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Abstract

Interdependence of tasks in a mission necessitates information flow among the organizational elements
(agents) assigned to these tasks. This information flow introduces communication delays. An effective
task schedule that minimizes the total execution time, including task processing and coordination delays,
is an important issue in designing an organization and its task processing strategy. This paper defines the
structure of information-dependent tasks, and describes an approach to map this structure to a network
of organizational elements (agents).

Since the general problem of scheduling tasks with communication is NP-hard, only fast heuristic
(list scheduling and linear clustering) algorithms are discussed. We modify the priority calculation for
list scheduling methods, matching the critical path with a network of heterogeneous agents. We present
our algorithm, termed Heterogeneous Dynamic Bottom Level (HDBL), and compare it with various list-
scheduling heuristics. The results show that HDBL exhibits superior performance to all list scheduling
algorithms, providing an improvement of over 25% in schedule length for communication-intensive task
graphs.

1 Introduction

Contingency theorists argue, and the empirical research confirms, that a proper organizational design is
critical to superior organizational performance ([Burton98], [Entin99], [Hocevar99]). Setting up
efficient organizational processes is one of the keys to a successful organizational design. Formalizing
the team processes provides a basis for identifying the design parameters that can be optimized to
improve team performance.

From a systems theory viewpoint, an organization is an open system. It can be modeled by
specifying several key entities including: (i) the environment; (ii) the organizational elements
(sometimes termed agents or processors); (iii) the organizational structure; (iv) the organizational
processes; and (v) the organizational outcomes. While mission decomposition into tasks provides a basis
for balancing the effort among agents, the input-output transformations that link tasks define the “flows”
within the organization and/or between the organization and its environment. Two important examples
of such flows include the information flow (specifying communication among the agents) and
commodity flow (e.g., the production cycle that transforms the raw materials into ready-to-sell
products). The corresponding flows (from hereon termed process flows) characterize the organizational
processes by specifying input-output relationships among the organizational elements.

The problem of optimizing team processes can be decomposed into three parts: (1) optimizing the
functional allocation strategy to achieve desired goal states; (2) decomposing functions into sets of
interdependent tasks; and (3) mapping the tasks and their process flows onto an organization to optimize
the processing cost. The solution to the first of these three problems from two different perspectives,
dynamic Bayesian networks and Markov Decision Processes, is presented in [Meirina2002] and
[Tu2002]. An important feature of the process flows is that the flow medium can change its content and
volume after passing through any of the processing nodes (e.g., the information can be filtered or fused).

A coherent, timely, and efficient team process greatly improves the chances for successful team
performance. Therefore, mapping process flows onto an organization is an important issue affecting
team performance [Levchuk2002], since it specifies two sets of variables: (i) an allocation of tasks to
agents (or system elements), and (ii) requirements for the flow of information among agents. The task



processing schedule and flow routing can be optimized to minimize schedule inefficiencies (i.e., delays),
utilized resources, expended energy, coordination overhead, and so on.

The problem of scheduling tasks on a processor architecture is of considerable importance in parallel
processing. The general problem of scheduling a task graph to minimize the total parallel time is NP-
hard (no polynomial-time algorithm exists to find an optimal solution). Even if communication among
task nodes is zero, we obtain a simplified scheduling problem that is still NP-hard. For this problem, it
was shown that any list scheduling heuristic is within 50% of the optimal solution (see [Graham66]). It
was later empirically demonstrated ([Adam74]) that the critical path list scheduling method has even
better performance: its solution is within 5% of the optimum in 90% of cases.

In the presence of inter-task communication, however, the problem becomes much harder. List
scheduling no longer has the 50% performance guarantee. The problem of scheduling tasks with
communication has received much attention [Wu88], [Kim88], [Sarkar89], [McCreary90], [El-
Rewini90a&b], [Gerasoulis90a&b], [Sih93] since it can be used for scheduling tasks on message-
passing architectures. The one-stage approach (assigning tasks to physical agents) of list scheduling
method was contrasted with two-stage methods in which the first stage performs reduction clustering
and preprocessing that explore the topology of communication graph regardless of agent constraints.
However, the problem becomes significantly complex when various constraints are introduced, and the
two-stage methods can no longer be applied.

This paper is organized as follows. The problem of scheduling information tasks onto an agent
structure is formulated in section 2.  Section 3 outlines scheduling and mapping variables used for our
problem. The mapping and scheduling feasibility conditions are discussed in section 4. The solution
approach, together with related research, is presented in sections 5-6.  List scheduling method is
discussed in section 6, with previous work outlined in subsection 6.1 and our algorithm presented in
subsection 6.2.  Section 7 presents simulation results.  Conclusions and future extensions are given in
section 8.  The issue of mapping a critical path onto a heterogeneous system is presented in Appendix A,
and an efficient algorithm for scheduling multiple information messages with release times onto agents’
communication link is outlined in Appendix B.

This paper provides the following contributions to the methodology of scheduling task
communication graphs onto a heterogeneous system of agents:

• The agent network structure is utilized to find the dynamic critical path, the earliest possible start
time and the latest possible finish time of a task on an agent (Appendix A);

• The dynamic critical path mapped to agent network is utilized to compute agent-task priorities in
HDBL algorithm that outperforms conventional list-scheduling methods; and

• Efficient algorithm is developed for scheduling multiple information messages with release times
onto an agent’s communication link (Appendix B).

2 Problem Statement

The goal of an organization is to complete assigned missions in the most efficient manner. Each mission
can be decomposed into a set of tasks with specific constraints [Levchuk2000a], [Kapasouris91]. One of
the constraints of the mission is a particular ordering in which the tasks must be completed (a mission
plan). An organization consists of agents (processors, human decision-makers, etc.). Each agent has
certain resources available to it, which, together with training (for human organizations), determine the



expertise to carry out assigned tasks/processes. Generally, agents have different capabilities to perform
tasks. Processing elements with different capabilities are termed heterogeneous.

This paper addresses the problem of finding the optimal allocation (scheduling) or mapping of tasks
with communication requirements (called information tasks) to heterogeneous agents (organizational
elements) while satisfying various constraints. The objective function is to minimize the completion
time of the mission, that is, the finish time of the terminal task (also termed the makespan).

TABLE I.
Task Attributes

),( ttt EVG = directed acyclic graph of tasks with 
precedence constraints

ti VT ∈ task node

tji
t

ji ETTe >∈=< ,, a precedence arc in the task graph

ijf amount of information transmitted between
tasks       and        along the arc

iT jT t
jie ,

iw task processing load (workload)

im task memory load
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Figure 1: Information Graph
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Information tasks are modeled via directed acyclic information graph ),( ttt EVG = , where

{ }NiTV it ,...,1, ==  is the set of task nodes, tVN =  is the number of nodes, { }>=<= ji
t

jit TTeE ,,  is

the set of directed edges, and tt Ee =  is the number of edges. Edges in the graph correspond to

communication messages and precedence constraints among tasks. Amount of information (weight of
communication) transmitted from task iT  to jT  (incurred along the edge >=< ji

t
ji TTe ,, ) is denoted by

jif , , which becomes zero if both tasks are allocated to the same agent. For each task iT , a processing

load (or workload) iw  and memory load im  are defined. Task attributes are outlined in Table I. Fig. 1

shows an example of a task graph, with weights on the arcs representing the information flow
transferred between the concomitant tasks, and weights on the task nodes indicating task workload and
memory load.

The agents are modeled via another dependency graph. The agent structure is defined by an
undirected graph ),( aaa EVG = , where { }KrAV ra ,...,1, ==  is the set of agent nodes and aVK =  is

the number of nodes, and { }>=<= ur
a

ura AAeE ,,  is the set of undirected communication links among

agents with transfer rate urc , , and aa Ee =  is the number of links. For each agent rA , a processing (or

workload) capacity rW  and a memory capacity rM  are defined, and the time to process task iT  is irp ,

( ∞=irp ,  if the agent cannot process this task; we assume that ∞=irp ,  if ir wW < ).

Agent attributes are outlined in Table II. Fig. 2 shows an example of an agent network, with weights
on the arcs representing the rate of information transfer between the corresponding agents, and weights
on the agent nodes indicating agent workload and memory capacity. Table III shows the agent-task
processing time matrix.



The execution model works as follows (for a similar macro-dataflow model, see [Sarkar89],
[Wu88]). The data flow triggers the execution of tasks. A task receives all data from its predecessors in
parallel. It then executes without interruption (non-preemptively) and immediately after completion it
sends the data to all successors in parallel. In this model, task execution and agent communication are
done in parallel subject to constraints on workload and memory capacities, and communication
contention.

TABLE II.
Agent Attributes

),( aaa EVG = non-directed graph of agents with 
communication links

ar VA ∈ agent node

aur
a

ur EAAe >∈=< ,, a communication link

ruc rate of information transfer between
agents and  along the arcrA uA a

ure ,

rW agent processing (workload) capacity

rM agent memory capacity

irp , time required to process task iT

Figure 2: Agent Network
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TABLE III.
Agent-Task Processing Time

Agent A1

Task T2 Task T3 Task T4 Task T5Task T1

Agent A2

Agent A3

Agent A4

Agent A5

3

∞

1.5

∞

1

1
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1

∞

∞

2

∞

∞

∞

1

1

1

∞

3

∞

∞

∞

∞

0.5

2

Task T6

3

1

0.5

∞

2

The processes of an organization assigned to execute a mission consisting of information tasks can
be conceptualized as follows:

q Task execution (processing) by organizational agents.

q Agent communication – routing task information flow among agents.

q Storing of tasks in the agent’s memory.

2.1 Task Execution

Every task is allocated to a single agent capable of processing this task. When a task iT  is processed by

an agent rA , the latter’s workload is increased by iw  units. Agents can generally process more than one

task at a time, but the dynamic workload (total load of simultaneously processed tasks) of any agent rA

must not exceed agent’s workload capacity rW . A task can begin to be processed by an agent when all
the predecessors of a task have been completed and all the information flow from them was
communicated to this agent. An example of task processing under an agent’s workload capacity
constraint is shown in Fig. 3.
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2.2 Agent Communication

If tasks iT  and jT  are assigned to different agents, information jif ,  must be communicated between

these agents in the organization (communication is zero if these tasks are assigned to the same agent).
The agents can communicate only one message at a time. The time required to communicate jif ,  units

of information from agent rA  to uA  along the link a
ure ,  is equal to 

ur

ji

c

f

,

,  if 0, ≠urc . We could generalize

the problem formulation by making this time dependent on tasks and on the link between
communicating agents.

We assume that only connected agents communicate, and if 0, =urc , then communication between

these agents cannot happen. Another approach is to allow such communication to occur through the
shortest path between these agents in the network, assuming that the agent network is fully connected. In
this case, the most efficient routing of information should be performed dynamically to account for
communication link contention. An example of agent communication due to task information flow is
shown in Fig. 4.

2.3 Task Storing

The storing of task iT  (in the agent’s memory) is required if:

a) Task iT  and its successor task jT  (the task that requires information from iT ) are assigned to the

same agent rA ; in this case, the dynamic memory load of agent rA  is increased by im  units from the

finish time of iT  until the start time of jT ;

b) Task iT  is assigned to agent rA , but its successor task jT  is assigned to agent uA  ( ru ≠ ); in this

case, the dynamic memory load of agent rA  is increased by im  units from the finish time of iT  until

the time communication of information jif ,  is initiated from agent rA  to uA , and a dynamic memory

load of agent uA  is increased by im  units from the time information jif ,  is received from agent rA

until the start time of task jT .



The dynamic memory load of any agent rA  must not exceed its memory threshold rM . An example of
agent communication and task storage is shown in Fig. 5.
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TABLE IV.
Mapping and Scheduling Variables

irx ,
assignment variables ( =1 iff task      is assigned to  
agent      )

)(iST start time of task

iT

rA

iT

),( jiSF start time of transfer of information between tasks 
and

iT jT

),( trW workload of agent       at time t
rA

),( trM memory load of agent       at time t
rA

),( urE set of messages passed from agent        to agent
rA uA

)(iFT finish time of task iT

),( jiFF finish time of transfer of information between 
tasks andiT jT

The objective is to find a mapping of task structure onto agents’ network and the corresponding task
schedule that minimize the mission completion time (makespan) – the completion time of the last task.
This problem can be viewed as consisting of three parts:

1. Allocation of tasks to agents.

2. Sequencing of task execution for each agent.

3. Sequencing of communication (due to task information flow) in agents’ network.

3 Mapping Variables

In Table IV, we list the variables used to define the solution to the mapping and scheduling problem.

We define other relevant variables to facilitate the explanations:

• )(ia  is an agent to which task iT  is assigned ( 1),( =iiax );

• ),( ujST  = (earliest) start time of task jT  on agent uA ;

• ),( ujFT  = (earliest) finish time of task jT  on agent uA ;

• ),,,( urjiSF  = start time for transfer of information from task iT  to jT  on the link between agents

rA  and uA ;

• ),,,( urjiFF  = finish time for transfer of information from task iT  to jT  on the link between agents

rA  and uA ;

• { }t
t

ji EejiOUT ∈∃= ,    :   )(  – a set of immediate successors of task iT ;



• { }t
t

ji EeijIN ∈∃= ,    :   )(  – a set of immediate predecessors of task jT ;

• ),( kilb  = length of the longest assignment among all minimum schedules of paths leading from task

iT  assigned to agent kA  to the end of the graph; )(ilb  is the smallest among them (sometimes called

bottom level of a node): ),(min)( milil b
m

b = ;

• ),( kiCP  = a critical path starting with task iT  assigned to agent kA  (a sequence of tasks that

corresponds to ),( kilt ); )(iCP  is the shortest path among ),( kiCP :

),(minarg* *),,()( milmmiCPiCP b
m

== (1)

• ),( kiCA  = a sequence of agents that are scheduled a critical path ),( kiCP ; )(iCA  is the shortest such

schedule ( *),()( miCAiCA = , ),(minarg* milm b
m

= );

• ),( mjlt  = length of the longest assignment among all minimum schedules of paths leading from

start of the task graph to task jT  assigned to agent mA  not counting the execution time of task jT ;

)( jlt  is the smallest among them (sometimes called top level of a node): ),(min)( milil t
m

t = .

Note that jupujSTujFT ,),(),( += , and















=

=≠∞

≠≠+

=

 otherwise   ),,(),,,(

0,  if                         ,

0,  if,),,,(

),,,( ,

,
,

,

riFTurjiSF

cur

cur
c

f
urjiSF

urjiFF ur

ur
ur

ji

(2)

Static calculation and dynamic update of ),( kilb  and ),( mjlt  are presented in Appendix A.

4 Mapping Feasibility

To find whether the problem of mapping a task graph onto a network of agents is feasible, we need to
test the following conditions:

a) agent-to-task assignment feasibility – for each task there exist an agent that can execute this task:

∞≠∃∀ riri pAT    :       and ir wW ≥ (3)

b) agent’s workload capacity constraints – at any time t during mission processing the total workload of
an agent must not exceed agent’s workload capacity:

∑
>≤=

=≥

tiFTtiSTx
i

ir

ir

wtrWW

)(  ,)(  ,1
:                   

,

),( (4)



c) information transfer feasibility – each information message can be communicated in agent’s network
(only directly connected agents can communicate and the transfer of information between agents
according to task information flow occurs without interruption):

0   and   , ,    ,     0 ,),( ,,, ≠∞≠∞≠⇒∃≠∈=∀ urujriurjitji
t

ji cppPPfETTe (5)

d) information scheduling feasibility – information link can transmit only one message at a time:

{ } ),(),(1,...,1,,...,),(for 11,, 11 ++≤⇒−=∀= kkkkjiji jiSFjiFFmkffurE
mm

(6)

e) memory allocation feasibility – at any time t during mission processing, the memory load of an agent
(subsection 2.3) does not exceed agent’s memory capacity:

444 8444 7644 844 76 in

tjSTtjiFFx
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tjiSFtiFTx
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+=≥

 )(  ,),(  ,1   
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 ),(  ,)(  ,1
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,

,

,

,

),( (7)

f) precedence constraints – a task can start execution only after all of its predecessors are finished and all
the information is communicated to the corresponding agent:

 1  ,1  , ,,, ==∈∀ juirt
t

ji xxEe  we have:

),(),()()( jiFFjiSFpiSTiFT ri ≤≤+= (8)









=

≠≤+
=

otherwise    ),(),(

 if    ),(),(
),( ,

,

iSTjiSF

rujST
c

f
jiSF

jiFF ur

ji

(9)

To find the feasibility of scheduling a task graph on an agent architecture, we need to run the critical
path algorithm for a heterogeneous network (Appendix A). If there exists i such that ∞=)(ilb , then the

task graph scheduling is infeasible. The local dynamic feasibility of a schedule is maintained by always
allocating a task i  to an agent rA  such that ≠),( rlb . Coefficients ),( rilb  are computed off-line as in

Appendix A.

5 Solution Approach

The problem defined in section 2 is NP hard in very simple cases ([Garey79], [El-Rewini90b]).

As mentioned in section 2, the scheduling problem can be thought of as consisting of three parts: 1)
the task-to-agent assignment; 2) the task execution ordering within an agent; and 3) sequencing of
information transfer (information routing) in agents’ network. A list scheduling heuristic applied to task
and information scheduling solves all three problems at once (one-stage method). While low complexity
one-stage methods such as the Critical Path (CP) algorithm perform very well when communication
delays are zero, this is not the case with non-zero communication delays. This is because the edge
weights are no longer deterministic; they are functions of task-to-agent assignment (communication
would be zero when two tasks are assigned to the same agent, and non-zero when they are assigned to
different agents). Consequently, task priorities depend on task-to-agent assignment, and cannot be
accurately estimated using a one-stage method. In two-stage methods, once the mapping of tasks to



agents is obtained, the communication pattern becomes deterministic, and a better priority ordering
among tasks can be derived.

In general, the existing algorithms for static scheduling of parallel programs represented by a macro-
dataflow graph to the set of processors can be classified into three categories:

• Bounded number of processors (BNP) scheduling

• Unbounded number of clusters (UNC) scheduling

• Arbitrary processor network (APN) scheduling

The first class of algorithms is limited to the fully connected processor/agent structures; they do not
consider link contention. The second class of algorithms employs hierarchical clustering of tasks; these
algorithms do not account for non-homogeneousness of the processing architecture. The last class
performs scheduling of tasks onto processors and communication onto network channels; these
algorithms consider link contention.

BNP algorithms are modified to account for network topology and can be employed to solve our
problem. On the other hand, only linear clustering methods of UNC scheduling can be used for non-
homogeneous networks of agents.

The algorithms considered here could be decomposed into two groups: (i) list scheduling algorithms,
and (ii) clustering algorithms (with message routing). The list-scheduling algorithms assign tasks and the
corresponding communication one-by-one in a topological order obtained from the task graph.
Clustering algorithms assign sets of tasks onto clusters, dynamically changing the original
communication graph. List scheduling can be improved by utilizing the insertion heuristic [Gan96].

The following definitions are used in the descriptions of the algorithms:

• ip~  = median task processing time (equal to the largest feasible processing time if ∃ k such that

∞=ikp , );

• ip  = mean task processing time (equal to the largest feasible processing time if ∃ k such that

∞=ikp , );

• c  = mean communication link rate: ∑
∈

=
a

a
mk Ee

mk
a

c
E

c
,

,||

1
.

6 List Scheduling Heuristics

List scheduling (or priority scheduling) algorithms define priorities of tasks (either static or dynamic),
and allocate “ready” tasks (that have all predecessors assigned to agents) in the decreasing order of
priority )(ipr  accounting for agent idle times and network topology. The information message routing
performance is included in computing a task’s earliest start time for each agent.

Earlier research was concerned with specifics of implementation, and it was agreed that the
following features improve the list scheduling algorithm’s performance:

• List scheduling without a universal time clock is used (tasks are considered according to their
assigned predecessors – not just completed ones);



• Insertion is used (search for idle time slots is performed);

• All agents are considered (not only “free” agents at the current time).

TABLE V.

Initialize: 

Step 1: Select task

Step 2: Select agent

Step 3: Assign task Ti to agent Ar

Step 4: Update successors’ data (including priority info):

Step 5: Repeat steps 1-4 until  READY=∅ .

{ }∅== )(: iINiREADY

}{)(  if  and  }{\)()(   :)( jREADYREADYjINijINjINiOUTj ∪←⇒∅=←∈∀

}{\)(maxarg iREADYREADYjpri
READYj

←⇒=
∈

),(minarg uiFTr
u

=

Priority list scheduling algorithm is outlined in Table V. List scheduling algorithms differ by the method
used to calculate the priorities of tasks (Step 1), agent selection (Step 2), and information routing
strategy used in Step 3. We outline various existing list-scheduling methods in subsection 6.1, and
present our algorithm in subsection 6.2.

6.1 Related Work

6.1.1 Task Priority Selection (Step 1)

Mapping Heuristic (MH). In a slightly different formulation of the problem, the following algorithms
describe the basic notion of assigning tasks according to the longest length of the critical path from a
task node to the end of the graph: Modified Critical Path (MCP) [Wu88], Mapping Heuristic (MH) [El-
Rewini90a,b], [Gan96], and Heterogeneous Earliest Finish Time (HEFT) [Topcuoglu99]. The idea is to
select a task with the highest priority defined as a static upward rank )(iblevel  that is equal to the length
of the longest exit path from task iT  (the computation is based on the mean computation and

communication costs). For a heterogeneous system, it can be iteratively calculated as in [Topcuoglu99]:

])([max)(
,

)( c

f
jblevelpiblevel

ji

iOUTj
i ++=

∈
(10)

The task is assigned to an agent that minimizes the finish time of the task.

Dominant Sequence (DS). Algorithms such as Mobility Directed (MD) [Wu88], Dominant sequence
clustering (DSC) [Gerasoulis90a,b&95] and Critical-path-on-a-processor (CPOP) [Topcuoglu99] assign
tasks in decreasing priority defined as the sum of upward and downward rank:

)()()( iblevelitlevelipr += , where )(itlevel  is the length of the longest path from the entry (top) node to
the task node iT  not including the computation cost of iT . The )(itlevel  is calculated for heterogeneous

systems in a similar fashion as )(iblevel :

])([max)(
,

)( c

f
pitleveljtlevel

ji

i
jINi

++=
∈

(11)



Note that tasks in the same critical path would have the same priorities. CPOP algorithm differs from
others by fixing the assignment of tasks on the critical path to the same agent (that completes this path
the fastest).

Dynamic Critical Path (DCP). DCP [Kwok94] differs from DSC and MD by restricting certain
assignments obtained from a “look-ahead” strategy and load balancing. DCP computes priority
characteristics tlevel and blevel dynamically by “matching” the task graph to the agent system. These
values are computed as follows:












⋅++=

∈
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iamiia
jINi c

f
Iiaitlevelpmjtlevel

),(

,
)(,),(
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))(,(max),( (12)
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
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iOUTj
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f
Ijajblevelpmiblevel

),(

,
)(,

)(
),( ))(,(max),( (13)

Then task priority is selected as [ ]),(),(min)( miblevelmitlevelipr
m

+= . The calculations and priority

updates are straightforward when the agent allocation is known, but this is not the case at the beginning
of the algorithm. In [Kwok94], the selection of )(ia is not specified. Therefore, we utilize the following

recursive calculations: ),(),(),,(),( milmiblevelmjlmjtlevel bt ==  (see Appendix A for details).

Level scheduling (LS). The list scheduling based on levels (or layers) of the task graph was first
considered in [Adam74] in the case of identical agents. [Shirazi90] used this approach for heavy node
first (HNF) algorithm. [Iverson95] applied this method for heterogeneous agents. His Levelized-Min
Time (LMT) is a two-phase procedure. The first phase orders tasks according to their precedence
constraints layer-by- layer. The tasks in the same layer are grouped and can be executed in parallel. The
second phase is a greedy method that schedules tasks in the same layer in the decreasing order of
average computation cost. The agent that provides the fastest finish time of a task is selected.

Dynamic level scheduling (DLS). The Dynamic Level Scheduling algorithm (DLS) proposed in
[Sih93] assigns node priorities by using a dynamic level (DL) of a task that is equal to

[ ] ),()(),,(max)(),( kikTFkiDAiblevelkiDL δ+−= (14)

The variables in equation (14) are defined as follows:

a) )(iblevel  is equal to the length of the longest exit path from task iT ; only median execution times ip~

at each task node among the processing times of this task on all agents are used in computing )(iblevel :

)(max~)(
)(

jblevelpiblevel
iOUTj

i ∈
+= (15)

(if the median time is infinity, the largest feasible processing time is used);

b) iki ppki ,
~),( −=δ  (large positive ),( kiδ  indicates that agent kA  executes task iT  faster than most

agents);

c) ),( kiDA  is equal to the time that data from all predecessors of task iT  arrives at agent kA ; and

d) )(kTF  is equal to the time that the last task is executed by kA .



DLS algorithm does not assign priorities to tasks using the critical path. Instead, it performs an
exhaustive matching of task nodes to agents. At each scheduling step, the algorithm selects a pair ),( ki

of a ready task and an available agent that maximizes ),( kiDL . The algorithm uses non-insertion based
scheduling, and, therefore, can be modified to better utilize idle times in agent processing and
communication network schedules as described in subsection 6.1.3.

6.1.2 Information Routing

For the algorithms described in subsection 6.1.1, the information is routed on a “first come – first serve”
basis. The information jif ,  can be scheduled to a link between agents rA  and uA  on which m messages

mm jijiji fff ,,, ,...,,
2211

 have been scheduled if there exists some k such that

{ }
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ji

kkkk c

f
iFTurjiFFurjiSF

,

,

11 )(),,,,(max),,,( ≥−++ , mk ,...,1= (16)

where ∞=++ ),,,( 11 urjiSF mm . The start time of information jif ,  on a link between agents rA  and uA  is

given by

{ })(),,,,(max),,,( iFTurjiFFurjiSF ss= (17)

where s is the smallest k satisfying the inequality (16). Hence, 
ur

ji

c

f
urjiSFurjiFF

,

,
),,,(),,,( += .

6.1.3 Agent Selection (Step 2)

For algorithms described in subsection 6.1.1 (except for DLS), an agent is selected to process a task
to minimize the finish time of this task. The start time ),( ujST  of scheduling task jT  to agent uA  to

minimize the finish time of jT  can be found via

{ }juju
t

wuWWptttujST +≥+∈∀=
∆≥

),(  : ),[| max),( , ττ (18)

where )),(,,(max
)(

uiajiFF
jINi∈

=∆ . The task is then assigned to an agent kA  so that its finish time is

minimized: ),(minarg ujFTk
u

= . Hence, ),()( kjSTjST = .

6.1.4 Updates

After the assignment has been determined, scheduling and mapping variables are updated. First,
information transfer statistics and the corresponding memory loads (commensurate with the new
assignment) are updated:

For r∀  and i∀  such that 0  ,  ,1 ,,, ≠∈= jit
t

jiri fEex  we have:

),,,(),(),,,,(),( krjiFFjiFFkrjiSFjiSF == (19)



imtrMtrM +← ),(),(  for  )),(),([ jiSFiFTt ∈∀ (20)

     imtkMtkM +← ),(),(  and { }jifkrEkrE ,),(),( ∪←  for  ))(),,([ jSTjiFFt ∈∀ (21)

Second, assignment variables and workload data corresponding to new assignment are updated:

1, =kjx , jkpjSTjFT ,)()( += (22)

jwtkWtkW +← ),(),(  for  ))(),([ jFTjSTt ∈∀ (23)

6.2 Heterogeneous Dynamic Bottom Level (HDBL) Algorithm

6.2.1 Agent-Task Selection

Algorithms that assign tasks using a static upward rank either completely neglect the mapping of task
flow graph onto a heterogeneous agent network (MH, DS) by using the average of processing time and
link rate, or use the “best” mapping for priority calculation while disregarding the load balancing issue
(DCP). Calculation of priorities in DLS fails to capture the real relation of upward rank to the start time
of the task; for instance, calculation of the static upward rank using median values without considering
communication and network topology degrades the performance.

In this paper, we propose HDBL algorithm, in which task mapping to every feasible agent is considered.
As a result, steps 1 and 2 of list scheduling heuristic are combined to find a task-agent pair. For each
ready task iT , an agent )(irA  is selected to minimize a value identifying the schedule delay introduced

by assigning it to this agent. A straightforward approach is to select )],(),([minarg)( kilkiSTir b
k

+= .

Then a task is selected for scheduling that maximizes the mapped critical path value:
))(,(maxarg*

))(,(

irili b

iril
READYi

b ∞≠
∈

= , and *iT  is allocated to agent *)(irA  (hence, *)(*)( iria = ). In our algorithm, we

use the following rules that utilize the network topology in a more efficient manner:

• Agent-task selection: )],(),([minarg)( kiblevelkiSTir
k

+= (24)

• Task selection: ))](,())(,([minarg*
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where ( )][mFmean
m

 is equal to the mean of { }∞≠][:][ mFmF , and 


 =

=
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 if ,0
,

mk
I km .

The earliest start time ),( kiST  of task iT  on agent kA  is computed dynamically using message routing

strategy for single task allocation (as described in subsection 6.2.2) to obtain the time of arrival of all
information to agent kA , equal to ),(max

)(
ijFF

iINj∈
, and the available time slot in agent’s processing

(equation (18)).



6.2.2 Information Routing

When a task jT  is to be scheduled on agent uA , all information from its predecessors (that is, tasks from

the set )( jIN ) should be communicated to agent uA . The set of communication messages from

predecessors can be decomposed according to the agents to which the corresponding tasks are allocated.
Each such set, denoted as { }0,)(),(| ,, ≠=∈= jijir friajINifF , must be mapped to a single

communication link >=< ur
a

ur AAe ,,  (mapping is feasible iff 0, ≠urc ). Instead of scheduling messages

from rF  one-by-one (as is done in existing algorithms, subsection 6.1), we utilize a better message
routing strategy (see Appendix B for algorithm details). The idea is to use the subset-sum problem and
the structure of the link idle times to improve the link “packing”, and, as a result, minimize the arrival of
all information to agent uA .

6.3 Example: Agent Selection in HDBL

A selection of the agent that can complete a chosen task at the earliest time (subsection 6.2) disregards
the network contention issues and can result in unnecessarily long schedules. The example of Figs. 1,2
and Table III shows the improvement that can be obtained by considering the effect of agent allocation
on the critical path length (and, as a result, the total execution time of the task graph).

Table VI shows the values of ),( kiblevel . Consider two iterations of the algorithm shown in Fig. 6.

TABLE VI: Bottom Level Values blevel(i,k)
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Figure 6: Scheduling Iterations in HDBL
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Stage (a): ready tasks ]5,1[=READY ; the earliest start times ),( kiST  and finish times ),( kiFT  on
agents, resulting “agent efficiency” ),(),( kiblevelkiST +  and “delay” coefficients

))(,())(,( iribleveliriST −  are listed in Table VII. As a result, task 1T  and agent 1A  are selected. Note

that the choice of agent 5A  would minimize the finish time of task 1T , but this would increase the total

schedule length of the task graph: the earliest finish times for successor task 4T  would be ],,7,,,[ −−−∞∞ .

Stage (b): ready tasks ]5,4[=READY ; the earliest start and finish times, resulting “agent efficiency”

and “delay” coefficients are shown in Table VIII. As a result, task 4T  and agent 4A  are selected. This
agent mapping also minimizes the finish time of selected task. The length of the schedule obtained by
HDBL is 6.5. All other algorithms result in a schedule with total length equal to 10 (the outputs of
HDBL and MH are shown in Fig. 7).

TABLE VII: Mapping Coefficients (a)
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Figure 7: Task Schedule Gantt-Chart
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7 Simulation Results

To compare the performance of scheduling algorithms, we utilize the Schedule Length Ratio (SLR)
measure for heterogeneous agent systems:

∑
∈

=

CPi
ik

k

i

p

iaiFT
SLR

,min

))(,(max
, (27)

where CP is the critical path in the modified graph without communication constraints with task node
computation cost equal to its minimum processing time among agents. SLR is equal to the schedule
length (main performance measure of a scheduling algorithm) normalized by its lower bound (equal to
the summation of computation costs of nodes on the critical path).

7.1 Communication Versus Computation Cost

We have explored the effect of ratio between communication cost (and corresponding delays) and task
computation cost. We consider the simple example of a task graph with 50 task and 6 agent nodes:

• Task processing times are identical for all agents (equal to 1 unit of time).

• Task workload (=1) and task memory load (=0) are identical.

• Agent workload capacity is the same (=1, implying that each agent can do only a single task at a
time), task knowledge rate is uniform in [0.3,1].

• Agent architecture is fully connected with link rates uniformly distributed in [1,10] interval.

• Task communication cost is varied from 0 units (no communication between tasks) to 300 units
(average communication delay = 60; communication-intensive graph).

• The density of the graph is varied by the ratio of tasks per layer, which is uniform in [0.0,0.2],
and the number of predecessors, which is uniform in [0,10]. As a result, the number of layers is
between 10 and 50.



Figure 8: Communication Increase Figure 9: Computation Increase

SLR increases with communication cost (denominator does not include communication in its
calculation). We found that the performance of other algorithms (MH, DS, LS, DLS, DCP) is
approximately the same (with DLS consistently providing shorter schedules), while HDBL algorithm
provides an improvement over these algorithms of up to 28% for communication-intensive graphs. Fig.
8 shows the results of average SLR ratios for 200 Monte-Carlo runs for HDBL algorithm and the best
solution of other methods (MH, DS, DCP, LS, DLS). Fig. 9 provides the results for alternative
comparison: fixing the communication cost at 50 units and varying the task processing time from 10 to
80 units. HDBL still exhibits superior performance to all other algorithms, although its improvement
decreases as the obtained schedule approaches a lower bound (hence, the optimal solution).

7.2 Varied Communication

In subsection 7.2, we showed that our algorithm achieves more than 25% improvement for
communication-intensive graphs with equal communication cost for all messages. In Fig. 10, we show
results for graphs with varied communication cost. The minimum communication cost is set at 50 units
(average delay = 10), and the maximum varies from 50 to 300 units (average delay = 60). We can see
that HDBL provides improvement of 20% to 25% over other algorithms.

Figure 10: Varied Communication

8 Conclusions and Future Research

In this paper, we have considered the problem of mapping information task graphs onto an organization
of heterogeneous agents under agent processing, network topology, workload and memory capacity



constraints. We proposed the HDBL algorithm, which outperforms existing list scheduling heuristics by
providing an improvement of over 25% for communication-intensive task graphs. HDBL algorithm is an
off-line procedure that is based on matching the critical path in the task graph to the network of
heterogeneous agents, providing a better priority evaluation for agent-to-task mapping and scheduling. A
novel approach for information routing further improves the performance of the algorithm by efficiently
distributing information transfers on communication links in an agent network.

Our current research is focused on exploring task graph structure as means to improve its mapping
onto agent’s architecture. We consider linear clustering and other graph decomposition methods as a
means to extract elementary subgraphs for temporal scheduling onto an agent network. Note that
heterogeneous nature of agents in general prevents mapping subgraphs, such as linear clusters (chains of
communicating tasks), to a single agent. Even when this is possible, in many situations mapping tasks to
multiple agents can reduce the schedule length. In such cases, a trade-off between the optimality of local
mapping and communication link contention should be considered.

The information routing in an agent network is one of the most important factors in minimizing
communication delays. In our current model, only directly connected agents are allowed to
communicate. This can be generalized to allow communication between any indirectly connected nodes
by introducing the problem of finding paths for the transfer of information between these agents so as to
minimize the aggregated communication cost (or delay) that accounts for link contention. Note that a
direct link between two nodes is not necessarily a shortest path between them. We plan to address these
issues in our future research efforts.

APPENDIX A: Critical Path in Heterogeneous Networks

In the following, we describe a procedure for finding the critical path in a task graph considering the
topology of the agent network. Due to the heterogeneous nature of agent’s characteristics and network,
the generic critical path does not describe the real processes underlying the notion of a critical path as
the longest processing sequence in the graph.

To find the critical paths (longest chains) in a task graph, we need to traverse the graph backwards
storing the labels at the task nodes associated with the longest assignment among all exit paths leading
from this node allocated to any feasible agent. The length of an assignment of a particular exit path is
equal to the shortest feasible schedule of the corresponding chain graph on the agent network.

We define S  = set of tasks that have all successors labeled. The critical path algorithm is shown in
Table IX. We can see that the length of a critical path can be recursively computed:
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Analogously, ),( mjlt  can be computed recursively by traversing the task graph forward:
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If the assignment of tasks is known, then
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More precisely, we should write: )),(,,(max),(
)(

miajiFFmjl
jINi
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= .

),( mjlt  refers to the earliest possible time that a task jT  can start execution on agent mA . The latest

time that a task iT  can be started on agent kA  so that the start times of tasks in the critical path are not

delayed is equal to ),()(max kiljl bt
j

− .

TABLE IX.

Initialize: 

while S ≠ ∅ do
S* = S, S = ∅
for each  j∈S*
for each i∈IN(j)

for each k = 1,…,K
if fi,j = 0, then
else

end if
if
then

end if
OUT(i) = OUT(i)\{j}
if OUT(i) = ∅, then S = S ∪{i} end if

end for
end for

end while
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APPENDIX B: Scheduling Multiple Information Messages on a Single Communication Link

For each agent rA  ( ur ≠ ), we identify the set rS  which consists of predecessors of task jT  that are

assigned to rA : { }riajINiiS r =∈= )(),(| . Then, a set of information messages from these tasks
{ }0,| ,, ≠∈= jirjir fSifF  must be communicated to agent uA . If ∅≠rF , messages from set rF  must

be scheduled to the link >=< ur
a

ur AAe ,, . Note that this scheduling is feasible iff 0, ≠urc .

Let us assume that the message set { }
mm jijiji fffurE ,,, ,...,,),(

2211
=  have been scheduled to

communication link >=< ur
a

ur AAe ,, . We define

),(),(),,( 11 kkkkkkkk jiFFjiSFjiFFt −=∆= ++ , for 1,...,1 −= mk , (33)

where ),(,0 1100 jiSFt =∆= . If 0≠∆ k , then the interval ],[ kkk tt ∆+  (called idle interval) can be used

to allocate a set krF ,  of messages that can be executed during ],[ kkk tt ∆+ . That is,

{ }0,: ,,,, ≠∈= jikrjikr fSifF , where
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Suppose we wish to schedule a set F of messages with lengths nw  and release times nr  during the time

interval ],[ ba . Since the objective of message scheduling is to reduce the time of arrival of the last

message to agent uA , the problem of scheduling to a single idle time interval ],[ ba  is equivalent to

finding an allocation with maximum total scheduling time, that is ∑
∈Fn

nn wxmax , where 1=nx  iff a

message n is assigned to interval ],[ ba  (=0 otherwise). The scheduling must take into account the time
constraints of the problem (message release times rn for each message, non-overlapping schedule of
tasks, and interval length). When arFn n ≤∈∀ : , the problem becomes a subset-sum problem for a

knapsack with capacity abC −= :
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Although this problem is NP-hard, it can be solved efficiently. For example, fully polynomial
approximation schemes have been developed [Martello90].

When arFn n >∈∃ : , we can solve the problem by applying a sequence of subset-sum problems

working “backwards” in the idle interval ],[ ba . The corresponding algorithm called Bounded Interval
Message Mapping (BIMM) is described in Table X. BIMM algorithm uses the consecutive application
of Subset-Sum problem for time intervals determined from the release times of messages.

For our problem, when scheduling set krFF ,=  in an interval ],[],[ kkk ttba ∆+= , we have:
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We propose the algorithm (Table XI) that schedules information messages to a communication link
utilizing the available idle time intervals in link assignment. The algorithm searches for time intervals
and assigns messages to them according to BIMM.

TABLE X.
Input: Message set F, message release times ri , message 
lengths wi, time interval [a,b]
Output: Assigned messages F*

Initialize: F’=∅, F*= ∅, t2=b
Step 1: Find t1 = maximal start time of messages from F.
Step 2: Select tasks from F with start time equal to t1, remove 
them from F and add to F’.
Step 3: Find set F’’ of messages in F’ that can be executed 
during time interval [t1, t2]. That is:

Step 4: Solve Subset-Sum problem for items from F’’ and 
knapsack with capacity  C = t2 – t1. Obtain set of assigned items
and total assigned time

Step 5: Remove items of      from F’ and add them to F*.
Update t2 = t1+ C – W.
Step 6: Repeat steps 1-5 until  F = ∅

[ ]{ } ,max ,'  :   '' 21 twrtFiiF ii ≤+∈=
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TABLE XI.

Input: Set of messages Fr,u to be assigned to a link with 
messages

Initialize:

for k=0,…,m-1 do
and define a set of 

messages Fr,k

if a<b, then F = F∪Fr,k and solve BIMM, obtaining set 
S* of assigned tasks.
Update: F = F \ S*

end for

If F≠∅, then assign remaining items in the increasing order of 
message release times:

while F≠∅ do
Select a message i from F with smallest release time ST(i).
Update 

end while

{ }
mm jijiji fffurE ,,, ,...,,),(

2211
=

ur

ji
ii c

f
wiSTrFFT

,

,),(,,0)0( ==∅==

),(

),(),()),(,max(),(

jiFFa

wjiSFjiFFiFTajiSF i

=
+==

)(,)( 1+=+= kik iFTbwiFTa
k

mim wiFTa += )(

References

[Adam74] T. Adam, K.M. Candy, and J.R. Dickson. “A Comparison of list schedules for parallel processing Systems.”
CACM, 17:12 (1974), pp. 685-690.

[Burton98] R.M. Burton, and B. Obel, Strategic Organizational Diagnosis and Design: Developing Theory for Application
(2nd Ed.). Boston, MA: Kluwer Academic Publishers, 1998.

[El-Rewini90a] H. El-Rewini, T. Lewis. “Parallex: A Tool for Parallel Program Scheduling.” IEEE Journal of Parallel and
Distributed Computing, 1990.

[El-Rewini90b] H. El-Rewini, T. Lewis. “Scheduling Parallel Programs onto Arbitrary Target Machines”, IEEE Journal of
Parallel and Distributed Computing, Vol. 9, no. 2, June 1990, pp. 138-153.

[Entin99] E.E. Entin, “Optimized Command and Control Architectures for Improved Process and Performance”, Proceedings
of the 1999 Command & Control Research & Technology Symposium, NWC, Newport, RI, June 1999, pp. 116-122.

[Gan96] Boon Ping Gan; Shell Ying Huang. “The Modified Mapping Heuristic Algorithm”, IEEE Second International
Conference on Algorithms & Architectures for Parallel Processing, 1996, pp. 456 –463.

[Garey79] M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.
Freeman, 1979.

[Gerasoulis90a] A.Gerasoulis, S.Venugopal. “Linear Clustering of Linear Algebra Task Graphs for Local Memory Systems.”
Report, 1990.

[Gerasoulis90b] A. Gerasoulis, Tao Yang. “Dominant Sequence Clustering Heuristic Algorithm for Multiprocessors.”
Report, 1990.



[Gerasoulis94] A. Gerasoulis, Tao Yang. “DSC: Scheduling Parallel Tasks on an Unbounded Number of Processors.” IEEE
Transactions on Parallel and Distributed Systems, Vol. 5, No. 9, September 1994, pp. 951-967.

[Graham66] R.L. Graham. “Bounds for Certain Multiprocessing Anomalies.” Bell System Tech. J., 45 (1966), pp. 1563-1581.

[Hocevar99] S.P. Hocevar, W.G. Kemple, D. Kleinman. And G. Porter, “Assessments of Simulated Performance of
Alternative Architectures for Command and Control: The Role of Coordination”, Proceedings of the 1999 Command &
Control Research & Technology Symposium, NWC, Newport, RI, June 1999, pp. 123-143.

[Iverson95] M. Iverson, F. Ozguner, G. Follen. “Parallelizing Existing Applications in a Distributed Heterogeneous
Environments”, Proc. Of Heterogeneous Computing Workshop, pp. 93-100, 1995.

[Kapasouris91] P. Kapasouris, D. Serfaty, J.C. Deckert, J.G. Wohl, K.R. Pattipati. “Resource Allocation and Performance
Evaluation in Large Human-Machine Organizations”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, No. 3,
May/June 1991, pp. 521-531.

[Kim88] S.J.Kim, J.C.Browne. “A General Approach to Mapping of Parallel Computation upon Multiprocessor
Architectures.” International Conference on Parallel Processing, 3(1988), pp. 1-8.

[Kwok94] Yu-Kwong Kwok, Ishfaq Ahmad. “A Static Scheduling Algorithm Using Dynamic Critical Path for Assigning
Parallel Algorithms onto Multiprocessors.” Proceedings of the 1994 International Conference on Parallel Processing, 1994.

[Levchuk2000a] Levchuk, G.M., Y. N. Levchuk, Jie Luo, Krishna R. Pattipati, and David L. Kleinman, “Normative design
of organizations - part I: mission planning”, To be published in IEEE Transactions on Systems, Man, and Cybernetics, 2002.

[Levchuk2000b] Levchuk, G.M., Y. N. Levchuk, Jie Luo, Krishna R. Pattipati, and David L. Kleinman, “Normative design
of organizations - part II: organizational structure”, To be published in IEEE Transactions on Systems, Man, and Cybernetics,
2002.

[Levchuk2002] Y.N. Levchuk G.M. Levchuk, K.R. Pattipati. “A Systematic Approach to Optimize Organizations Operating
in Uncertain Environments: Design Methodology and Applications”, To appear in Proceedings of the 7-th International
Command & Control Research & Technology Symposium, 2002, Québec City, QC, Canada, Sept, 2002.

[Martello90] S. Martello, and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. New York, NY:
John Wiley & Sons, 1990.

[McCreary90] C. McCreary, H. Gill. “Efficient Exploration of Concurrency Using Graph Decomposition.” Proceedings 1990
IEEE International Conference on Parallel Processing, pp. II-199, Institute of Electrical and Electronic Engineers, 1990.

[Meirina2002] Candra Meirina, Yuri N. Levchuk, Krishna R. Pattipati. “Goal Management in Organizations: A Markov
Decision Process (MPD) Approach”, To appear in Proceedings of the 2002 Command & Control Research & Technology
Symposium, NPS, Monterrey, CA, June, 2002.

[Sarkar89] V. Sarkar. “Partitioning and Scheduling Parallel Programs for Execution on Multiprocessors.” The MIT Press,
1989.

[Shirazi90] B. Shirazi et al., “Analysis and evaluation of Heuristic methods for static task scheduling”, J. of parallel and
distributed computing, 10, pp. 222-232, 1990.

[Sih93] G.C. Sih, and E.A. Lee. “A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heterogeneous
Processor Architectures”, IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No. 2, Feb. 1993, pp.175-187.

[Topcuoglu99] H. Topcuoglu, S. Hariri, Min-You Wu. “Task scheduling algorithms for heterogeneous processors”, HCW '99
Proceedings. Eighth , pp. 3-14, 1999.

[Tu2002] Haying Tu, Yuri N. Levchuk, Krishna R. Pattipati. “Robust Strategy to Induce Desired Effects”, To appear in
Proceedings of the 2002 Command & Control Research & Technology Symposium, NPS, Monterrey, CA, June, 2002.

[Wu88] Min-You Wu, D. Gajski. “A Programming Aid for Hypercube Architectures.” The Journal of Supercomputing,
2(1988), pp. 349-372.


