
Cover page for the 2002 Command and Control Research and Technology Symposium
June 11-13, 2002, Naval Postgraduate School, Monterey, CA

Possible focus topic:

 C2 Experimentation

Paper Title:

Analyzing Quality of Service Specification Through System Event Trace

Author:

John Drummond
Space and Naval Warfare Systems Center, San Diego

Code D4121
Spawarsyscen

53560 Hull Street
San Diego Ca 92152-5001

Phone (619)553-4131
Fax (619)553-4808

drummond@spawar.navy.mil

Analyzing Quality of Service Specification Through System Event Trace

John Drummond*

Space and Naval Warfare Systems Center, San Diego
Code D4121

Spawarsyscen
53560 Hull Street

San Diego Ca 92152-5001
(619)553-4131

drummond@spawar.navy.mil

Abstract

The distributed system presents an enigmatic set of requirements to the software engineer. The
added complexity of command & control constraints can coalesce to represent an environment
that can soon overwhelm many distributed command & control software development efforts.
These conditions are especially acute when multiple competing applications are required to share
the environment system resources. Software development efforts that have been targeted at the
distributed command & control environments have focused upon the approach of providing
adequate quality of service levels to the requesting applications for mitigation of the resource
sharing dilemma. Providing efficient resource utilization can satisfy many of the quality of service
issues, which present difficulties in resource sharing. However, the quality of service analysis
methods currently in place to determine efficient resource utilization are either to narrowly
focused upon specific resource managers/controllers or are not sufficiently equipped to provide a
detailed dynamic examination during application/system execution. Therefore, this paper presents
a comprehensive method to achieve a viable resource utilization analysis based upon specific
dynamic quality of service events.

* This work sponsored by the Defense Advanced Research Projects Agency, Information Technology Office
(DARPA-ITO)

Introduction

The distributed processing environment provides added benefits over the non-distributed
approach due to the capacity for improvement in program accessibility, overall performance,
additional sharing of limited resources, and the increased fault tolerance capabilities. This
distribution of the processing load does however increase the overall complexity of the
environment. The processing of command & control elements also exhibits perplexing difficulties
such as abrupt mission changes, and dynamic tactical surprises.

Despite this expanded complexity, the augmentation to command & control environments of
distributed processing is nevertheless desired. However, this distributed command & control
environment does present an expanded assemblage of requirements and constraints for the
software engineer. The efficient allocation of system resources can be considered a major element
of these requisites. This dynamic complexity that is found in the distributed command & control
environment indicates that a determined level of service for the applications utilizing these
distributed resources would be advantageous to assure mission critical processing.

Directly implementing the quality of service features into the distributed command & control
infrastructure is not a trivial task. Additionally, subsequent to implementing the quality of service
features, an examination must be performed upon the effectiveness of the implementation. To
properly ascertain that the essential quality of service based system resources are being reasonably
utilized and efficiently shared among the distributed command & control programs some
evaluation of the resource distribution approach needs be conducted.

However, current analysis techniques for evaluation of quality of service specifications are
somewhat lacking in that there is no exacting method to determine precisely what quality of
service based resource inconsistencies take place during actual program execution. Therefore, the
analysis of proper employment and dispersion of available resources is the focus of this research in
the area of distributed command & control processing. This direct analysis has been carried out
though the use of quality of service based behavioral models. The development characteristics of
the behavior model are described in the next section.

Approach

The approach to this work is based upon the presumption that systems within a distributed end-
to-end command and control path should support some form of negotiated quality of service
levels through efficient employment of available resources to ensure proper execution of mission
critical distributed command & control programs. This focus of efficient quality of service is a
much needed element for current DoD systems as stated by the Defense Advanced Research
Projects Agency Quorum program manager [Koob 99] “While emerging network-level QoS
mechanisms (such as RSVP) are an essential enabling technology for Quorum, they are
insufficient in that they are limited to communications QoS. Quorum defines "end-to-end" as
being the quality-of-service seen by the application, which calls for coordinated QoS management
across middleware, operating systems, and networks.”

This research work initially begins through an investigation of how a specific system can aid in the
mitigation of resource utilization difficulties within end-to-end quality of service environments.
This investigation is accomplished by an in-depth look at various quality of service and resource
deployment characterizations as well as the application of high level modeling. The detailed
analysis is attained through the utilization of the SPAWAR System Center DARPA Quorum
Integration Test & Exploitation project (Quite) testbed environment located a the SPAWAR
System Center. The domain illustration for the project testbed is shown in Figure 1. Domains
Within The SSC-SD DARPA Testbed.

Figure 1. Domains Within The SSC-SD DARPA Testbed

To achieve a precise analysis of quality of service procedures an approach has been implemented
to examine the exact quality of service execution path during program operation. The evaluation
approach utilized in this research is based upon an event trace concept employed by [Auguston

OO
BB
JJ
EE
CC
TT
SS

SingleSingle
DomainDomainProcessorProcessor

DomainDomain

MultipleMultiple
DomainDomain

Application

Middleware

OS

Network

Application

Middleware

OS

Network

Application

Middleware

OS

Network

Application

Middleware

OS

Network

Application

Middleware

OS

Network

Application

Middleware

OS

Network

Application

Middleware

OS

Network

Application

Middleware

OS

Network

Application

Middleware

OS

Network

00] originally as an analysis tool for focusing upon correctness in C language programs. This
event trace concept discusses the idea that testing and debugging are mostly concerned with the
program run-time behavior, and states that developing a precise model of program behavior
becomes the first step towards any dynamic analysis.

The quality of service analysis domain of the targeted program for this implementation is centered
upon the following characteristics: distributed computing environment, multiple heterogeneous
systems, network medium connections, software applications with specific requirements (QoS
resource needs), resource management software (with quality of service awareness), and metrics
data gathering instrumentation software. The tactics to be pursued for this work have pursued the
following approach sequence:

• Production of a program behavior model based upon quality of service factors. This will
be implemented by developing abstractions for quality of service events based upon
specific quality of service actions that occur during typical program execution which
include:

• Quality of service request statement execution which requests resource reservation
within the Application software.

• Specific procedure execution focused upon the evaluation and negotiation of
available resources to be applied to the originating resource request.

• Software statement execution of procedures for proper utilization of the assigned
resources.

• Execution of statements responsible for the detection of any resource needs change
within the application software.

• Execution of procedures focusing upon the re-negotiation based on increase or
decrease of available and previously assigned resources.

• Execution of reallocation statements for specific resources by the resource
controller software.

• Sending and receiving of quality of service related messages by both the
application and resource controller software.

• Prepare quality of service specific application program points, which directly relate to
appropriate resource utilization. Such elements will have direct consequences upon quality
of service and for example will include:

• QoS specific message passing
• Application QoS violations
• QoS negotiations
• QoS resources and management of resources(RM)
• QoS re-negotiations
• QoS levels

• Instrument the targeted program based upon these previously identified specific quality of
service program points. This direct invasive source code instrumentation will allow for

effective event trace recording at the precise location of the quality of service actions of
interest.

• Use this analysis to develop an overall characterization of distributed command & control
systems for any mitigation of discovered quality of service related efficiency problems.

The specific logical conditions and constraints for this work include a distributed system,
heterogeneous environment, multiple diverse quality of service levels essential for program
execution (i.e. application requirements vary high/low needs), and available resources include
network bandwidth, CPU, memory, etc. The informal abstraction of events mentioned above
includes specific actions performed during program execution. The majority of these events will
occur within specific application and resource management software. As stated earlier this
approach focuses upon the analysis of quality of service associated events. Events are key to this
research and are utilized as a basis for building program behavior analysis. Again the work of
[Auguston 99] states, an event can occur when an action is attained while the program execution
process is underway. This work of Auguston is primarily directed toward overall program
improvements, which do not specifically cover quality of service issues. By extending this work
into the resource utilization domain the “event trace” approach can be aptly applied to quality of
service execution pathways.

Figure 2. Target Program Analysis

High-Level
Behavior

Events

Events

Events

Quality of
Service

Event Trace

Fast Failure
Detector

AEGIS Environment

Linux/RK

The objective of this research comprises the development of accurate high-level behavioral
models, which focus upon domain specific areas of a distributed environment. The essence of
these characterizations concentrate upon the quality of service treatment of resources within this
environment. To achieve this objective, a target program has been selected for dynamic analysis.
This quality of service event trace has directly examined the fast failure detection application. The
fast failure detection program has been implemented within the AEGIS testbed environment as
illustrated in Figure 2.

This fast failure detection program was designed and developed under the DARPA-ITO Quorum
Integration, Testbed and Exploitation (Quite) project efforts. The failure detection software was
created within the Quite project testbeds, tested, experimented upon, and has ultimately been
implemented within the Naval Surface Warfare Center Hiper-D AEGIS testbed. The primary
objective of this failure detection software program is to efficiently and promptly detect failures
within the group communication software utilized within distributed mission critical systems such
as the AEGIS environment.

As noted in [Drummond 02] this program can be setup to take advantage of a resource
management system based upon quality of service procedures or operate as a simple non-quality
of service application “The Fast Failure Detector can be built and executed on its own or it can be
executed while taking advantage of facilities like Linux/RK and Ensemble group communication.”
For the purpose of this event trace analysis research the Fast Failure Dector program has been
implemented using both the Linux/RK resource kernel and the Ensemble group communication
software. A diagram of the Fast Failure Dector program operations and the specific program
elements are illustrated in Figure 3.

Figure 3. Fast Failure Detection Program

Linux/RK

Heartbeat

Census
Taker

Execute Detector in
Reserved Resource RT

Environment

Factor Out “Hard” Real-Time Failure Detection
Elements

Connect Detector to
Original Stack

Membership Mechanism

Panning

Network (IP)

Membership
Protocol

Heartbeat Sequencer

Census
Taker

API
Original Group

 Communications Stack

As illustrated in Figure 4 the event trace analysis effort essentially focuses upon the actions, which
are fundamental to resource utilization. This includes all path length data as well as resource
competition actions. During this event trace the failure detection program processes and threads
compete for the resources that are being managed by the resource kernel. While dynamically
executing two of three failure detection program threads continue their execution and specifically
request distinct resources from the resource kernel. The third thread acquires resources from the
parent process, which have previously been allocated from the resource kernel.

However, this resource competition can also extend to other concurrently executing applications,
which request and in turn are provided with resources by the resource kernel. To intensify this
competition a competing application has been executed simultaneous to the failure detection
program. This competing application requests exceptional quantities of resources from the
resource kernel. The explicit resources, which have been allocated by the resource kernel for the
competing application after processing its requests, are also noted and recorded within the event
trace. In turn this previous resource allocation to the competing application has the potential to
force re-negotiations of the resources being requested by the failure detection program threads
and main processes. Any denial of the initial resource request and any re-negotiation actions for
these resources by the failure detection processes and threads are recorded within the event trace.

Figure 4. Event Trace Sequence

Conclusion

The concluding results of this examination have produced accurate high-level behavior
representations of the fast failure detection program. This quality of service event trace analysis
has shown the capacity to specifically reveal various exact failure points, potential resource re-
negotiation inefficiencies, and lengthily quality of service path calls. All of these elements have a
direct bearing upon the quality of service based resource management efficiency for the
distributed command & control fast failure detection application program and environment.

The resulting findings from the quality of service event trace analysis include numerous elements,
which have directly addressed the original goals and objectives of this research effort. The initial
specific event trace analysis case has focused upon a precisely targeted failure detection program

Even
t

Even
t

Event
Trace

Even
t

Even
t

Event
Trace

Even
t

Even
t

Event
Trace

Even
t

Even
t

Event
Trace

Even
t

Even
t

Event
Trace

Even
t

Even
t

Event
Trace

Initialize Threads

Resource
Set

Request
Resource

Negotiate
Resource

Allocate
Resource

Resource
Utilized

Quality
Of

Service
Level

Program
Start

Even
t

Even
t

Event
Trace

Even
t

Even
t

Event
Trace

FFD

within a distributed command & control environment, however it can also be extended to the
general case. This utilization of the quality of service event trace analysis can be applied to other
programs within the distributed command & control domain. These prospective targets of the
quality of service event trace analysis would ideally be within the design and development phases
of the software engineering process.

This work can also be used to provide support for the correct characterization of a software
engineering design approach for distributed systems with respect to efficient employment of
system resources. These research findings can also be directly applied to the design and
development phases of the software engineering process as illustrated Figure 5. The approach of
correctly obtaining effective quality of service resource levels has also effectively been
characterized by this research and can further be applied to this software engineering design and
development process. This is accomplished by utilization of the quality of service event trace to
enhance quality of service awareness, which will in turn augment the creation of the program
prototyping. In this way the quality of service event trace analysis can facilitate the creation of
distributed command & control programs which have quality of service requirements.

Figure 5. Quality Of Service Awareness

The event trace has previously been illustrated for employment in the design and development
phases of the software engineering process. However, the quality of service event trace efforts

Program Prototype

Distributed C2 Program Design

Events

Events

Events

Quality of
Service

Event Trace

Quality Of
Service

Awareness

may also be effectively utilized in the implementation phase of the software engineering process,
and can also assist in refinement of the overall requirements analysis for quality of service
constraints as illustrated in Figure 6. During the implementation phase it is typically a complex
task to ascertain the correct quality of service specifications that are to be utilized for a given
distributed command & control program. For this method of employing the quality of service
event trace analysis the results can be applied directly to the implementation of specific command
& control applications. Any failures or potential for quality of service errors can be revealed prior
to deployment of any mission critical applications which exhibit a priority need to maintain
significant quality of service levels. The application of the quality of service event trace may also
include legacy programs as targets, which have the capability for utilization of resource
management controls and quality of service cognizance.

Figure 6. Distributed C2 Program Implementation

Implementation Phase

Events

Events

Events

Quality of
Service

Event Trace

Quality Of Service
Specifications

Distributed C2 Program

Thus far this work has specifically been directed towards the area of developing quality of service
behavior models for targeted distributed command & control programs. This utilization of the
quality of service event trace approach to behavioral modeling can be further expanded for
inclusion into a development/analysis framework. Additionally as suggested in [Raje 2001] the
possibility of integrating quality of service analysis into a larger framework or Unified Meta-
component Model will provide even grater benefit for distributed environments, which utilize
heterogeneous software components.

References

[Auguston 99] Auguston, M., Tools For Program Dynamic Analysis, Testing, And Debugging
Based Upon Event Grammars, Technical Report, NMSU CSTR-9906, Department of Computer
Science, New Mexico State University, New Mexico, June 1999.

[Auguston 00] Auguston, M., Assertion Checker For The C Programming Language Based On
Computations Over Event Traces, Fourth International Workshop on Automated
Debugging, AADEBUG2000, Munich, Germany, August 2000.

[Drummond 02] Drummond, J., Wells, D., Rahman, M., Detecting Failure Within Distributed
Environments, SPAWAR Technical Paper, Space and Naval Warfare Systems Center, San Diego,
Ca. 2002.

[Koob, 1999], Koob, G., Background for DARPA-ITO Quorum Mission Statement, Defense
Advanced Research Projects Agency Information Technology Office, 1999.

[Raje, 2001], Raje, R., Auguston, M., Bryant, B., Olson, A., Burt, C., A Unified Approach for
the Integration of Distributed Hetrogeneous Software Components, Monterey Workshop 2001,
June 2001.

