics that employ local step-by-step optimization.

2.2.1.  Heuristic Evaluation Functions (HEFs)

We formulate the problem of maximizing the conditional probability of reaching a final goal state
under resource and time constraints as an informed best-first search on an MDP-based graph, wherein
the approximate value-to-go (HEF) is derived from the current conditional probability values of a
partially developed tree and the expected depth of the tree (the residual layers, based on the remaining
resources and time).  The HEF allows for the use of a top-down search algorithm, such as AO* [16].  In
the following, we develop two HEFs.

2.2.1.1. HEF 1: )(1 sh

The first HEF follows directly from the DP recursion (4), and the fact that the optimal value-to-go is
bounded by 1:

1,,0),(max),,(
)(,)(

),(

* −=≤ ∑
≤≤

∈
NkfpdriJ

j
ij

dfdrfr
yiFf

k Λ                                       ( 6 )

  

The upper bound depends on the value of the transition probability
)),(,,|()),(( 1 yifyixjxPyifp mkkmij === + .  This bound determines our first HEF:

( )
( )

1,...,0,,)(max
)(,)(

1 −=∀=∀= ∑
≤≤

∈
Nkixfpsh k

j
ij

dfdrfr
iFf                              

( 7 )

2.2.1.2. HEF 2: )(2 sh

In addition to ijp , ),,(* driJ k  depends on the number of the remaining layers, minN  at stage k  (before

the system exhausts either r  or d ).  Recall that the problem constraints restrict the number of stages,
N , in the MDP graph.  The minimum number of remaining stages is determined as follow:

( ) ( ) ( ) ( ) 























=

∈∈ fd

d

fr

r
N

iFfiFf

minmin
min ceilmax,ceilmaxmin                                               ( 8 )

The minimum resource requirement minr is the smallest amount of resources the system needs to

expend to reach the desired state from the current state; whereas mind  is the shortest time required for
the system to reach the desired state from the current state.  Note that the operator )(⋅ceil  rounds the
number up to the next integer value.  Using (8), we define the second HEF:
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( )
min))(max()(

)(,)(

2
N

j
ij

dfdrfr
iFf

fpsh ∑
≤≤

∈
=

                                                            
( 9 )

2.2.2.  Admissibility of the HEFs

In this subsection, we seek to prove that the selected HEFs have the property of admissibility [16],
[17].  When the HEFs are admissible, the objective function approaches the optimal objective function
value from above (in the case of maximization).

Definition 1: Let )(SΩ  be an MDP based strategy graph.  An HEF )(sh  defined on )(SΩ  is

admissible if for each node Ss ∈  in )(SΩ , )()(* shsh ≤ , the optimal value-to-go. Moreover, this )(sh
is always finite with an upper bound of 1.

The admissibility of the first HEF follows directly from (4).

1,,0),()(max),,()( 1

)(,)(
),(

** −==≤= ∑
≤≤

∈
NkshfpdriJsh

j
ij

dfdrfr
yiFf

k Λ                 ( 10 )

In the same vein, the analysis for the admissibility of second HEF follows from:

1,...,0,),( )),|(max(           

),,()(

21

)(,)(
)(

?

**

min −=∀=∀=≤

=

∑ +

≤≤
∈

NkixshfxxP

driJsh

k
N

j
kkk

dfdrfr
sFf

k

kk

      ( 11 )

Unfortunately, the second HEF does not always result in an admissible heuristic. When

∑∑ ∈
Π∈

+∈+ >>≠∃
+ j

kk
sFf

ss
kkk

sFf
k fxjPfxxPjx

kk
kk

kk

),|(max),|(max :
)(

)(
1

)(
1

1

 and kNN −≈min , the second HEF is

inadmissible. Additionally, when the cardinality of || X  is large, which means that the value of

( )
)(max fpij

iFf ∈
 is small (recall that 1)(

1
=∑ =

fp
n

j ij ), the second HEF is also potentially inadmissible.

Otherwise, the second HEF is in general admissible.

2.2.3.   AO* Algorithm

AO* is a best-first search algorithm [16], [17], which expands only nodes with the most promising
chance of reaching the goal nodes on the basis of the HEF.   The algorithm utilizes three steps
repeatedly. First, a top-down graph traversing operation follows the best current path and accumulates
the set of nodes that are on the path and not yet expanded.  Second, the procedure selects an
unexpanded node and expands it.  The HEF of all the successors of the expanded node are computed
and adds these nodes to the graph.  Third, a bottom-up value revising operation changes the HEF of the
expanded node and propagates this change back to the initial node according to the DP recursion in (4).
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Following [16], there are two important attributes of this heuristic search strategy applicable here.
First, if the HEF is admissible, AO* guarantees an optimal solution.  Second, the search efficiency
depends critically on the degree to which the HEF approximates the optimal value-to-go.

In this paper, we use the following conventions.  We label nodes that are expanded as CLOSED .
Nodes that are generated, but not yet expanded, are termed OPEN .  These two sets are maintained
throughout the search process.

Algorithm AO*:
Step 1: Initially let the search graph )(SΩ  consist of the start node (that is, the initial goal, the initial

available resources, and allowable duration) ),(
000 yxs = , ),(

0
dry = .  Set )()( 00 shsG = .  If 0s

is a terminal node, then label 0s  CLOSED  and exit with the solution; otherwise, label it

OPEN .
Step 2: Repeat the following steps until 0s  is labeled closed.  Then exit with )( 0sGJ =  as the expected

value and the marked solution tree as the function strategy.

Step2.1: Compute a partial solution graph Ω
~

 in )(SΩ  by tracing down the marked arcs in )(SΩ

from the root node 0s .  Select for expansion a node is  of Ω~  that has the smallest )( ish

(initially 0ss i = ).

Step2.2: Generate in )(SΩ  all successors of [ ]dris i ,,=  spanned by the allowable

functions )( isFf ∈ : [ ])(),(, fddfrrjs j −−= .  Label all js  as OPEN .  For each

immediate successor of is  not already present in )(SΩ , set )()( jj shsG = .  If any js  is

a terminal leaf node, label js  CLOSED .

Step2.3: Create a temporary set Z  of nodes consisting only of nodes is .

Step2.4: Repeat the following steps until Z  is empty

 Step 2.4.1: Remove from Z a node js  such that no successor of js  in Ω
~

 occurs in Z .

 Step 2.4.2: Revise the value HEF of is  as follows: })({max
)(
∑

∈
=

j
jij

sFf
sGpe

im

.  Let k  be

the index of the function for which maximum occurs.  Resolve ties
arbitrarily, but give preference to CLOSED  nodes.  Mark all arcs spanned
by kf  (both in Z  and )(SΩ ).  Label is  CLOSED  if all of its successors js

are labeled CLOSED .
 Step 2.4.3: esGesG ii =≠ )(Set  THEN ,)(  IF .

 Step 2.4.4: If )( isG  changes its value in step 2.4.3 or if is  is labeled CLOSED , then

add to Z  is  and all of the ancestors of is  along the marked path.  Ignore

ancestors of is  not connected to is  by marked arcs.

2.2.4.  Greedy Heuristics

The term greedy heuristic refers to the notion that all of the approximation techniques in this category
employ a local, step–by–step optimization.  The optimization techniques are typically in the form of a
k-step look-ahead procedure.  In this subsection, we consider two such techniques, with 1=k .



12

2.2.4.1. Greedy Heuristic 1 (GH1)

To select the best control function for a given state, the system needs to estimate the probability of
reaching the intended goal state n  by executing each available function.  Let )(1 fX k +  be the set of all

direct successors of the current goal state kx , transformed by control function )( kxFf ∈ , and let

|)(| 1 fX k +  be the cardinality of the direct successor space.  In our example, if the current state is

1=kx , then 2 |)(| 11 =+ fX k , 4 |)(| 51 =+ fX k , and so on.  The first greedy heuristic (GH1) works on the

premise that a function with a larger |)(| 1 fX k +  has a better chance of bringing the system to nxN =
faster.  If )( fU  is the heuristic value for executing control function )( kxFf ∈ , then the next control

function kf  is selected to maximize )( fU :

( )
( )( )fUf

kxFf

k

∈
= maxarg

 






≥

∈∃≥
=

++

∈
+++∑

else             |)0:(|

  if   |)0:(|
)(

11

)(
111

kk

xFf
Nkkk

yfX

XxyfX
fU k

                                         
( 12 )

2.2.4.2. Greedy Heuristic 2 (GH2)

In general, greedy search GH1 tends to seize immediate reward at the expense of long-term gain.  To
alleviate this propensity, we consider a heuristic that estimates the value of each control function,
accounting for future values.  In this vein, at each state, the next control function kf  is chosen to
maximize

( ) 







=== ∑ +

≤≤
∈

j
kkij

dfdrfr
iFf

k fixjxpf ),|(maxarg 1

)(,)(

                                                   ( 13 )

The latter heuristic is the heuristic evaluation function discussed earlier. GH2 has computational
complexity of )||( QXMO , where M , || X , and Q  are as previously defined.  The computational

reduction compared to that of DP, ))|((| QMXO , is substantial and is due to the fact that the greedy
heuristic unequivocally selects a function to execute at each stage (ties are resolved arbitrarily).

3. Algorithm Evaluation

3.1. Construction of Transition Probabilities

Recall that )),(,,|()),(( 1 yifyixjxPyifp mkkmij === + denotes the transition probability that the next

goal state is j  given that the current goal state is i  and that a control function ),( yifm  is applied.

Therefore, the transition probability depends on the current goal state, the successor goal state, and the
function applied (which also depends on the current state). Generally, )),(( yifp mij  values can be

inferred from historical data. For illustrative purposes, however, we generate the transition
probabilities as follows.



13

The prior probability )|( 1 ixjxP kk ==+

 

is viewed as a random variable, which is governed by various

unforeseen events in the system such that 1)|( 1 ===∑ +j kk ixjxP .  Furthermore, we can reasonably

assume that, in the absence of any of unforeseen events, the amount of resources and time committed
to transform the system state to the next state, as well as the distance between the two states determine
the probability of transition to the intended state, )||||),(),(( 1−− ijfdfrg mmj .   Based on Bayes’ rule

and the total probability theorem [14], we assume the following relation for transition probabilities:

∑ −

−

−
−

=

j
mmj

mmj
mij ijPijfdfrg

ijPijfdfrg
yifyijp

)|()||||),(),((

)|()||||),(),((
)),(,,|( 1

1

                          

(14)

where •  denotes a valid norm of the arguments.  The transition probabilities for the given example are

generated using (14) and are listed in Table III of Appendix.

3.2.   Computational Experiments

Consider the scenario introduced in section 1, where the desired goal state 11=kx  is to be achieved on

or before a desired deadline of 6=d  time units using at most 5=r  units of resource.   It is assumed
that the initial goal state 1=kx , so that )6,5,1(0 =s , as shown in Figure 3.  The available control

functions ),(
km yif  and their reachable successor states for each goal state are as listed in Table IV of

Appendix.

The DP-based optimal decision tree, highlighted in Figure 3, can be interpreted as follows.  In the
initial state (1,5,6), the possible actions are },,,,,{ 765321 ffffff  .  At this stage, the best control

function is either 1f  or 2f .  If the system chooses 1f , and if the next state (which could be either (1,2,2)

or (2,2,2)) is (1,2,2), then the organization should stop, because any option it chooses ( 32 or  ff ) will

not lead to the desired state.  However, if the next state is (2,2,2), the best control action is 2f . On the

other hand, if the system selects 2f  at the initial state, and if the next state is (3,4,5), the best control

action is 5f , and so on.

Next, the AO* algorithm with HEF )(1 sh  was applied for this example. The resulting decision tree is

shown in Figure 4. Note that at 0=k , there are six feasible actions },{ 765321 ffffff   , , , , . Among

these, 2f  has the largest value of highest revised expected value ∑
j

jij shp )( at the initial node. In

particular, ∑
j

jij shp )(  for 2f  is 174.0)670.0(141.0)327.0(243.0 =+ . Consequently, at this stage, the

algorithm chooses 2f  as the control function. The partial tree through function 2f  is then expanded.

The search proceeds further as follows.  First, partial tree through function 2f  is traced to its terminal
nodes.  The goal state (1,4,5) has the smallest HEF, and therefore it is expanded first. It is determined
that at this point 2f  yields the highest revised expected value at (1,5,6).  At the other possible goal

state (3,4,5), function 5f  is deemed as the best choice.   At each of the new nodes, the previous step is

repeated.  The final revised value is 0.022, the optimal value as previously obtained via DP solution.
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The graphs at each cycle of AO* are shown in Figure 4, and the optimal decision tree is as revealed at
the last cycle.  In this example, in the initial state (1,5,6), the best control function is 2f .  If the next

state is (1,4,5), the best control action is 2f , and so on.
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Figure 3. State Transitions with Selected Sets of Policies via DP-Algorithm

Embedded in the optimal decision tree are a number of different sequences in which a team’s goals can
be realized.  For instance, the DP identifies all four of the best option sequences ( 2f , 5f ), ( 2f , 2f , 1f ),

( 1f , 2f ), or ( 1f , 2f , 2f ), that the system can take to arrive at the same expected success probability. The
AO* recognizes the first two.  Moreover, at any system state, the organization can opt to choose a
control function other than the best, and be able to predict the consequences of the selected strategy.  If
necessary, all of the algorithms can easily carry the second (or even third, fourth, etc.) at each state in
all stages with little additional computational cost and at a slightly increased storage cost.
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Figure 4.  State Transitions with Selected Sets of Policies via AO* Search Procedure with ( )Sh1

3.3. Advantages, Shortcomings, and the Alternatives for the AO* Algorithm

Even for the small-size problems, one can appreciate the advantage of AO* over DP in alleviating the
computational explosion by avoiding the exploration of the entire set of solution trees.  In this
example, the AO* search generates only 19 nodes, as opposed to the DP that would have required 78
nodes (with 7=M , 11|| =X , and 1=Q , DP requires ( )77O  nodes).  The number of backtracks for
AO* with HEF 1 is 0 for this example.  In general, AO* with an admissible and tight (close bound of
the value-to-go) HEF significantly reduces the computational burden of the DP, while still providing
the optimal solution tree.
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As Q  increases (that is as ),( dr  pairs increase), however, the computational burden of backtracking in
AO* is considerable.  This is one of the inherent shortcomings of the approach.
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Figure 5.  Functional Strategies Obtained via GH1 and GH2

The first greedy heuristic (GH1) tends to seize the immediate rewards at the expense of long-term gain,
and subsequently suffers from the consequences.  See Figure 5.  Fortunately, this is not always the case
in general.  As will be shown in the next subsection, this approach results in acceptable control
strategies.  The second greedy heuristic (GH2) alleviates the propensity to seize the immediate rewards
by using HEFs to account for future values.  The greedy search chooses a node with the largest HEF at
each step.  It differs from AO*, in the sense that it performs limited search with no backtracking.  In
our example, GH2 results in the same solution as that of DP and AO*; see Figure 5.  The second
greedy heuristic GH2 typically results in near-optimal control strategies.

3.4. Optimal Choices of Resources and Duration Lengths

Figure 6 illustrates the effects of r  and d  on the probability of success )11( =NxP .  The shape of the

surface plot indicates that in order to achieve higher probability of success, the system needs to commit
higher r  and d .  The flat lines in the contour plot (below), however, indicate that for each value of r
(or d ), there is only a limited set of options for the system in term of the other variable.  This result can
be illustrated further via the following figures.
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Figure 6.   Surface and Contour Plots of )( nxP N = for Various ),( dr  Pairs via GH2

From plots in Figure 7 and Figure 8, one can readily observe the following trends.  The success
probability of reaching the desired goal states, )11( =NxP , increases as r  and d  increase.  As d

steadily increases from 1 to 40 time units, the increase in )11( =NxP  is moderated by the availability

of resource units, r .   In particular, for GH2, if the system has r  = 25 resource units, the system need
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not commit beyond d  = 29 time units because the probability of success saturates at 0.72.  On the
other hand, if the system has r  = 50 resource units, the system can achieve even higher )11( =NxP  of

0.93, by increasing d  to about 40 time units. See Figure 8.
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Figure 7.  )( nxP N =  as a Function of Duration Lengths for Various Resource Units for AO*

One can also observe the degree of suboptimality of the greedy heuristic strategies compared to those
of the AO*.  The )11( =NxP  of the AO* functional strategies reaches 0.46 when d  = 15 time units for

r  = 16 units, whereas the GH2 never attains 0.46 for the same r  value. It saturates at 0.45. The same
situation happens for GH1, which saturates at 0.38. For r  = 25 units, however, the performance of
AO* and GH2 algorithms resemble one another very closely. However, GH1 lags considerably. It
appears that the degree of suboptimality of GH2 to AO* decreases as the actual value of )11( =NxP

increases. This may be attributed to the HEF being able to closely follow the actual value-to-go. For all
practical purposes, GH2 is superior to GH1.
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Figure 8.  )( nxP N =  as a Function of d  for r   for GH1 and GH2, respectively

Analogous observations can be made on the impact of d .  See Figure 9.  As the number of committed
resources r  increases steadily from 1 to 50 units, smaller duration length d  saturates )11( =NxP  at a

lower value.  For example, if the system can only afford d  = 7 time units, the system need not expend
beyond r  = 10 units of resource.  The small value of d  limits the probability of success at about 0.17,
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at best.  One can also observe that d  = 35 time units are about the optimal value for the system, with a
maximum probability value of 0.93.   Even if the system has more time, say d  = 50 time units, the
probability is about the same as that for d  = 35 time units.
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Figure 9. )( nxP N =  as a Function of r  for Various Value of d  for Greedy Heuristic 2 (GH2)

It is worth noting that there is an inherent bound on the probability of success for a problem. For
example, even if the system has unlimited r  and d   (e.g. beyond (100,100)), the value of )11( =NxP

≅ 0.93. That is, in our example, the problem itself has an inherent failure probability of around 0.07
due to execution failures and random state shifts during the execution of control functions.

4. Conclusions and Future Work

This paper adopted a Markov decision process (MDP) framework as an underlying model for the
problem, and introduced an explicit connection between the traditional planning routines (in particular
AND/OR graph representations, which exclude uncertainties) and the MDP-based approach. The
objective of the MDP is to devise courses of actions (plans or policies) with a high probability of
success.  In the future, we will augment the approach to include forbidden system states in our problem
formulation.  That is, we seek to find control strategies, which guarantee a high probability of success
in reaching the desired goal states, while avoiding the forbidden goal states.

The paper introduced problem-specific HEFs into the search algorithms to address the computational
adequacy of MDPs as a planning model.  In particular, the approach exploited the goal structure to
significantly reduce the state space.  The integration of the new HEFs and heuristic search has enabled
us to find verifiable optimal solutions to problems, which are intractable with the DP approach.  It
appears that the greedy heuristic, GH2, is the preferred algorithm for large size problems.
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It is evident that the challenge is to find even better HEFs for the problem.  In [16], it is suggested that
the most useful HEFs should be able to solve at least a special case of the problem at hand,
computationally efficient, and take into account the problem domain specifics.  For example, an
admissible HEF may be derived by assuming unlimited r  and d .  In addition, the AO*-based greedy
search (GH2), which yields promising results, can be further improved using rollout strategies [3],
[19].
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Appendix

1 0.1809 0.1459 0.1254 0.1109 0.1049 0.0904 0.0904 0.0812 0 0 0.07
2 0.2434 0.1819 0.1407 0.1115 0.1115 0.0704 0.0704 0.0704 0 0 0
3 0.2021 0.1592 0.1292 0.1189 0.1068 0.092 0.0729 0.0729 0 0 0.046
4 0.189 0.1488 0.1275 0.1129 0.1039 0.0934 0.0804 0.0804 0 0 0.0637
5 0.1776 0.1456 0.1262 0.1147 0.1051 0.0931 0.0857 0.0857 0 0 0.0663
6 0.1744 0.1428 0.1263 0.1132 0.1049 0.0947 0.0886 0.0816 0 0 0.0733
7 0.189 0.1488 0.1275 0.1129 0.1039 0.0934 0.0804 0.0804 0 0 0.0637
8 0.171 0.1415 0.1251 0.1121 0.1055 0.0978 0.0883 0.0826 0 0 0.0761
9 0.1776 0.1456 0.1262 0.1147 0.1051 0.0931 0.0857 0.0857 0 0 0.0663
1 0 0.3164 0 0.2194 0 0.1836 0 0.1582 0 0 0.1224
2 0 0.3825 0 0.2211 0 0.1752 0 0.1106 0 0 0.1106
3 0 0.3461 0 0.2212 0 0.183 0 0.1249 0 0 0.1249
4 0 0.3348 0 0.2258 0 0.1841 0 0.1424 0 0 0.1129
5 0 0.3107 0 0.2208 0 0.1839 0 0.1499 0 0 0.1347
6 0 0.3073 0 0.2225 0 0.1848 0 0.1562 0 0 0.1292
7 0 0.3348 0 0.2258 0 0.1841 0 0.1424 0 0 0.1129
8 0 0.3021 0 0.221 0 0.1865 0 0.156 0 0 0.1345
9 0 0.3107 0 0.2208 0 0.1839 0 0.1499 0 0 0.1347

1 0 0 0 0 0 0 0 0 0 0.5535 0.4465
2 0 0 0 0 0 0 0 0 0 0.5723 0.4277
3 0 0 0 0 0 0 0 0 0 0.5594 0.4406
4 0 0 0 0 0 0 0 0 0 0.5595 0.4405
5 0 0 0 0 0 0 0 0 0 0.5495 0.4505
6 0 0 0 0 0 0 0 0 0 0.5498 0.4502
7 0 0 0 0 0 0 0 0 0 0.5595 0.4405
8 0 0 0 0 0 0 0 0 0 0.5471 0.4529
9 0 0 0 0 0 0 0 0 0 0.5495 0.450510

1

2

i )(1 mi fp )(2 mi fp )(3 mi fp )(4 mi fp )(5 mi fp )(6 mi fp )(7 mi fp )(8 mi fp )(9 mi fp )(10, mi fp )(11, mi fpm

Table III. Transition probabilities )( mij fp  of 10 and ,2,1=i  for each )(iFfm ∈

1,2 5,6,11
1,3 5,7
1,5 5,6,7,8,11

1,2,3,4 5,6,11
1,2,5,6 5,7

1,3,5,7 5,6,7,8,11

1,2,3,4,5,6,7,8,11 6,8,11

2,4,11 6,8,11

2,6,11 6,8,11

2,4,11 6,8,11

2,6,11 7,8,11

2,4,6,11 7,9,11

2,4,6,8,11 7,8,11

3,4,11 7,8,11

3,7 7,8,11

3,4,11 7,8,11

3,4,7,8,11 8,10,11

3,7 8,10,11

3,4,7,8,11 9,10,11

4,8,11 9,10,11

4,8,11 9,10,11

4,8,11 9,10,11

4,8,11 10 10,11

5

6

7

9

8
3

4

1

2

kx mf 1+kx 1+kxmfkx

2f

8f

5f

6f

7f

1f

3f

2f

5f

6f

3f

5f

6f

3f

7f

8f

1f

3f

7f

6f

8f

2f

7f

1f

5f

6f

8f

2f

7f

8f

5f

5f

1f

6f

8f

9f

1f

5f

6f

8f

9f

9f

4f

4f

7f

8f

Table IV.   Available Control Functions and State Transitions at each Goal State


